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Blast is the most common biotic stress leading to the reduction of rice yield in many
rice-growing areas of the world, including Malaysia. Improvement of blast resistance of
rice varieties cultivated in blast endemic areas is one of the most important objectives
of rice breeding programs. In this study, the marker-assisted backcrossing strategy was
applied to improve the blast resistance of the most popular Malaysian rice variety MR219
by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast
resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection
coupled with stringent phenotypic selection identified 15 plants homozygous for the
Pi-b and Pi-kh genes, and background selection revealed more than 95% genome
recovery of MR219 in advanced blast resistant lines. Phenotypic screening against
blast disease indicated that advanced homozygous blast resistant lines were strongly
resistant against pathotype P7.2 in the blast disease endemic areas. The morphological,
yield, grain quality, and yield-contributing characteristics were significantly similar to
those of MR219. The newly developed blast resistant improved lines will retain the high
adoptability of MR219 by farmers. The present results will also play an important role in
sustaining the rice production of Malaysia.

Keywords: rice, blast resistance, gene pyramiding, MABC, marker-assisted backcrossing, biotic stress

INTRODUCTION

The rice production systemmakes a vital contribution to the reduction of hunger and poverty. The
fast growth of the world population demands an increase of 26% in rice production to fulfill the
requirement (Khush, 2013). Rice production has widely increased after the green revolution, but
the yield of superior varieties is still not increasing as farmers expect due to the influence of biotic
and abiotic factors (Divya et al., 2014). The continuous supply of rice per demand of the consumer
can only be achieved by maintaining a stable rice production, which is a challenge for rice breeders
(Roychowdhury et al., 2012). Rice production can be managed by introducing new varieties
possessing strong resistance against abiotic and biotic factors. Currently, DNA marker technology
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has immensely contributed to genetic improvement through the
selection of desirable traits, such as disease resistance. Molecular
markers are a valuable resource in marker-assisted backcross
(MABC) breeding to monitor the disease resistance genes. Many
rice cultivars resistant to biotic stress have been released and
widely adopted by farmers with the application of marker-
assisted selection (Xu and Crouch, 2008).

Blast is the one of the main diseases of rice crops causing
crop loss in both temperate and tropical rice growing regions
(Mackill and Bonman, 1992). The main agent causing this disease
is the fungus Magnaporthe oryzae. Thus, blast resistance in
rice plants has been one of the most important traits being
pursued in breeding programs over several decades. Different
breeding strategies have been adopted to achieve this serious
challenge, such as the use of field resistance to blast disease
and the introduction of resistance genes into the rice susceptible
cultivar objective (Kushibuchi, 1997). As a result, several blast
resistance rice varieties were introduced, but within a short
period of time, they have become seriously blast susceptible
because of the emergence of new pathotypes of blast fungus. This
breakdown of blast resistance clearly indicates that the resistance
cannot be widely achieved until true resistance genes are
identified (Hittalmani et al., 2000). The continuous identification
of resistance genes against blast can lead to genetic control
over the new existing pathogens. To date, approximately 347
QTLs linked to blast resistance (Koide et al., 2009; Ballini
et al., 2013) and more than 100 blast resistant genes have
been identified from diversified rice germplasm (Divya et al.,
2014). The identified blast R genes were found on all 12 rice
chromosomes except 3, and most of them were in a cluster
on chromosomes 6, 11, and 12 (Yang et al., 2013). Pi-b and
Pi-kh have been used extensively in rice breeding programs
in Japan, China, and Indonesia and are considered to be
major blast resistance genes along with Pi-ta. Pi-b and Pi-kh
are dominant major blast resistance genes conferring broad
spectrum resistance to various isolates of the fungal pathogen
M. oryzae (Wang et al., 1999; Sharma et al., 2005; Tanweer
et al., 2015b). Pi-kh has been identified in many tropical Japonica
varieties such as Tetep, and Pi-b in Indica varieties such as
Thoku 11 9 (Conaway-Bormans et al., 2003). The dominant
gene Pi-b, which confers high resistance to most Japanese blast
races, has been mapped to the distal end of the long arm of
chromosome 2 (Shinoda et al., 1971) and Pi-kh to the long arm
of rice chromosome 11 (Sharma et al., 2005). The utilization of
both of these blast resistance genes in marker assisted-selection
breeding programs has been widely observed (Tanweer et al.,
2015a).

Marker-assisted backcrossing has enormous potential to
introduce the blast resistance genes into diverse rice cultivars
(Collard and Mackill, 2008; Collard et al., 2008). Introgression
of blast resistant genes into advanced improved rice lines is a
cost-effective and environmentally friendly approach to combat
yield losses (Wen andGao, 2012). Themain advantage of marker-
assisted selection is the accuracy of selection of the true plant
within the short breeding cycle to produce blast resistant rice
varieties. Currently, the blast resistant breeding program has
achieved greater success with the advent of marker-assisted

selection (Ragimekula et al., 2013). Recently, blast resistance
genes Piz5 and Pi54 have been introgressed into the genetic
background of the PRR78 rice variety from donor parent
C101A51 and Tetep, and blast resistant lines have been developed
with the application of MABC breeding (Singh et al., 2012).
The selection was based on foreground markers RM287 and
RM206 by following repetitive backcrossing. The Pi1 leaf blast
resistance gene has been introgressed into the D521 line derived
from the donor line BL122 (Fu et al., 2012). With the application
of MABC, 304 elite parental lines of hybrid rice have also been
improved with bacterial blight and blast resistance genes (Zhou
et al., 2003). Recently, IR64 cultivar submergence tolerant gene
Sub1 has been introgressed into the OM1490 variety (Lang et al.,
2011). The QTL Saltol derived from a salt tolerant variety also
has been introgressed into popular cultivars of Vietnam (Huyen
et al., 2012). These examples provide a great opportunity to
develop blast resistant rice varieties through MABC breeding.
In the present study, the MABC technique was applied to
introgress blast resistant genes from the highly resistant rice
variety Pongsu Seribu 2 to blast susceptible Malaysian rice
cultivar MR219.

MATERIALS AND METHODS

Developing Blast Resistant Lines
The crossing was performed between the parental lines