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The genomic integrity of every organism is constantly challenged by endogenous and
exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant
genome and have a deleterious effect on development, and in the case of crop species
lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient
mechanisms for maintenance of the genome integrity. DNA repair processes have been
characterized in bacterial, fungal, and mammalian model systems. The description of
these processes in plants, in contrast, was initiated relatively recently and has been
focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge
about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far
more limited. However, the relatively small size of the Arabidopsis genome, its rapid life
cycle and availability of various transformation methods make this species an attractive
model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover,
abnormalities in DNA repair which proved to be lethal for animal models are tolerated
in plant genomes, although sensitivity to DNA damaging agents is retained. Due to
the high conservation of DNA repair processes and factors mediating them among
eukaryotes, genes and proteins that have been identified in model species may serve to
identify homologous sequences in other species, including crop plants, in which these
mechanisms are poorly understood. Crop breeding programs have provided remarkable
advances in food quality and yield over the last century. Although the human population
is predicted to “peak” by 2050, further advances in yield will be required to feed this
population. Breeding requires genetic diversity. The biological impact of any mutagenic
agent used for the creation of genetic diversity depends on the chemical nature of the
induced lesions and on the efficiency and accuracy of their repair. More recent targeted
mutagenesis procedures also depend on host repair processes, with different pathways
yielding different products. Enhanced understanding of DNA repair processes in plants
will inform and accelerate the engineering of crop genomes via both traditional and
targeted approaches.
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INTRODUCTION

Cellular DNA of living organisms normally suffers damage which
may arise endogenously or can be induced by a variety of external
genotoxins including ultraviolet light, ionizing radiation, and
chemical mutagens. The most frequently encountered injuries
to the DNA- often induced through inevitable errors of internal
metabolism- are modifications to nucleotides, intra- or inter-
strand cross-links, and breaks of the phosphodiester bonds. If
damaged DNA is not repaired it may have difficulties in being
properly organized, replicated, or transcribed. The impairment
of such essential molecular processes affects cellular functionality
and may disturb the normal development of the whole organism
(Britt, 1996; Polyn et al., 2015). Plants are particularly vulnerable
to the DNA damaging factors present ubiquitously in the air,
soil, and water. Hence, they have evolved a complex network
of mechanisms of DNA damage detection and repair dedicated
to ensure their genomic stability through removal of the DNA
lesions and reconstitution of the original genetic information
(Bray and West, 2005; Yoshiyama et al., 2013). An intrinsic
feature of certain DNA repair pathways is that they are not error-
free, leading to potentially transmissible mutational alterations.
The error-prone nature of some DNA repair mechanisms,
however, increases the genetic diversity and variability of
the populations, thus contributing to the evolution of plant
genomes (Schuermann et al., 2005). Chemical or radiation-
induced mutagenesis has been a powerful tool for creation and
improvement of economically important crop varieties (Parry
et al., 2009; Forster and Shu, 2012). The mutations occurring
in the plant genome after particular mutagenic treatment are
determined by both the spectrum of lesions generated by
the mutagen and the specificity and efficiency of DNA repair
pathways involved. Therefore, our understanding of DNA repair
mechanisms and their regulation in plants is an essential
requirement for the effective utilization of mutation technologies
in future crop improvement.

It is generally accepted that the choice of a repair pathway
and its action is primarily dependent on the type of the cell,
its proliferation status, cell cycle stage, as well as on the type
of the lesion and its genomic context (Britt, 1999). Plants do
not choose where they live and cannot escape unfavorable
environmental impacts. Therefore, they need strictly controlled
but flexible DNA repair mechanisms responsive to the changing
environment. Indeed, common external factors such as light
regimes, temperature or water availability were shown to dictate
the specific activation and efficiency of certain DNA repair
pathways, such as recombination or photorepair in various plants
(Li et al., 2002; Boyko et al., 2005; Chang et al., 2008). Rapidly
dividing and differentiated cells of different plant organs do
not equally utilize the whole available repertoire of DNA repair
mechanisms (Kimura et al., 2004; Boyko et al., 2006; Yang
et al., 2010). Moreover, the capability of plants to maintain their
genomic integrity was shown to decrease with plant age mainly
due to a reduction in the efficiency and relative contribution of
the employed DNA repair pathways (Golubov et al., 2010).

With some exceptions plants have been shown to possess
all common DNA repair mechanisms which have been initially

described to a greater extent in the other eukaryotic systems,
such as yeast and mammals (Britt, 2002). Photoreactivation of
UV-induced DNA damage is one of the primary DNA repair
mechanisms needed by plants on a daily basis because of their
inherent necessity and exposure to solar light. The two classical
forms of excision repair, base (BER) and nucleotide (NER), often
regarded as “dark repair”, are also available for the plant genome
suffering various types of DNA lesions (Rastogi et al., 2010).
MMR has been implicated in the removal of incorrectly paired
nucleotides and the UV-induced photolesions from the genome
of higher plants (Culligan and Hays, 2000; Lario et al., 2011). The
main DNA double-strand break repair pathways – HR and NHEJ
have been shown to be essential in plants for the preservation of
their genetic stability (Puchta and Hohn, 1996; Waterworth et al.,
2011). Some of the repair mechanisms as photoreactivation are
highly specialized for a particular damage, however, others, like
excision or recombination pathways may deal with a variety of
lesions (Ries et al., 2000a).

Significant progress in elucidation of DNA damage repair in
higher plants has been made mainly utilizing the small dicot
Arabidopsis thaliana as a model (Hays, 2002). The isolation and
characterization of the first plant DNA repair genes involved in
the photorepair, excision repair, HR and NHEJ have been initially
based on the homologous sequence information available from
other organisms (Batschauer, 1993; Britt et al., 1993; Santerre and
Britt, 1994; Ahmad et al., 1997; Jiang et al., 1997a; Doutriaux
et al., 1998; Garcia et al., 2000; Hartung et al., 2000; Liu et al.,
2000; Osakabe et al., 2002; Tamura et al., 2002; West et al., 2002,
etc.). During the last decade significant progress has also been
made in the molecular characterization of the repair pathways
and genes mediating these processes in important crop plants
such as rice, spinach, cucumber, tomato, wheat, barley, etc. The
headlong progress of molecular technologies has expanded the
number of sequenced crop genomes and thus contributed to the
advancements made in the field of plant DNA repair as well
(Singh et al., 2010; Kim et al., 2015). In addition to Arabidopsis,
rice is the other higher plant with relatively well characterized
DNA repair mechanisms with respect to the influence of various
developmental and environmental factors on their activation and
efficiency, as well as regarding the identification and regulation
of genes involved in the DNA repair and protection mechanisms
(Ueda and Nakamura, 2011). The sequence of the rice genome
has been useful for the efficient identification of orthologous
genes, regulatory regions and gene functions in other cereals
(Goff et al., 2002). For example, currently identified barley and
wheat genes display ∼80% homology, at the nucleotide level,
to their rice counterparts thus substantiating the usefulness
of rice homologous sequences for identification of the DNA
repair-associated genes in other monocots. The intensive research
performed on Arabidopsis and rice has enormously increased the
current knowledge on the molecular nature and regulation of
DNA damage and repair mechanisms in plants. However, such
studies should be expanded to include a larger number of model
and crop species if we want to have a clearer picture of the
capacity of plant genomes to overcome the biological impacts of
different genotoxins and to adapt to the changing environmental
stress conditions.
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DNA DAMAGE INDUCED BY
ENDOGENOUS AND EXOGENOUS
FACTORS

DNA lesions are divided into two main categories: single-
and double-stranded. The first category is comprised of lesions
disturbing only one DNA strand, such as oxidized or alkylated
base damage, base loss, DNA adducts, intra-strand cross-links,
DNA photoproducts and single-strand DNA breaks (SSBs). The
second category includes lesions affecting both DNA strands,
such as inter-strand cross-links and double-strand DNA breaks
(DSBs), the latter being the most severe type of DNA damage in
the eukaryotic genome (Figure 1).

Endogenously Arising DNA Lesions
A major source of endogenous DNA lesions is the intracellular
metabolism which increases the concentration of free radicals
in the environment surrounding the DNA; in plants, ROS
are especially ubiquitous in the chloroplasts and mitochondria
(Sharma et al., 2012). AP sites may arise by spontaneous
hydrolysis of the N-glycoside bond or as intermediates resulting
from the repair of deaminated, alkylated or oxidized bases
(Cooke et al., 2003; Tuteja et al., 2009). Moreover, all DNA-
associated processes involved in the transmission, expression and
maintenance of genetic information have the potential to cause
SSB or DSB in DNA (Bessho, 2003; Edlinger and Schlögelhofer,
2011; Montecucco and Biamonti, 2013).

DNA Lesions Caused by Exogenous
Damaging Factors
Alkylating Agents
Monofunctional alkylators such as MMS and EMS are the
chemical agents most widely utilized to obtain mutagenized
plants aimed at both crop improvement and reverse genetics
studies (Till et al., 2003; Natarajan, 2005). Alkylating agents

FIGURE 1 | Schematic representation of the major DNA lesions
induced by various external and endogenous factors, and the types of
DNA repair mechanisms employed to remove them from the
eukaryotic genome.

methylate the DNA bases, mainly at their O- and N-positions
generating small base damage as O6-methylguanine (O6-meG),
N7-methylguanine or N3-methyladenine (Shrivastav et al., 2010).
Bi- and polyfunctional alkylating agents as well as many
carcinogenic compounds form intra-strand cross links between
adjacent guanines or bulky adducts to nucleotides which
significantly distort the conformation of the DNA molecule.
Psoralens and mitomycin C can also induce inter-strand cross-
links connecting the two opposite DNA strands thus effectively
blocking the replication and transcription machineries (De Silva
et al., 2000).

Ionizing Radiation
Ionizing radiation in the form of gamma- and X-rays as well as
ion-beams is another commonly employed DNA damaging agent
with high mutagenic potential in plants (van Harten, 1998). It
produces a large number of lesions through a direct ionization
of the DNA molecule or indirectly via an initial interaction with
water resulting in the subsequent radiolysis and production of
highly reactive species, such as hydroxyl radicals (OH•), free
electrons (e-) and hydrogen radicals (H•) (Alpen, 1998). In
the case of a direct event the high-energy deposition of IR
generates DSB which leads to DNA fragmentation. IR-induced
DSBs frequently have modified termini such as 5′hydroxyl,
3′phosphate, and 3′glycolate, which need processing to make
them compatible for ligation (Schärer, 2003). Oxidation products
(8-oxoguanine, thymine glycols, etc.), base loss (AP lesion of
“regular” or “oxidized types”) as well as SSB are amongst the
lesions generated via secondary DNA ionization. Moreover,
IR induces multiple damaged sites representing two or more
closely localized lesions on the same or the opposite DNA
strands (Shikazono et al., 2009), which usually involve SSB with
damaged termini accompanied by modified or damaged bases
and deoxyribose moieties with a significantly higher frequency
than the frank DSB (Sutherland et al., 2000). Recent research
shows that such a cluster might transform to DSB as a result
of excision repair, but this probability depends on the local
chromatin environment (Cannan et al., 2014). It was generally
thought that IR-induced DSBs are spread rather randomly in the
genome; however, an accumulating body of evidence reveals the
influence of chromatin organization and nuclear matrix proteins
on DSB distribution (Lavelle and Foray, 2014).

Radiomimetic Agents and REs
Double-strand breaks are also produced by a variety of
radiomimetic agents, so-called because of their ability to act
on the DNA by mimicking the effects of IR. The anticancer
drug BLM which is frequently utilized in the studies of DSB
formation and repair in mammalian cells has been shown to
effectively generate DSB in many plant systems as well. That is
why numerous DNA repair assays based on the BLM action have
been introduced in a variety of plant species (West et al., 2002;
Manova et al., 2006; Georgieva and Stoilov, 2008; Kozak et al.,
2009; Stolarek et al., 2015a,b). BLMs are a family of glycopeptides
which cannot diffuse freely through the cellular membranes due
to their hydrophilic properties, but are transferred into the cell
by a receptor-mediated endocytosis (Chen and Stubbe, 2005).
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A single BLM molecule can cause breakage in the double-
stranded DNA thus generating blunt DSB ends or termini with
non-complementary single-base extensions. In addition, abasic
sites with closely opposed SSB can also result from the BLM
action in a frequency exceeding that expected by the coincidence
of two independent damaging events. Oxygen levels of the
microenvironment could modify the type of BLM-generated
DNA damage – a lack of O2 favors the formation of AP site,
whereas the presence of O2 facilitates formation of a DSB with
5′-phosphate and 3′-phosphoglycolate ends (Povirk and Finley
Austin, 1991). The action of BLM is modulated by the local
nucleosome structure and higher-order chromatin organization
(Smith et al., 1994), leading to the preferential DNA breakage
in the linker DNA of mammalian and plant cells (Kuo, 1981;
Manova et al., 2006).

Restriction endonucleases produce only DSBs, which may be
of “blunt” or “cohesive” type, but are always readily ligatable
with 5′-phosphate and 3′-hydroxyl groups (Bryant, 1990). REs
have a high clastogenic activity on the genomes of mammals
and plants (Obe et al., 1995; Stoilov et al., 2000; Manova
and Stoilov, 2003). The unique selection ability of rare-cutting
endonucleases has been used to develop highly specialized
transgenic systems in order to monitor somatic HR in various
plants such as Arabidopsis, tobacco and rice (Puchta et al., 1995;
Puchta and Hohn, 2012). The more recently developed chimeric
nucleases designed to target particular genomic locations and
introduce DSB at specific DNA sequences have the potential
to broaden the studies of DSB rejoining in plant genomes (see
later).

Ultraviolet Radiation
Ultraviolet radiation, being a component of sunlight, is the most
common genome-damaging agent ubiquitously found on earth
(Britt, 2004). It belongs to the electromagnetic radiation spectrum
with wavelengths ranging from 100 to 400 nm. There are three
ranges of UV radiation: short UV-C (100–280 nm), which is the
most harmful for the genetic material as it is directly absorbed
by the DNA, middle-range UV-B (280–315 nm) which is the
main DNA damaging component of the solar light, and long
wavelength UV-A (315–400 nm).

UV light generates two major types of lesions in DNA –
CPDs and 6-4 PPs, whose relative proportion and non-random
distribution within the eukaryotic genome depends on the
sequence composition and chromatin structure (Pfeifer, 1997;
Kwon and Smerdon, 2005; Law et al., 2013). In plants the CPDs
may account for up to 90% of all pyrimidine dimers induced
upon exposure to UV-B (Dany et al., 2001). In the case of CPD
the covalent bonds are formed between the C-5 and C-6 carbon
atoms of the adjacent pyrimidine bases, usually between TpT
and less frequently between TpC and CpC sequences (Durbeej
and Eriksson, 2003). The 6-4 PPs are typically formed between
the carbon atoms at C-6 and C-4 positions of an adjacent TpC
dinucleotide (Pfeifer et al., 1991). The presence of CPDs has the
potential to block the transcribing complexes thus completely
altering the relative expression pattern of genes (Tornaletti et al.,
1999). During replication, however, dimers can be bypassed
by specialized translesion DNA polymerases which increase the

cellular tolerance to UV damage, also in plants (Britt, 1995; Curtis
and Hays, 2011; Nakagawa et al., 2011).

UV radiation may also induce oxidative DNA damage,
mediated predominantly, but not exclusively, by endogenous
photosensitizers that generate free radicals upon their activation.
The genotoxic effects of oxidative DNA damage were clearly
demonstrated in mammalian cells (Roldán-Arjona et al., 2002).
Although rare, there are studies showing the presence of UV-
induced oxidative DNA lesions in plants (Watanabe et al.,
2006). As in plants pyrimidine dimers are primarily repaired by
photoreactivation, it might be speculated that oxidative DNA
damage, known to be eliminated by the error-prone excision
repair, could also contribute to the UV-associated mutagenicity
and plant genomic instability.

DNA REPAIR PATHWAYS IN MODEL AND
CROP PLANTS – NATURE AND
EFFICIENCY, GENETIC CONTROL, AND
AGRICULTURAL IMPORTANCE

Photoreactivation
Photoreactivation is a rare example of a simple and error-
free pathway for the reversal, rather than the removal of DNA
damage. It is performed by a single, lesion-specific enzyme
called photolyase. It is thought to be the first DNA repair
pathway to have evolved in early life forms, which is still being
maintained in such various organisms as bacteria, yeast, plants,
and animals, but has been evolutionarily lost by the placental
mammals (Lucas-Lledó and Lynch, 2009). Two different types
of photolyase enzymes have been established in plants which
are specialized to reverse selectively the 6-4 photoproducts (6-4
photolyase type) or the CPD (class II photolyase). Photolyases
bind to their specific damage-substrate within the double-
stranded DNA in a light-independent manner. However, in
order to get energy for correcting the lesion they need to be
excited by photons from the blue or near UV-A spectrum
(Brettel and Byrdin, 2010) (Figure 2). Subsequently, the electron
is transferred from the CPD photolyase chromophore to the
lesion and after splitting the dimer’s covalent bonds, it is
returned back to restore the catalytically active state of the
cofactor (Thiagarajan et al., 2011). The exact chemistry of the
photorepair reactions differ between the two photolyase types,
however, the final products are monomerized pyrimidine bases
and unchanged nucleotide sequence (Yi and He, 2013). The
error-free nature of photoreactivation makes it the preferable and
most effective mechanism utilized by plants to quickly reduce
the negative effects of DNA photodimers generated upon their
normal exposure to solar radiation (Dany et al., 2001; Britt,
2004). However, inability of the cell to photorepair may lead to
a switch in the transcriptional response of UV stressed plants
activating the completely different DNA repair pathway such as
HR (Molinier et al., 2005).

Based on the UV-B sensitive Arabidopsis mutants deficient
in either CPD or 6-4 PP repair two different plant photorepair
genes have been identified – PHR1 coding for the CPDphotolyase
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FIGURE 2 | Schematic representation of the photoreactivation mechanism utilized by plants to repair UV-induced pyrimidine dimers. On the left is
schematized the classical well characterized process of CPD photoreactivation in double-stranded DNA. On the right is presented a hypothetical mode of CPD
photoreactivation, which might operate within the open DNA regions generated during transcription, replication and repair processes. It is thought to be mediated by
the DASH chryptochromes, based on their ability to photoreactivate CPD in single-stranded DNA (Pokorny et al., 2008). Future research is needed to prove or reject
such an intriguing concept. T/R/R complex – transcription, replication or repair complex.

and UVR3 which encodes the 6-4 photolyase (Britt et al., 1993;
Jiang et al., 1997b; Landry et al., 1997; Nakajima et al., 1998).
Effective light-dependent repair of DNA photolesions has been
demonstrated in all plants investigated so far and the lesion-
specific photolyases identified in Arabidopsis (Pang and Hays,
1991; Chen et al., 1994; Ahmad et al., 1997) have also been cloned
and/or reported to operate in a variety of other plant species like
maize (Stapleton et al., 1997), wheat (Taylor et al., 1996), white
mustard (Batschauer, 1993), cucumber (Takeuchi et al., 1998),
spinach (Yoshihara et al., 2005), alfalfa (Quaite et al., 1994),
rice (Hirouchi et al., 2003), soybean (Yamamoto et al., 2008),
barley (Manova et al., 2009), etc. In view of the importance of
the photorepair mechanism for plant growth and development
under UV exposure it is not surprising that the CPD photolyase
has become one of the most intensively studied DNA repair

genes in higher plants. Photolyases belong to a special category
of proteins, the photolyase/cryptochrome family, containing
flavin as a cofactor and, depending on the species, a “second”
chromophore acting as a photoantenna (Thompson and Sancar,
2002). Plant CPD photolyases analyzed so far, particularly
the Arabidopsis and rice enzymes, show similar chromophore
compositions, consisting of both a reduced FADH and a pterin-
like cofactor (Waterworth et al., 2002; Teranishi et al., 2008).

The cryptochromes work mainly as photoreceptors regulating
plant development as they do not possess the standard
photorepair activity characteristic of the photolyase proteins.
More recently, it has become evident that a special subclass of
these flavoproteins actually has DNA-binding and photorepair
activity, but only on single-stranded and/or loop DNA structures.
These intriguing observations have inspired the hypothesis that
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DASH-type cryptochromes might be involved in the repair of
the locally unwound DNA regions generated by the active matrix
processes such as replication, transcription, and DNA repair
(Selby and Sancar, 2006; Pokorny et al., 2008).

Chromatin organization affects not only the formation,
but also the repair of UV-induced pyrimidine dimers. In
yeast the access of photolyase proteins to the UV-damaged
DNA was inhibited in the compacted chromatin, whereas
the local nucleosome unpacking and repositioning facilitated
photoreactivation (Thoma, 2005). It has been recently shown that
histone-binding proteins of the ASF group are essential for CPD
repair in Arabidopsis specifically under light conditions (Lario
et al., 2013). Moreover, chromatin factors and histone acetylation
have been important prerequisites for UV damage removal in
both Arabidopsis and maize, suggesting an important role of
chromatin restructuring for the effective photorepair process also
in plants (Campi et al., 2012).

Currently the data obtained in different plant species
concerning the distribution of photolyase proteins and their
activities within the intracellular compartments are rather
controversial. A number of studies have shown that CPD
photolyase is present exclusively in the nucleus thus implying that
extranuclear DNA in plant mitochondria and chloroplasts cannot
be photoreactivated. Indeed, fractionated extracts from spinach
chloroplasts were found to be free of the photolyase activity
otherwise contained in whole leave preparations (Hada et al.,
2000). The lack of CPD repair from spinach organelles confirmed
the earlier findings showing that young Arabidopsis seedlings
were able to remove CPD only from the nuclear genome, but
not from the chloroplast and mitochondrial DNA sequences
(Chen et al., 1996). In line with the idea, in Arabidopsis it was
demonstrated that the CPD photolyase protein is transported
only into the nucleus, but not in the chloroplasts (Kaiser et al.,
2009).

On the other hand, light-dependent repair with varying
efficiency was found in the individual soybean and maize genes
localized not only in the nucleus but also in the chloroplast
and mitochondrial genomes (Cannon et al., 1995; Stapleton
et al., 1997). The fully developed Arabidopsis leaves also repaired
CPDs and 6-4 PPs in the nuclear and chloroplast DNA upon
prolonged blue light exposure and restored the replication
of both nuclear and organellar genomes. These observations
illustrate that young and mature plants may differ in their DNA
repair capacity, which in turn may affect their overall tolerance
to UV stress (Draper and Hays, 2000). Moreover, data obtained
in rice reveal that CPD photolyase is localized not only in the
nucleus, but is also active in the mitochondria and plastids. The
presence of CPD photolyase in the organelles allows the rice
leaf cells to employ photoreactivation to restore the integrity of
extranuclear DNA after UV-B exposure (Takahashi et al., 2011).
Phosphorylation, particularly at serine-7, was found to be an
important modification of rice CPD photolyase, regulating
protein translocation within the cellular compartments
(Teranishi et al., 2013). In rice nuclei and chloroplasts the
photolyase is mainly present in its phosphorylated form,
whereas in the mitochondria the major part of the protein is
unphosphorylated. Recently, unique sequences targeting rice

CPD photolyase to the mitochondria have been identified in the
C-terminal region of the protein and validated as functionally
important (Takahashi et al., 2014). Therefore, further studies will
reveal whether the access of plant photolyases to the organellar
genomes is species-specific, or whether it depends on the
developmental stage of the plant, as well as on the organ or tissue
affected, or there are other factors at the molecular level which
might control the presence and activity of plant photolyase
proteins within the nuclear and extranuclear plant genomes.

Photorepair and Its Impact on
Agriculture
The inhibitory effect of the UV-component of natural light
on Arabidopsis growth affected plant height and the rosette
diameter in both wild-type and the DNA repair mutants, and
those defective in the PHR1 were found to be most sensitive
to the daily UV-B exposure (Britt and Fiscus, 2003). Regarding
crop plants, intensive research has focused on the variations of
CPD photorepair efficiency as a primary determinant of UV-B
tolerance affecting the development of individual rice cultivars.
The agriculturally valuable and therefore widely cultivated variety
Norin1 was more sensitive to UV-B radiation compared to
the Sasanishiki cultivar. Notably, the lower capacity of plant
leaves to repair CPDs was the primary cause of the reduced
productivity and growth of Norin1 (Hidema et al., 1997). It
was shown that even a single nucleotide variation changing
Gln-126 (in Sasanishiki) to Arg (in Norin 1) may generate
structural alterations in the photolyase protein, thus affecting
the stability of the CPD-photolyase complex. The resulting
decrease in the repair activity of the enzyme thus explains the
significant differences in the UV resistance between the two
cultivars (Hidema et al., 2000; Teranishi et al., 2004). Moreover,
spontaneously occurring variations in other crucial domains of
CPD photolyase protein have changed the photorepair ability
of many cultivated and wild rice genotypes, thus creating
differences in their UV-B sensitivity finally manifested as reduced
growth and productivity (Hidema et al., 2005; Iwamatsu et al.,
2008). Combined these studies demonstrate that UV tolerance
is a vital characteristic of the contemporary plant cultivars
and DNA repair, and photolyase in particular, might be an
important target for modification to improve economically
important crops in modern breeding programs (Hitomi et al.,
2012).

The capability of plants to photoreactivate UV-induced
pyrimidine dimers depends also on the available amounts of the
photolyase protein within the damaged cell. The first indication
of the influence of light environment on the transcriptional
regulation of plant photolyase genes came from the observation
that the etiolated plants had a lower capacity to repair CPDs
than the de-etiolated. On the other hand, the 6-4 photoproducts
were repaired very efficiently not only in the green, but also
in the etiolated Arabidopsis plantlets. A lack of gene transcripts
and CPD photolyase activity in the dark-grown seedlings has
been reported in several plants such as mustard, Arabidopsis and
spinach (Batschauer, 1993; Chen et al., 1994; Yoshihara et al.,
2005). Within the first hours of light exposure the expression
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of PHR1 and the accumulation of functional protein increased
drastically. The light-dependent regulation of PHR1 possibly
underlined the diurnal fluctuations of the photorepair activity
measured in cucumber leaves (Takahashi et al., 2002). The
continuous light exposure, however, may finally reduce the CPD
photolyase transcript levels if not supplemented with a UV-B
component (Waterworth et al., 2002). Intense UV-B radiation
also enhanced the expression of PHR1 gene in Arabidopsis and
cucumber, but at the same time inhibited the activity of the
protein in the latter (Ries et al., 2000b; Takeuchi et al., 2007).
In fact, etiolated plant tissues may contain certain amounts of
CPD photolyase transcripts and activity allowing initiation of
CPD repair immediately upon their exposure to visible light
(Takeuchi et al., 2007; Castells et al., 2010). In Arabidopsis, the
dark inhibition of photorepair gene expression is maintained
through the photomorphogenic repressors AtDET1 and AtCOP1
until their negative action is alleviated during de-etiolation.
However, the transcriptional induction of photolyase genes, both
AtPHR1 and AtUVR3, is further stimulated by the HY5 and
HYH transcription factors (Castells et al., 2010). A key player of
plant response to UV-B is the recently identified UV-B specific
photoreceptor AtUVR8 which manages a downstream signaling
cascade involving COP1 and HY5, which in turn, control the
expression of many genes related to both plant UV-protection
and photomorphogenic response (Tilbrook et al., 2013). In line,
the Atuvr8-2 mutant is unable to induce PHR1 gene expression,
which is normally found in the wild-type plants exposed to low
UV-B levels (Brown and Jenkins, 2008). Another report also
shows that under normal conditions AtPHR1 is targeted by the
transcriptional repressor E2Fe/DEL1 involved in the regulation
of the endoreduplication potential of the cell, but this suppression
is alleviated upon UV-B exposure allowing the induction of
AtPHR1 (Radziejwoski et al., 2011).

The above results demonstrate that the manipulation of plant
CPD photolyase at the transcriptional level might be a promising
approach for the generation of UV resistant plants. Indeed,
transgenic Arabidopsis lines overexpressing CPD photolyase
showed an improved repair capacity and enhanced UV tolerance
(Kaiser et al., 2009). On the other hand, by silencing the same
gene Yoshihara et al. (2008) were able not only to decrease the
UV-B tolerance of the knocked-down plants, but also to increase
the rate of transitions and frameshift mutations in theArabidopsis
genome. Hence, photolyase genes seem valuable for the modern
agriculture for at least two reasons – the first is to improve the
UV tolerance and productivity of the economically important
cultivars, and the second might be to aid mutagenesis studies
by enhancing the efficiency of mutation induction in the plant
genome.

Direct Repair by DNA Alkyltransferases
Another form of a direct DNA damage repair is the specific
processing of alkylated bases executed by the enzyme called
AGT. The repair mechanism includes direct transfer of the alkyl
group from the lesion to the cysteine residue located in the
active center of the enzyme; as the reaction is irreversible the
inactivated protein undergoes further proteasome degradation.
AGT is a compact single chain protein which scans the genome

and provides fast repair of the lesions due to its efficient
binding into the minor groove of DNA (Pegg, 2011). It is
believed that the enzyme can target itself to the sites of active
transcription, where it ensures the error-free repair of O6-
meG especially in the transcriptionally active regions (Ali et al.,
1998). The non-repaired O6-meG can be bypassed during both
replication and transcription giving rise to transition mutations
and altered mRNA molecules, respectively (Iyama and Wilson,
2013). In human cells, AGT functioning is essential to prevent
the accumulation of altered transcripts and mutant proteins
(Burns et al., 2010). AGTs are ubiquitously present from bacteria
to humans; the only organisms lacking this repair enzyme
are fission yeast and plants (Pegg, 2011). Indeed, the search
for AGT homologs in both model and crop plants has been
largely unsuccessful so far (Costa et al., 2001). In plants O6-
meG is a preclastogenic lesion associated with the formation of
chromosomal aberrations (Baranczewski et al., 1997a). In Vicia
faba root tips, however, the reduction of chromatid aberration
frequency has been correlated with an effective removal of O6-
meG implying the presence of rapid adaptivemechanisms against
this lesion in plant genome (Baranczewski et al., 1997b). It
is therefore quite probable that other DNA repair pathways
efficiently substitute the lack of AGT activity in plants and recent
research implicates BER as such a possible candidate.

Base Excision Repair
Base excision repair is active on a wide range of lesions, such
as damaged or modified bases as well as naturally occurring
AP sites. It is initiated by damage-specific DNA glycosylases
which cleave the N-glycosidic bond and remove the affected
base generating an abasic site. AP endonuclease or AP lyase
activities are further necessary for processing of the resultant
AP site. Subsequently the repair reaction may proceed by either
a “short” or a “long” patch mechanism depending on the type
of lesion and the enzyme engaged. In mammalian cells, the
“short” mode of BER employs the activity of DNA polymerase
β (polβ), XRCC1 and Ligase III which accomplish the repair by
excision of only one nucleotide. The ”long-patch” BER involves
the removal of up to 10 nucleotides surrounding the lesion
and relies on the activity of polymerase complex δ/ε-PCNA-
FEN1. It is important to note that single strand DNA breaks are
unavoidable intermediates during BER, and as such they may
become substrates of other repair mechanisms such as NER and
recombination repair (Memisoglu and Samson, 2000).

Up to now, several lesion-specific DNA glycosylases have
been identified in plants. Arabidopsis 3-methyladenine-DNA
glycosylase, the first cloned plant DNA repair gene, was
shown to remove the alkylated DNA lesions induced by MMS
treatment (Santerre and Britt, 1994). In whole-cell extracts
isolated from Arabidopsis the uracil containing DNA is repaired
by the BER pathway employing enzymes from the uracil-DNA
glycosylase family. Notably, both BER modes may occur after
the initial incision steps despite the lack of polβ and Ligase III
homologs in plants, and the repair reactions are finalized by
the ligating activity of AtLIG1 (Córdoba-Cañero et al., 2009,
2011). In fact, in vitro monitoring of DNA repair reactions
performed with cellular extracts isolated from Arabidopsis or
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other plants have been extremely useful to describe many of
the structural and functional aspects of plant BER. Short-patch
BER was revealed as an essential DNA repair pathway in plant
mitochondria, at least for the removal of uracil, where uracil-
DNA glycosylase activity was found associated predominantly
with the organellar membrane in both the model and crop
species (Boesch et al., 2009). In A. thaliana the AtFPG and
AtOGG1 enzymes showed glycosylase/lyase activities to initiate
the repair of oxidative lesion 8-oxoG and endogenous AP
sites, and the generated intermediates later became substrates
of the ZDP DNA 3′-phosphatase and ARP endonuclease. In
line with their proposed role in the repair of oxidized bases,
inactivation of the AtFPG and AtOGG1 genes increased the level
of oxidative DNA lesions in both the nuclear and mitochondrial
genomes, whereas impairment of AtARP and AtZDP functions
accelerated seed aging (Córdoba-Cañero et al., 2014). The
putative AtPol λ has been implicated in the synthesis step
of “long-patch” BER in Arabidopsis, based on the previously
identified X-family DNA polymerase Pol λ from rice, although
a contribution of yet unidentified plant DNA polymerases has
not been excluded (Córdoba-Cañero et al., 2009; Uchiyama et al.,
2009). As mentioned earlier, experimental evidences obtained so
far show that LIG1 is the only ligase which can be unambiguously
associated with both the “short” and the “long” patch BER in
plants (Córdoba-Cañero et al., 2011).

Base excision repair is also implicated in the epigenetic
control, as it is actively involved in the removal of 5-mC
and its replacement with non-methylated C in eukaryotes,
including plants. DNA methylation is an epigenetic modification
associated with a compacted chromatin state which limits
the accessibility of transcription factors or repair proteins
to DNA. Therefore, improper BER functioning may prevent
demethylation, and hence may affect gene regulation and
activity of other DNA damage repair pathways by altering the
expression of repair-associated genes. Several proteins have been
recognized as being essential for different stages of BER-mediated
demethylation processes in plants, such as the bifunctional
DNA glycosylase/lyase ROS1, removing the methylated base
and cutting the DNA strand, the DNA phosphatase ZDP
involved in the processing of resulting intermediates as well
as the Arabidopsis homolog AtXRCC1 which stimulates 3′-
end cleaning and ligation steps (Martínez-Macías et al.,
2013).

The PCNA homologs have been identified in Arabidopsis and
various crop species, and some of them were found to possess
a second functionally active copy of the gene. The plant PCNA
proteins display many structural and functional similarities
to those of other organisms supporting their involvement
in the excision repair as well as in the replicative DNA
synthesis pathways in plants (Strzalka and Ziemienowicz, 2011).
Indeed, it was shown that the activities of both OsFEN1 and
OsPolλ proteins in rice were enhanced by their interaction
with OsPCNA, which is consistent with the active role of
these enzymes in plant BER. Gene expression studies in
rice coordinated BER activity with cell proliferation, as high
levels of OsPCNA, OsFEN1-a, and OsPol λ transcripts were
detected mainly in the developing rice tissues but not in the

mature leaves, especially after DNA damaging treatment (Kimura
et al., 2004; Uchiyama et al., 2004). In Medicago truncatula,
upregulation of MtOGG1 and MtFPG glycosylases was found
during seed imbibition which coincided with water up-take and
ROS production (Macovei et al., 2011). All of the above results
imply that BER is extremely important for seed longevity as it
helps the germinating embryo to repair oxidative DNA lesions
accumulated during seed storage. Therefore, further knowledge
on these mechanisms would help to improve preservation of
the seeds and find new ways to maintain their germination
potential. Although, BER activity in the mature plant organs
might be less essential for the maintenance of DNA integrity,
the involvement of BER in the establishment of epigenetic
pattern of the genome implies important functioning of this
pathway in transcriptional control at different stages of plant
development.

Nucleotide Excision Repair
Nucleotide excision repair is a general repair mechanism
employed by both prokaryotic and eukaryotic cells to remove a
variety of structurally different DNA lesions. The main substrates
of NER are UV-induced photoproducts and other bulky DNA
adducts that generate substantial conformational changes in
DNA. The efficiency of NER varies within the different genomic
locations and depends on the type of DNA lesion. Two distinct
subpathways of NER exist – Global genomic repair (GGR) and
Transcription-coupled repair (TCR). GGR is a whole genome
repair pathway influenced by the chromatin structure and DNA-
bound proteins, whereas TCR specifically accelerates the removal
of transcription-blocking lesions from the template DNA strand
of the highly expressed genes (Hanawalt, 2002). The two NER
modes utilize specific factors but also share repair proteins and
the main difference between them is in the system employed to
sense the damage, whereas the later stages proceed in a similar
way (Figure 3).

In animals GGR is initiated by the heterotrimeric complex
Xeroderma Pigmentosum group C (XPC)/HR23B/Centrin2
which scans the genome and detects the damaged region based
mainly on the distortion the particular lesion generates in the
DNA double-helix, rather than on its chemical nature. The
complexmay be assisted by the heterodimerUV-DDB (composed
of DDB1 and DDB2 subunits) helping to find lesions such as
CPD, which only slightly alter the structure of DNA (Sugasawa,
2009). RPA, XPA, and XPG are then recruited along with the
multiprotein complex TFIIH employed to verify the damage
and identify which of the DNA strands is actually affected.
TFIIH is also a component of the RNA polymerases I–III
holoenzymes where it is crucial for transcription initiation and
DNA unwinding during the early elongation step. Due to its
complex dynamic structure and multifunctionality TFIIH is able
to coordinate transcription and DNA repair, and may also relate
these processes to the cell cycle control (Mydlikova et al., 2010).
The recruitment of TFIIH during NER allows opening of the
DNA duplex, which is performed by its key helicase subunits XPB
and XPD, each of them bound to a different DNA strand. Their
positioning within TFIIH determines the asymmetry and length
of the opened DNA region; after verification the selected strand is
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FIGURE 3 | Schematic representation of GGR and TCR in the eukaryotic cells. Two main concepts exist regarding the fate of stalled RP. According to the first
model, after completion of repair, the transcription continues from the point it has been impaired without degradation of RNA Pol II and its nascent transcript; a key
role in this step is attributed to the elongation factor ELL which is thought to help the backtracked RNA pol II to release from chromatin as well as to attract
additional, yet unidentified factors allowing transcription restart (Mourgues et al., 2013). Another possibility is that the stalled polymerase and its growing transcript
are released from DNA and further degraded; the lesion is removed and transcription starts by new RNA pol II complexes from the beginning of the gene on an intact
damage-free template (Sarasin and Stary, 2007).

nicked 5′ and 3′ to the lesion by XPF/ERCC1 and XPG nucleases,
respectively (Fuss and Tainer, 2011). It was shown in mammalian
cells that binding of RPA protects the single-stranded DNA end
from degradation, whereas PCNA (either ubiquitinated or not)
coordinates the repair synthesis and ligation steps performed
selectively by DNA polymerases (δ, ε, or κ) and DNA ligase
I or DNA ligase III/XRCC1 in a cell-cycle dependent manner
(Moser et al., 2007; Ogi et al., 2010). A global relaxation of the
native chromatin is required in order to provide access of repair
complexes to the DNA lesion, which in turn has to be restored
after the final ligation step (Palomera-Sanchez and Zurita,
2011). Chromatin modifications such as histone acetylation and
ubiquitination seem to be tightly associated with the processivity
and completion of NER. Local nucleosome destabilization might
be mediated by the complex DDB1-CUL4A/(DDB2) E3, which
is responsible for the ubiquitination not only of the NER factors
DDB2 and XPC, but also of the histones H2A, H3, and H4

(Escargueil et al., 2008). Based on the latter observation, it has
been suggested that the incorporated new histones may leave
a kind of post-DNA repair imprints which could later affect
epigenetic memory (Kamileri et al., 2012).

In higher eukaryotes the initial signal for TCR is emitted
when the actively elongating RNA PolII complex stops on the
transcribed strand due to the presence of damage. This is the
reason why only this DNA strand is efficiently repaired whereas
damage on the coding strand may persist for longer periods until
being recognized by the GGR (Tornaletti, 2005). Key factors in
TCR are CSA and CSB proteins (being components of different
protein complexes) which bind the stalled RNAPolII. They,
along with DDB1 initiate the assembly of other components
of the TCR machinery such as HAT p300, HMGN1, XAB2,
and TFIIS employed to displace the polymerase complex and
modify chromatin, which results in exposure of the lesion to
the common NER processing enzymes (Fousteri et al., 2006;
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Reed, 2011). In addition to the CDK7 kinase (essential during
the processing step), novel TCR players have been identified as
necessary for the continuation of gene transcription as soon as
the template has been repaired. The elongation factor ELL is
supposed to stimulate the dissociation of stalled RNA PolII from
chromatin (Mourgues et al., 2013), whereas the proper chromatin
environment, a prerequisite for successful post-repair restart of
gene transcription, is ensured through modification of the newly
assembled histones by specific histone chaperons such as HIRA,
FACT, and DOT1L (Mandemaker et al., 2014).

Extensive studies in bacteria, yeast, and mammals have
generated a large pool of data about the genetic control and
biochemistry of NER and have also uncovered many structural
and mechanical details of the lesion processing events. The last
decade of intensified research in plant DNA repair field has
revealed that most of the key NER genes are present in both
model and crop plants, and notably many repair factors are
identified as being components of similarly structured protein
complexes. Moreover, in plants many NER genes have been
interconnected to HR and photorepair and such a dynamic
interplay of different DNA repair mechanisms may contribute
to the adaptability and plasticity of plant genomes (Dubest et al.,
2004; Molinier et al., 2008).

The AtCEN2 gene has been implicated in the early steps of
plant GGR as part of the AtRAD4 (XPC) recognition complex.
It was also shown to provide a link between NER and HR as
an alternative mechanism for CPD repair in plants (Molinier
et al., 2004; Liang et al., 2006). The role of the AtGTF2H2
protein in both transcription and NER has been inferred by its
interaction with AtXPD helicase and further supported by its
ability to act in the transcription and repair processes in yeast
(Vonarx et al., 2006). In addition, AtGTF2H2, AtXPD, AtTFB1A,
and AtTFB5 have been identified as being the Arabidopsis
homologs to the human TFIIH factors p44, XPD, p62, and
TTDA, respectively. All of them were shown to be components
of the plant TFIIH complex and a structural model for its core
assembly has been developed based on protein interaction data
(Grice et al., 2007). Two DDB1 homologs are present in the
Arabidopsis genome (DDB1A and DDB1B), whereas in rice and
tomato the DDB1 is a single-copy gene. Genetic and molecular
analyses have provided plenty of data about the involvement
of CUL4-DDB1-DDB2 E3 ligase complex in plant GGR. The
CUL4, DDB1A, and DDB2 insertion mutants in A. thaliana are
hypersensitive to UV-C radiation and deficient in the dark repair
of UV lesions (Molinier et al., 2008). In accordance with this,
AtDDB1A overexpression improved the immediate response to
the damaging UV light and was also necessary for the UV-
induced regulation of the other DDB1B and DDB2 genes (Al
Khateeb and Schroeder, 2009). The expression of the OsDDB
gene was also shown to increase upon UV exposure but mainly in
the meristematic rice tissues (Ishibashi et al., 2003). In addition
to their involvement in NER, plant DDB factors have shown
a broad range of protein interactions that appear critical for
the normal development and physiology at different stages of
the plant growth (Ganpudi and Schroeder, 2013). Mutations in
AtXPD/UVH6, DDB1A, and DDB2 were found to influence both
plant UV and heat response, and also cause defects in the floral

development (Ly et al., 2013). In tomato, DDB1 has been linked
to organogenesis, photomorphogenic response and even to the
nutritional quality of the fruit, thus assigning a direct role of DNA
repair-related genes and processes to the value of crops (Azari
et al., 2010; Liu et al., 2012).

In plants the preferential removal of CPD and/or other
DNA lesions from actively transcribed genes by NER pathway
has not been a subject of intensive research, although repair
heterogeneity has been proposed to occur in maize (Stapleton
et al., 1997). In Arabidopsis, however, it has been recently shown
that, in contrast to the low-rate repair observed at the whole
genome level in the dark, the housekeeping RPII gene has been
efficiently restored in a period of 24 h after UV-B irradiation.
The more intriguing observation was that such repair was due
to the enhanced CPD removal from the transcribed strand of the
gene, thus providing a direct evidence for active TCR in the plant
genome (Fidantsef and Britt, 2012). Consistent with these results
AtCSA-like genes have been implicated in the regulation of TCR
and UV damage response as part of the CUL4-DDB1CSAat1A and B

complex in A. thaliana (Zhang et al., 2010a). The expression of
the AtCSA-1 protein was found to be constitutively high in all
plant tissues and therefore not upregulated by UV-B. However, its
distribution in the nucleus showed a pattern of speckles in areas
with high transcriptional activity, thus supporting involvement in
TCR (Biedermann and Hellmann, 2010). Therefore, the selective
operation of excision repair pathways at the level of actively
transcribed genes seems really important for plants (i.e., more
than previously appreciated) and it would be interesting to
explore whether gene-specific repair might contribute to the UV
tolerance in crops as well.

Mismatch Repair
The main biological role of the MMR system is to correct errors
such as mismatches or nucleotides accidentally inserted/deleted
during replication. In addition, MMR participates in the
correction of mispaired bases and loops in the recombination
intermediates, rejection of excessive heteroduplexes, removal of
exogenous DNA lesions such as psoralen-induced interstrand
cross-links, oxidative DNA damage and UV photoproducts, as
well as in nucleosome remodeling (Wu et al., 2005; Javaid
et al., 2009; Lario et al., 2011; Honda et al., 2014). Hence, an
efficient MMR helps the cell to increase the fidelity of DNA
replication, to decrease the rate of mutations, to control the
dynamics of short repetitive sequences, to maintain genome
integrity, to conduct high-fidelity homologous and inhibit
homeologous recombination, as well as to carry out proper
meiosis (Spampinato et al., 2009). As an essential safeguard
of genomic stability the MMR system is highly conserved in
all living organisms, although some variations between the
kingdoms were found to exist. The main prokaryotic MMR genes
MutS andMutL havemultiple homologs in the eukaryotes known
as MSH and MLH gene families. Most of the eukaryotes contain
at least sixMSH genes, whereas the seventh,MSH7, is specific for
plants (Culligan and Hays, 2000). MSH polypeptides combine in
various heterodimeric complexes such asMSH2•MSH6 (MutSα),
MSH2•MSH3 (MutSβ) or MSH4•MSH5, which are more or
less specialized for certain DNA structures or DNA damage.
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They function in either replicative or recombination MMR, or in
both. In general, the MSH heterodimers have lesion recognition
and DNA binding activities, whereas the actual repair reactions
initiate upon recruitment of the MLH heterodimer (Culligan
et al., 2000). The endonuclease activity of MutLα (MLH1-PMS2)
is particularly important for the strand-specific correctness of
mismatch removal. Other proteins implicated in the downstream
stages of MMR are Exo1, PCNA, RPA, RFC, and DNA
polymerase δ (Modrich, 2006). In replicative MMR the main
difference between bacteria and eukaryotes is in the mechanism
used to differentiate between the inaccurately inserted and the
normal nucleotide within the mismatch. In Escherichia coli the
newly synthesized strand is easily distinguished because it initially
lacks the methylation of specific DNA sequences. In eukaryotes
the exact recognition mechanisms are not yet well understood,
but it is now evident that they involve a tight interplay between
replication and MMR (Jiricny, 2013). Indeed, data in yeast
suggests that in the course of replication the MMR factors are
temporarily coupled to the replication machinery which allows
them to recognize repair signals elicited from the daughter
strand shortly after replication (Hombauer et al., 2011). Up to
now, eukaryotic MMR reactions have been fully reconstituted
in vitro with both human and yeast MMR enzymes (Bowen
et al., 2013), however, such studies are still to be performed in
plants.

Similar to other eukaryotes, plants rely on the proper function
of MMR factors during post-replicative and recombination
MMR to preserve their genomic stability. In Arabidopsis, MSH2
deficiency inhibits homologous but increases homeologous
recombination (Li et al., 2006) and enhances the microsatellite
instability particularly in germline cells (Leonard et al., 2003),
whereas MSH7 controls meiotic recombination (Lario et al.,
2015). In cereals, the loss of MSH7 gene function impairs
meiotic recombination and reduces plant fertility (Lloyd et al.,
2007). Inactivation of AtMLHs leads to disruption of all MMR-
dependent processes such as meiosis, mitotic recombination, and
damage removal (Dion et al., 2007). Plant MMR is not limited to
the nucleus; the nuclear-encoded MSH1 protein also localizes in
the extranuclear genomes of both dicots and monocots, where
it influences different chloroplast and mitochondrial functions
(Xu et al., 2012b). AtMSH polypeptides associate in vitro to
form the known MSH2•MSH6 (AtMutSα) and MSH2•MSH3
(AtMutSβ) heterodimers, which exhibit binding efficiencies
and mismatch substrate specificities similar to the other
eukaryotic homologs, whereas the AtMutSγ (MSH2•MSH7)
protein complex shows specific substrate binding affinity which
suggests more specialized functions (Wu et al., 2003). It was
recently demonstrated that overexpression of plant MutS and
MutL proteins in yeast cells significantly disturbs MMR function
and consequently destabilizes the yeast genome. A specific role
of AtMutSγ in the recognition of mismatches generated at
the sites of spontaneous or stress-induced DNA lesions has
also been proposed (Galles and Spampinato, 2013; Gómez
and Spampinato, 2013). Indeed, data have shown that plants
deficient in AtMSH7, AtMSH2, or AtMSH6 genes when exposed
to high UV-B levels, have higher CPD content, reduced CPD
repair kinetics, as well as impaired cell cycle progression

compared to the MMR proficient ones. In addition, wild
type Arabidopsis and maize respond to UV-B irradiation by
enhancing the expression levels of MSH2 and MSH6 genes,
consistent with the role of the MMR system in the UV defense
strategy of both model and crop plants (Lario et al., 2011,
2015).

There is an increasing demand to expand the current
knowledge on the MMR system from model to crop species as
such studies may have direct impact on the modern agriculture.
Mutation-based breeding and introgressive hybridization have
long been powerful tools in crop improvement and both these
processes have been linked to the functionality of MMR in plants
(Tam et al., 2009). It was suggested that inactivation of MMR
may help induce mutagenesis with lower associated toxicity, as
lower doses of mutagens would be sufficient to obtain desired
traits in an MMR deficient background (Hoffman et al., 2004).
MMR deficiency alone was sufficient to significantly increase the
mutation rate in Arabidopsis without any mutagenic treatment,
showing a mutation spectrum different from that achieved after
EMS treatment. Therefore, in Arabidopsis an approach based on
the reversible inhibition of MMR genes was successfully utilized
to obtain plants with selectable phenotypes (Hoffman et al., 2004;
Chao et al., 2005). The efforts to manipulate the MMR system are
not confined to the Arabidopsis genome but have recently been
employed in some crop species such as rice, tobacco, and tomato
(Tam et al., 2011; Xu et al., 2012a; Van Marcke and Angenon,
2013). Various strategies have been applied such as RNAi-induced
silencing and/or dominant negative suppression of MMR repair
genes and all these techniques seem promising for the future
agriculture to overcome the barriers between distantly related
species or enhance mutation variability.

Recombinational Repair and
Non-homologous End Joining
Detection and Signaling of DSB Occurrence
The lack of plant genome stability may cause abnormalities
in plant development and, in the case of crop plants, yield
reduction. DSBs pose a major threat to genome stability
because if not repaired before cell division they may lead to
loss of substantial genetic material (Puchta, 2005; Feuerhahn
and Egly, 2008; Charbonnel et al., 2010). DSBs have also
been shown to cause programmed cell death in plants (Roy,
2014). In all eukaryotes, in the course of evolution, a complex
system has been established, which includes DNA damage
recognition and response pathway (DDR) and cell cycle
checkpoint components. The DNA damage response mechanism
and components of the cell cycle regulation coordinate DNA
repair in the context of cell cycle phase. In order to initiate
DSB repair, and to signal the occurrence of the DNA damage
and recruit the repair proteins within the affected region of a
nucleus, structural, and chemical modification of nucleosomes
at the damaged site takes place, as shown in eukaryotes (van
Attikum and Gasser, 2009). The primary signal transducers
of DNA breakage are two phosphatidylinositol 3 kinase-like
(PI3K) protein kinases: ATM and ATR. Both kinases initiate
a phosphorylation-mediated signal transduction cascade that
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leads to cell-cycle arrest and repair of DSBs. The ATM and
ATR kinases phosphorylate the histone variant H2AX in a large
chromatin domain around the damage. This phosphorylation
induces the accumulation of other damage-response factors
and produces cytologically detectable foci (Amiard et al.,
2011).

Arabidopsis atm mutants are sensitive to DSB-inducing
factors, whereas the atr mutant plants are sensitive to replication
stress (Garcia et al., 2003; Culligan et al., 2004, 2006). A role of
these proteins in the DDR signaling in plants was validated by
the fact that H2AX phosphorylation in response to irradiation-
induced DSBs is dependent on ATM (Friesner et al., 2005). In
plants a signal of the presence of a DSB is transduced by the
ATM kinase, whereas the signal communicating the presence
of stretches of a single-strand DNA is transduced by the ATR
kinase (Yoshiyama et al., 2013). Eukaryotic genomes encode
histone variants, which differ from canonical histones in amino-
acid sequence and are encoded by single-copy genes. These
histone variants are associated with various genomic regions
and play major roles in regulation of transcription, chromatin
condensation, and in DNA damage response and DNA repair
(Law and Cheung, 2013). As a consequence of the presence of
a DSB, histone H2AX is phosphorylated at the C-terminal part
of the protein (histone variant γH2AX) forming the γH2AX
foci (van Attikum and Gasser, 2009). It was reported that the
γH2AX foci constitute sites of recruitment of various DNA repair
proteins (Paull et al., 2000). There is a correlation between the
number of γH2AX foci and the number of DSBs, as well as
between the rate of removal of the phosphorylated histones
H2AX and efficiency of DSB repair. In fact, measurement of
γH2AX foci formation is considered several orders of magnitude
more sensitive than other methods of DSB detection (Bonner,
2003; Löbrich et al., 2010). This approach to measurement of
DSB repair was successfully applied in plant genomes (Friesner
et al., 2005; Charbonnel et al., 2010), including crop species with
relatively large genomes, such as barley (Stolarek et al., 2015a,b).
Recently, inArabidopsis, a land-plant-specific transcription factor
SOG1 has been identified. It functions as a central regulator
in DNA damage response and performs functions analogous to
mammalian p53, being involved in the majority of plant response
to DNA damage, such as transcriptional response, activation of
cell cycle checkpoint and programmed death (Yoshiyama et al.,
2014).

Mechanisms of DSB Repair
Upon DSB detection two different repair mechanisms may be
initiated to repair the lesion – HR and non-homologous end
joining. In DSB repair via HR the broken DNA ends are repaired
based on the regions of sequence homology, whereas in NHEJ
the sequence information does not play a significant role in
re-joining of DSBs (Puchta, 2005). The lattermechanism does not
require homologous template sequence and is therefore error-
prone (Charbonnel et al., 2010). HR can also be error prone
if not restricted to the identical locus on a sister chromatid.
The principle mechanisms and basic factors in HR-mediated
DSB repair and NHEJ are conserved in eukaryotes (Puchta and
Fauser, 2014). Studies aimed at characterization of DNA repair

processes in plants have been conducted mainly in Arabidopsis.
Our previous studies indicated that, based on high conservation
level of these processes across various evolutionary groups of
organisms, gene, and protein sequences related with DNA repair
may be deployed as queries for browsing databases to identify
homologous sequences in other species, including crop plants, in
which these mechanisms are poorly understood (Gruszka et al.,
2012). Application of various approaches in plant systems and
sequencing of re-joined sites allowed identification of specific
features of DSB repair in plants: end joining is usually associated
with various sequence rearrangements (insertions, deletions)
ranging up to 1 kb, and rejoining frequently takes place at
sites of short repeats. Moreover, the sequences inserted at the
re-joined site may be derived from other locations in a genome –
consequently NHEJ in plants appears more error-prone than
in other organisms (Gorbunova and Levy, 1999; Puchta, 2005).
Analysis of DSB joining in two plant species varying significantly
in their genome size – Arabidopsis and tobacco - indicated that
the pattern of sequence alterations at the junction sites varies
between the plant species and that large deletions at the junction
sites are more frequent in smaller genome of Arabidopsis (Kirik
et al., 2000; Lloyd et al., 2012). This indicates that error-prone
NHEJ may contribute significantly to the evolution of plant
genome size (Puchta, 2005). It is now known that high-fidelity
DSB repair via HR is less frequent in plant genomes than NHEJ
(Puchta and Fauser, 2014). On the other hand, in plant genomes,
especially the large ones, with high content of repeated sequences,
recombination between two non-allelic sequences may lead to
crossovers and genome rearrangements and in this situation
NHEJ proves safer than HR. The generally used classification of
HR-mediated repair versus NHEJ may be oversimplified because,
especially in plants, both mechanisms act together, and many
rearrangements observed in plant genomes may be explained
by a combination of these pathways. Although DNA repair in
lower organisms usually is more accurate, accuracy of DNA
repair cannot be simply correlated with genome size or amount
of repetitive DNA (Gorbunova and Levy, 1999). Mechanisms
of DSB emergence and induction as well as various damage
recognition and repair pathways are presented in Figure 4.

Non-homologous end joining
Upon detection of a DSB and recruitment of the above-
mentioned signaling components several repair pathways may
be activated. According to the current classification the
NHEJ pathway is divided into several sub-pathways, including
canonical or cNHEJ and the recently discovered aNHEJ sub-
pathway (Mladenov and Iliakis, 2011).

The cNHEJ mechanism is highly conserved among both pro-
and eukaryotic organisms. It is involved in the repair of DSBs
that are produced by both physical and chemical factors, but
also as a result of V(D)J recombination in animals, and T-DNA
integration into a genome during transformation (Charbonnel
et al., 2010; Lieber, 2010; Charbonnel et al., 2011; Boboila et al.,
2012; Park et al., 2015). The process is initiated by damage
recognition mediated by the heterodimer Ku70/Ku80 forming
a ring structure, which binds both DNA ends, brings them
together and prevents their degradation (Walker et al., 2001;
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FIGURE 4 | Diagrammatic representation of the DSB inducing factors and the various damage recognition and repair pathways.

Mannuss et al., 2012). Therefore, cNHEJ often causes a minor
change in genetic information (Puchta and Fauser, 2014). The
step mediated by the Ku70/Ku80 heterodimer is followed by the
recruitment of DNA-PKcs kinase, which promotes or restrains
the access to damaged DNA ends. However, the DNA-PKcs
kinase has not been identified in plants (Nishizawa-Yokoi et al.,
2012). At the site of the lesion the DNA ends are processed, as
required, by several proteins to restore the correct phospho- and
hydroxyl-groups at both the 5′ and 3′ DNA ends, respectively.
The cNHEJ pathway is terminated by DNA ligation, which is
mediated by various proteins, such as the LigIV/XRCC4, XLF,
PARP3 [Poly(ADP-ribose) polymerase 3] and the APLF protein
(Neal and Meek, 2011; Rulten et al., 2011).

Key players participating in cNHEJ, such as Ku70, Ku80,
XRCC4, and ligase IV have been identified in Arabidopsis.
Mutations in the Ku70, Ku80, and LigIV genes lead to increased
sensitivity to DSB-inducing factors (West et al., 2000; Tamura
et al., 2002; West et al., 2002). Inactivation of the Ku80 protein
in Arabidopsis considerably reduces the efficiency of cNHEJ.
However, surprisingly Arabidopsis ku70, ku80, and ligIV mutants
do not show growth defects or increased inviability (Bleuyard
et al., 2006). Arabidopsis Ku70 and Ku80 proteins were shown
to bind double-stranded DNA (non-telomeric and telomeric
sequences), but not single-stranded DNA. Both proteins possess
ATPase and ATP-dependent DNA helicase activities. Expression
of these genes is increased in response to DSB-inducing factors

such as BLM and MMS (Tamura et al., 2002). Orthologs of XLF
have not been identified in plants. Three genes encoding proteins
similar to Artemis were identified in the Arabidopsis genome,
but their role in cNHEJ was not validated (Charbonnel et al.,
2010). The key mediator of the cNHEJ process – the Ku70/Ku80
heterodimer is also suggested to function as a repressor of HR
within telomeric sequences, which may lead to the shortening of
telomeres. In Arabidopsis the involvement of the Ku80 protein in
telomere length regulation was confirmed and the atku80mutant
has longer telomeres than wild type (Gallego et al., 2003; Fattah
et al., 2010). The function of the Ku70/Ku80 heterodimer has
been validated in rice (Nishizawa-Yokoi et al., 2012) and wheat
(Gu et al., 2014). Recently, barley mutants carrying mutations in
the Ku80 gene were identified. These mutants accumulated BLM-
induced DSBs to a much greater extent than the parent cultivar.
The study also demonstrated a significant role of the HvKu80
gene in the regulation of telomere length in barley (Stolarek et al.,
2015b).

In the less well-characterized aNHEJ process, 3′ resection
of the broken DNA ends occurs. Annealing of the two single
strands leads to junction formation at the sites where few
complementary nucleotides are present. The end flaps are usually
trimmed, re-joining occurs and the microhomologies get exposed
at the junction site. As a result of DSBs resection, the aNHEJ
process usually leads to deletions at the junction site (Puchta
and Fauser, 2014). It was reported that the PARP1 and XRCC1
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proteins are involved in this process and are conserved both
in mammals and plants (Charbonnel et al., 2011; Jia et al.,
2013). Very often genetic information at the junction site is lost,
therefore the aNHEJ process is considered as highly mutagenic
way of DSB repair (Puchta and Fauser, 2014). It was also
demonstrated that both NHEJ sub-pathways compete for DSB
repair. In the Arabidopsis mutant ku80 occurrence of the error-
prone re-joining (aNHEJ) was increased by 2.6-fold and higher
frequency of end degradation was observed (Osakabe et al.,
2010). It was reported that an additional NHEJ pathway may be
responsible for repair of some DSBs in the absence of cNHEJ and
aNHEJ (Charbonnel et al., 2011). The function of the PARP genes
in Arabidopsis is still far from being fully elucidated, however,
it was recently suggested based on high expression level of this
gene in seeds, that it may play a crucial role in DNA damage
response at this developmental stage. Upon seed imbibition
ROS are produced, which may result in DNA damage. Under
these conditions DNA repair is critical to maintain the genome
integrity of developing embryo (Balestrazzi et al., 2011; Boltz
et al., 2014). Based on the information from model species –
Arabidopsis and rice, recently the barley PARP3 homolog has
been identified. Expression of the HvPARP3 gene is enhanced
by the DSB-inducing chemical BLM. This result indicates that
HvPARP3 functions as a component of DNA damage-response
system. Mutational analysis of the gene led to the identification
of a series of alleles. Mutation of the amino-acid residue located
in a highly conserved domain evoked a significant increase in the
number of DSBs produced after the mutagenic treatment, which
was measured with various approaches (Stolarek et al., 2015a).

Homologous recombination
In somatic cells of plants HR is a minor DSB repair pathway
functioning mainly during the S and G2 phases of the cell
cycle. The two most prominent HR-dependent pathways of DSB
repair in plant somatic cells are SSA and SDSA (Puchta, 2005).
The most common intermediate step of the DSB repair process
is resection of DNA ends and exposure of single-stranded 3′
overhangs. This was proposed as the first step for the majority
of DSB repair pathways in plants and seems to be mediated
by the MRN complex. Plant homologs of MRE11, RAD50, and
NBS1, which form the MRN complex, have been identified
(Hartung and Puchta, 1999; Gallego and White, 2001; Akutsu
et al., 2007). In Arabidopsis the functions of two components
of this complex – AtMre11 and AtRAD50 were validated and
co-immunoprecipitation assays indicated that these two proteins
form a complex (Gallego et al., 2001; Bundock and Hooykaas,
2002; Daoudal-Cotterell et al., 2002). The MRN complex is
also required for γH2AX phosphorylation by the ATM and
ATR kinases in response to DNA damage (Amiard et al.,
2010). It is suggested that in Arabidopsis the MRN (Mre11-
Rad50-Nbs1) complex may also be recruited to DSBs by the
Ku70/Ku80 heterodimer during the NHEJ pathway (Tamura
et al., 2002). Characterization of the atmre11 and atrad50mutants
indicated conservation in the functions in recombination and
DSB repair of the Arabidopsis MRN complex (Bleuyard et al.,
2006). Inactivation of theAtMre11 andAtRAD50 genes conferred
a phenotype of hypersensitivity to DSB-inducing factors, but the

mutant plants remained viable (Gallego et al., 2001; Bundock and
Hooykaas, 2002). However, sterility observed in these mutants
suggests conservation of the role of the MRN complex in
HR during meiosis (Gallego et al., 2001; Puizina et al., 2004).
Cytological analyses of meiotic cells indicated that the sterility is
caused by DNA fragmentation during meiotic prophase (Puizina
et al., 2004). Another factor important for the initiation of HR
is the RPA, which is a eukaryotic heterotrimeric protein complex
that binds single-stranded DNA. In plants, multiple genes encode
the three RPA subunits (RPA1, RPA2, and RPA3; Ishibashi et al.,
2006; Shultz et al., 2007; Atwood et al., 2014; Eschbach and
Kobbe, 2014). The RPA complex plays essential roles in various
DNA metabolic pathways, including DNA replication, meiotic
recombination, and repair. This complex participates also in the
activation of the cellular response to DNA damage (Aklilu et al.,
2014). Moreover, inArabidopsis, one of the subunits (RPA1) takes
part in the NHEJ process and negatively regulates the telomere
length (Takashi et al., 2009).

According to the SSA model the two single-stranded
3′overhangs may anneal at the site of microhomology
(Gorbunova and Levy, 1999). In Arabidopsis and other model
organisms this process is mediated by the Rad52 protein (Samach
et al., 2011). The SSA process may only occur when the DSB is
located between two homologous/complementary sequences.
If the resulting DNA molecule contains non-complementary
overhangs they are removed, and the remaining single-stranded
gaps are filled by DNA polymerase and the repair is completed
by ligation by DNA ligase I. The SSA pathway is a non-
conservative mechanism, as it usually leads to deletions of
sequences which were originally located between repeated
sequences of microhomology (Puchta and Fauser, 2014). The
SSA mechanism seems to be of great importance for molecular
evolution of genomic regions with tandem duplications. In these
regions up to one-third of DSBs is repaired with the use of the
SSA pathway (Siebert and Puchta, 2002). The SSA mechanism
leading to deletion of sequences located between direct repeats is
particularly efficient. It may explain the abundance of single LTRs
as remnants of retrotransposons in cereal genomes (Puchta,
2005).

The other DSB repair model – SDSA – is based on invasion
of a homologous, double-stranded template molecule with a
single-stranded 3′ overhang, which is then extended during DNA
synthesis. The single-stranded 3′ overhang invasion into the
template molecule is most likely mediated by the RAD51 protein
and its paralogs (Bleuyard et al., 2005; Osakabe et al., 2005).
In the Arabidopsis genome AtRAD51 is a single-copy gene, and
its transcription is increased after gamma-irradiation (Doutriaux
et al., 1998; Bleuyard et al., 2006). It was reported that the atrad51
mutants are viable, even though the mutants showed a severe
sterility phenotype due to defects in synaptonemal complex
assembly and chromosomal instability during meiosis (Li et al.,
2004). Most probably the formation of the RAD51/ssDNA
nucleofilament is also mediated by Arabidopsis orthologs of
the BRCA2 protein, which interacts directly with AtRAD51.
Similar to the atrad51 mutants, Arabidopsis RNAi lines in which
the AtBRCA2 gene was knocked-down showed partial sterility
caused by chromosomal instability during meiosis (Siaud et al.,
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2004). Contrary to the SSA pathway, the SDSA mechanism is
conservative, as homology from the donor sequence (template
DNA molecule) is copied into the DSB without any loss of
DNA sequence (Puchta and Fauser, 2014). The SDSA pathway
was reported to be five to ten times less efficient in DSB repair
than the SSA mechanism under comparable conditions (Orel
et al., 2003). The mechanism of SDSA explains the frequent
events of gene conversion or insertion of filler DNA at the re-
joining site. During this process the single 3′ end invades a
homologous double-stranded, template DNA molecule, forming
a D-loop structure (Puchta and Fauser, 2014). It is now known
that both the 3′ single-stranded overhangs may act independently
in search for a template molecule, which is to be invaded.
Therefore, in the SDSA mechanism both homologous and non-
homologous templates may be invaded (Gorbunova and Levy,
1999). The SDSA mechanism is considered a conservative mode
of DSB repair and usually results in gene conversions, however,
without Holliday junction formation and crossover events. This
mechanism seems to play a significant role inmolecular evolution
of tandemly arranged gene families (Puchta, 2005). During
the DNA synthesis interaction between the template and the
extended strand is weak, and therefore abortion of synthesis
and template switch may occur. Multiple template switches
result in complex ‘patchwork’ DNA inserts at the re-joining
site (Gorbunova and Levy, 1999). The SDSA mechanism may
constitute the most versatile model of genomic DSB repair in
somatic plants cells, as it is based on one-sided initiation and may
combine both HR and NHEJ events. If the 3′ end of the invading
strand is elongated up to the homology with the second 3′ end
of the DSB (available due to resection) both single strands may
anneal (microhomology-based second end capture). However, if
the 3′ end of the invading, elongated strand is not complementary
to the other 3′ end of the DSB the break is ultimately repaired
via NHEJ. In contrast to the SSA mechanism, no sequence is
lost as a result of the SDSA process, however, the information
content may be altered (Puchta, 2005; Puchta and Fauser, 2014).
Normally, sequences in close proximity on the same chromosome
or sister chromatid are used as templates for SDSA, and ectopic
or allelic homologies are rarely used in DSB repair (Gisler et al.,
2002).

As suggested by the different mechanisms of the SSA
and SDSA pathways, groups of DNA repair-related proteins
mediating both processes are quite different. The strand exchange
results in formation of an intermediate of the SDSA process,
therefore the RecA homologs RAD51 and XRCC3 were identified
as mediators of this process in Arabidopsis. Additionally,
AtRAD54 being an ATPase and belonging to the SWI2/SNF2
family of molecular remodelers of DNA structure, is also essential
for the SDSA process (Roth et al., 2012). The AtRECQ4A and
AtFANCMDNA helicases, and nucleases, such as AtMUS81, play
a role in SDSA, but only a minor in the SSA pathway (Mannuss
et al., 2010). In the case of the SSA pathway the RAD1/RAD10
heterodimer, which functions as a structure-specific flap-like
endonuclease, is involved in trimming of the complementary
strands before ligation (Dubest et al., 2002). No other factors,
which would be essential for the SSA mechanisms have been
identified yet (Puchta and Fauser, 2014).

The classical HR model of DSB repair involves formation of
a Holliday junction, and resolution of this structure resulting
in gene conversion and crossover. In this mechanism both
strands of the template molecule are simultaneously used during
extension of both single-stranded 3′ overhangs (Gorbunova and
Levy, 1999). However, it should be noted, that homology to
only one end of the DSB is sufficient for initiation of HR,
and DSB repair in plant cells may be initiated by a one-sided
interaction event (Puchta, 2005). It is now suggested that both
DSB repair via HR and Holliday junction formation and SDSA
mechanism may be utilized in plant cells. However, depending
on the context – Holliday junctions are formed predominantly
during meiosis when fidelity of repair is assured by pairing
of homologous chromosomes (Keeney, 2001), while the SDSA
mechanism functions mainly in somatic cells (Puchta, 2005).

Both the SSA and SDSA pathways may be part of homologous
and non-HR. However, comparison of efficiencies of both
pathways indicated that SSA mechanism is about five times
more efficient than the SDSA mechanism. Therefore, the SSA
mechanism may be the most prominent homology-based way
of DSB repair in higher eukaryotes, in general. However, an
accumulating body of evidence derived from various approaches
and experiments indicates the most efficient way of DSB repair
in plant somatic cells is NHEJ. Nevertheless, if homologous
sequences are available during the repair process, in one-third of
the cases DSBs are repaired via the SSA pathway, and about six
percent of the DSB repair events proceed via the SDSA model
(Puchta, 2005).

SITE-SPECIFIC DSB INDUCTION AS A
TOOL FOR TARGETED MUTAGENESIS

Rare cutting endonucleases have been applied as tools for
induction of DSBs and the analysis of many aspects of DSB repair
in plant genomes (Mannuss et al., 2010; Roth et al., 2012; Wei
et al., 2012). Combining knowledge about mechanisms of DSB
repair, their consequences and application of sequence-specific
endonucleases led to development of site-specific DSB induction
as a tool for targeted mutagenesis. Alterations in a genome
sequence are introduced by DSB formation, which induces
natural repair mechanism. Synthetic nucleases may be applied to
induce DSBs which lead to mutations through erroneous NHEJ-
mediated DSB repair. Site-specific DSB induction may also be a
starting point for transgene integration into a genome via NHEJ
or HR pathway (Voytas, 2013; Puchta and Fauser, 2014). It was
shown that ZFNs may be used for sequence-specific mutation
induction in theArabidopsis genome via NHEJ (Lloyd et al., 2005)
and as an efficient approach for knockout of Arabidopsis genes
via the same DSB repair mechanism (Osakabe et al., 2010; Zhang
et al., 2010b). It was also reported that ZFNs may be applied for
gene-targeted mutagenesis in tobacco andmaize by DSB-induced
HR (Shukla et al., 2009; Townsend et al., 2009). ZFNs became a
very efficient tool for genome editing in plants and the list of plant
genomes thatmay bemodified in the site-specific DSB-dependent
manner is constantly growing (Weinthal et al., 2010; Puchta and
Fauser, 2014).
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However, new alternatives emerged recently. TALENs are
one of these very effective approaches to genome engineering
(de Lange et al., 2014). Recent studies have shown a huge
potential application of TALENs for targeted plant genome
mutagenesis (Christian et al., 2010; Mahfouz et al., 2011; Shan
et al., 2013a; Wendt et al., 2013). An example of a trait obtained
through TALEN-based targeted mutagenesis is a soybean variety
that produces oil with elevated levels of the monounsaturated
fat – oleic acid. The TALEN-based approach was deployed to
mutate the FAD2-1A and FAD2-1B genes encoding fatty acid
desaturases (Haun et al., 2014). Another system – CRISPR/Cas
and associated endonuclease is an alternative tool to induce
sequence-specific DSBs in model and crop plant genomes (Feng
et al., 2013; Jiang et al., 2013; Li et al., 2013; Mao et al., 2013;
Miao et al., 2013; Nekrasov et al., 2013; Shan et al., 2013b; Xie and
Yang, 2013). In Arabidopsis protoplasts the frequency of NHEJ-
based targeted mutagenesis reached 5.6%, whereas in Nicotiana
benthamiana the frequency was up to 38.5% (Li et al., 2013).
Efficient NHEJ-mediated targeted mutagenesis was also observed
in rice protoplasts, however, with varied frequencies (14.5–38%),
and in wheat protoplasts, at a frequency of 28.5% (Shan et al.,
2013b). It was demonstrated in several studies that DSB induction
by Cas endonucleases is useful for targeted mutagenesis, but also
for HR-related techniques of plant genome engineering (Feng
et al., 2013; Mao et al., 2013; Miao et al., 2013). Experiments
aimed at DSB-induced genetic engineering are currently being
developed for a number of plant genomes, and the CRISPR/Cas
system has proved to be efficient in a number of model and
crop plants; however, it should be kept in mind that efficient
transformation and regeneration of transgenic material in some
cereal crop species, like barley is still a challenge (Puchta and
Fauser, 2014). Mechanisms of DNA repair have been studied for
many years in basic research, and currently our understanding of
these processes, and DSB repair in particular, becomes a crucial
element of development of advanced tools for precise genome
modification procedures and targeted mutagenesis.

SMALL RNAs IN PLANT DNA DAMAGE
AND REPAIR

RNA interference is a cellular mechanism for control of gene
transcription via small RNAs (siRNAs, miRNAs, ta-siRNAs, etc.)
which promote the degradation of their target mRNAs thus
leading to gene silencing. Small RNAs are an excellent tool for
suppression of gene expression in order to study the genetic
control of various cellular pathways. More importantly, they have
an enormous practical application in both human health and
agricultural practice. Regarding the latter, in plants, small RNAs
offer the possibility tomanipulate and engineer plant genome and
have been widely utilized to obtain desired traits in crop plants
(Saurabh et al., 2014).

Over the last decade, RNAi-based technology has become
a major breakthrough in DNA repair research. Its application
allowed elucidation of the particular role the individual proteins
and protein complexes play in different aspects of DNA damage
control and repair. Inmammalian cells, such studies have become

a routine practice in many laboratories. In plants, experimentally
generated transgenic RNAi lines have been extremely useful
to reveal the interplay between HR and NER pathways in
Arabidopsis (Molinier et al., 2004), to examine the link between
chromatin modifications and UV-B damage response in maize
and Arabidopsis (Casati et al., 2008; Fina and Casati, 2015),
to identify a novel Lig1-dependent DSB repair pathway in
Arabidopsis (Waterworth et al., 2009), etc. Nevertheless, the
employment of RNAi in the studies on DNA repair in crop
species remains to be expanded in the future.

In addition to the key role the different types of naturally
occurring small RNAs play in various molecular processes in
plants, such as stress defense, epigenetic control, and transposon
suppression, it was recently shown that they might be involved,
directly or indirectly, in DNA damage response and DNA
recombination and repair. A computational approach utilizing
microarray gene expression data from Arabidopsis identified
a number of miRNA genes, which are upregulated in plants
exposed to UV-B radiation, and determined that their targets
code for different transcription factors or belong to the auxin
signaling pathways (Zhou et al., 2007). It was shown that
Arabidopsis mutants, deficient in the DCL enzymes or RNA
dependent RPs, display differential response to MMS varying
from higher sensitivity to higher tolerance compared to the
wild type. In addition, dcl2 and dcl3 mutants have decreased
ability to repair UV-C generated DNA lesions, suggesting a
link between siRNA biogenesis and DNA repair (Yao et al.,
2010). It was also shown that the DCL enzymes are involved
in DSB repair in both Arabidopsis and human cells, possibly
via production of small RNAs from sequences surrounding the
DSB. It was proposed that these diRNAs mediate DSB repair
and their recruitment occurs through the AGO2 protein, which
is a central factor of the RISC complex (Wei et al., 2012).
These findings were extended in mammalian cells and revealed
that diRNAs and AGO2 are essential for the initiation of HR,
where they facilitate RAD51 accumulation onto DNA (Gao et al.,
2014). On the other hand, further experiments in Arabidopsis
showed that ago mutant plants were not impaired in the meiotic
recombination, however, the sensitivity of ago2 as well as of ago9
mutants to gamma radiation and mitomycin C was confirmed
(Oliver et al., 2014). Generally, it might be expected that the
new developments in RNAi-based technologies, combined with
the knowledge on the mechanisms by which plants exploit small
RNAs to activate and control their DNA damage tolerance and
repair mechanisms under adverse conditions, would advance
significantly the molecular plant breeding methods aimed at
improving crop quality and production.

IMPLICATION OF DNA DAMAGE AND
REPAIR IN BIOTIC STRESS TOLERANCE
IN PLANTS

In field conditions plants are not exposed to a single type of stress,
but rather have to accommodate quickly to a combination of
abiotic and biotic stress factors. In this respect, the recent research
points to complex interconnections between the formation of
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DNA damage, activation of DNA repair pathways and plant
defense response to pathogen attack. DSBs were detected in the
Arabidopsis genome upon various types of pathogenic infection.
The formation of these infection-induced DSBs was independent
of the ROS production as a part of the host response. Moreover,
it was found that the activation of pathogenic defense pathways
also contributed to the maintenance of genomic integrity (Song
and Bent, 2014). A number of studies have shown that HR was
strongly enhanced in plants exposed to biotic stress and, more
intriguingly, HR frequency was kept higher in their progeny
as well (Molinier et al., 2006), accompanied with locus specific
changes in DNA methylation pattern (Boyko and Kovalchuk,
2011). In addition, repair proteins engaged in HR have been
implicated in the transcriptional control of genes involved in
plant immune response (Song et al., 2011). On the other hand,
it was demonstrated that the presence of UV lesions enhanced
plant tolerance to pathogenic infection, but an inverse correlation
was found between plant’s ability to repair those lesions and
its pathogenic resistance (Kunz et al., 2008). It appears that
the occurrence of certain levels of DNA lesions in the plant
genome may be beneficial for plants to promote tolerance to
pathogenic infection by keeping their defense pathways active.
Overall, accumulating evidence shows that plants depend on
DNA repair not only to overcome both abiotic and biotic stresses,
but also to ensure better stress adaptation in further generations.
Thus, in the long-term, revealing the mechanisms which govern
such interactions may help to improve crop plants to better adjust
to the dynamic environment.

DNA REPAIR IN THE CONTEXT OF
MUTATION INDUCTION AND CROP
IMPROVEMENT

Although DNA damage is often considered regarding its
mutagenic effect, the persistence of damaged bases also has
a significant growth-inhibitory influence. Because the genetic
variation created in part through mutation and recombination
are prerequisites of both natural and artificial selection, the
understanding of mechanisms of genetic change is relevant for
both – our knowledge of evolution and for genetic manipulation
of crop plants. Techniques of mutagenesis are a very efficient
tool to develop necessary germplasm collections in model and
crop species, facilitating discovery of desired loci and alleles.
Identification of genes participating in these processes may
shed light on molecular mechanisms of DNA repair. Induction
of mutations within genes involved in DNA repair or lesion-
tolerance pathway may alter the efficiency of these processes and,
as a consequence, render the mutagenesis more effective.

Recently performed studies conducted with the use of
bioinformatics tools enabled outlining the list of genes
participating in various pathways of DNA damage repair
in A. thaliana (Gruszka et al., 2012). However, information
regarding mechanisms of DNA damage repair in crop plants
is very limited. Understanding of the molecular basis of DNA
repair and genome maintenance may allow more directed and
fine-tuned mutation-induction techniques. It is important to

take into account the global economic impact of the development
of induced mutant-derived crop species (Ahloowalia et al., 2004).

During the last seven decades, worldwide more than 3200
varieties have been released, that were derived as direct
mutants or from their progenies (Pathirana, 2011; IAEA
Mutant Database1). Direct development of mutant varieties
has been achieved mainly through application of radiation-
based mutagenesis, mostly gamma and X-rays. Application of
IR allowed development of important traits in crop species:
resistance to bacterial leaf blight and blast in rice (Xiao et al.,
2008), resistance to yellow mosaic virus in barley (Tanaka
et al., 2010), resistance to potato virus Y in tobacco (Hamada
et al., 1999), and resistance to black sigatoka in banana (Reyes-
Borja et al., 2007). In a review by Pathirana (2011) a list of
disease-resistant mutants developed directly through gamma
irradiation in various crop species is presented. Mutant-derived
varieties have been released in 175 plant species, including many
important crops, such as rice, wheat, barley, cotton, rapeseed,
sunflower, sesame, grapefruit, and banana. Many of these
varieties have significant economic importance. For example,
according to a report of the Japanese Science and Technology
Agency, eighteen mutant-derived varieties of rice contributed
US$ 937million annually to the Japanese agriculture (Ahloowalia
et al., 2004; Pathirana, 2011). The gamma ray-induced rice
cultivar ‘Zhefu 802’ with a shorter growing season, cold tolerance
and high yield potential under low-input conditions was the
most widely cultivated variety in China for almost a decade.
During this period its overall planted area reached 10.6 million
ha (Kharkwal and Shu, 2009). The development of mutant-
derived varieties and research on mutation techniques and
molecular mechanisms of DNA damage and repair have long
been supported by the Food and Agriculture Organization
(FAO) and International Atomic Energy Agency (IAEA). This
effort is particularly important in light of the rapidly growing
world population and the need to improve and increase
food production in the next few decades. However, in many
countries, especially in Europe, issues concerning introduction
of genetically modified crop varieties persist. Mutation-derived
varieties meet criteria of non-GMO plants and may therefore be
broadly applied in plant breeding.
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ABBREVIATIONS

General abbreviations: AP, Apurinic/apyrimidinic; BER, Base
excision repair; BLM, Bleomycin; Cas, CRISPR-associated; CPD,
Cyclobutane pyrimidine dimer; CRISPR, Clustered Regularly
Interspaced Short Palindromic Repeats; DASH, Drosophila,
Arabidopsis, Synechocystis, Human; diRNA, DSB-induced small
RNA; DSB, Double-strand break; EMS, Ethyl methanesulfonate;
HR, Homologous recombination; IR, Ionizing radiation; LTRs,
Long terminal repeats; miRNA, MicroRNA; MMR, Mismatch
repair; MMS, Methyl methanesulfonate; NER, Nucleotide
excision repair; NHEJ, Non-homologous end-joining; aNHEJ,
Alternative DNA-PKcs-independent NHEJ; cNHEJ, Classical
DNA-PKcs-dependent NHEJ; 6-4 PP, Pyrimidine6-4pyrimidone
photoproduct; REs, Restriction endonucleases; RNAi, RNA
interference; RISC, RNA-induced silencing complex; ROS,
Reactive oxygen species; SDSA, Synthesis-dependent strand
annealing; SSA, Single-strand annealing; SSB, Single-strand
break; siRNA, Small interfering RNA; ta-siRNA, Trans-
acting siRNA; TALENs, Transcription Activator-Like Effector
Nucleases; UV, Ultraviolet radiation; V(D)J recombination,
Antigen receptor gene rearrangement of variable (V), diversity
(D) and joining (J) gene segments; ZFNs, Zinc Finger Nucleases.

Gene and protein abbreviations: AGT, Alkylguanine DNA
alkyltransferase; APLF, Aprataxin and PNK-like Factor; AGO,
Argonaute; ARP, Apurinic endonuclease-redox protein; ASF,
Anti-silencing function1; ATM, Ataxia-Telangiectasia mutated;
ATR, ATM and RAD3-related; BRCA2, Breast Cancer2; CDK7,
Cyclin-dependent kinase7; CEN2, Centrin2; COP1, Constitutive
photomorphogenesis protein 1; CSA/B, Cockayne syndrome
A/B; CSA-like, Cockayne syndrome-like; CUL4, Cullin4; DCL,
DICER-like; DDB1/2, Damaged DNA binding1/2; DET1,

De-etiolated1; DNA-PKcs kinase, DNA-Dependent Protein
Kinase catalytic subunit; DOT1L, DOT1-like histone H3K79
methyltransferase; E2Fe/DEL1, atypical E2F transcription
factor DP-E2F-like1; ELL, Eleven-nineteen lysine-rich leukemia
(Elongation factor RNA polymerase II); ERCC1, Excision
Repair Cross-Complementation Group 1; EXO1, Exonuclease1;
FACT, Facilitates chromatin transcription; FAD2, Fatty acid
desaturation 2; FANCM, Fanconi anemia complementation
group M; FEN1, Flap structure-specific endonuclease 1; FPG,
Formamidopyrimidine-DNA glycosylase; GTF2H2, General
transcription factor IIH, polypeptide 2; H, Histone; H2AX,
Variant histone H2A; γH2AX, gamma-H2AX (phosphorylated
H2AX); HAT p300, Histone acetyltransferase p300; HIRA,
Histone Cell Cycle Regulator; HMGN1, High Mobility Group
Nucleosome Binding Domain 1; HR23B, UV excision repair
protein RAD23 homolog B; HY5, Elongated hypocotyl5; HYH,
HY5-homolog; KU70, X-ray cross complementing 6; KU80,
X-ray cross complementing 5; LIG1, Ligase 1; LIGIV, Ligase 4;
MRE11, Meiotic Recombination 11; MUS81, MMS and UV-
sensitive protein 81 (Crossover junction endonuclease); MutS/L,
Mutator S/L; MLH, MutL homolog; MSH, MutS homolog;
NBS1, Nijmegen breakage syndrome1; OGG1, Oxoguanine
glycosylase; p53, Tumor protein 53; PARP, Poly (ADP-ribose)
Polymerase; PCNA, Proliferating cell nuclear antigen; PHR1,
CPD photolyase gene; PMS2, Postmeiotic Segregation Increased
2 (DNAMismatch Repair Protein); POLβ, DNA polymerase beta;
Polymerase δ, DNA polymerase delta; POLλ, DNA polymerase
lambda; RAD, Radiation sensitive; RecA, Recombination A;
RECQ, ATP-dependent DNA helicase RecQ; RECQ4A, ATP-
dependent DNA helicase Q-like 4A; RPII, RNA polymerase
II; RPA, Replication protein A; RFC, Replication factor C;
ROS1, Repressor of silencing1; SOG1, Suppressor of gamma
response 1; SWI2/SNF2, SWItch/Sucrose Non-Fermentable;
TFB1A, General transcription and DNA repair factor IIH B
subunit 1-1; TFB5, General transcription factor IIH, polypeptide
5; TFIIH, Transcription factor II Human; TFIIS, Transcript
elongation factor IIS; TTDA, Trichothiodystrophy group A;
UVH6, Ultraviolet hypersensitive 6; UVR3, 6-4 photolyase
gene; UVR8, UV resistance locus8; XRCC, X-ray repair cross
complementing; XAB2, XPA binding protein 2; XLF, XRCC4-
like factor; XPA-G, Xeroderma pigmentosum complementation
group A-G; ZDP, Zinc finger DNA 3′-phosphoesterase.
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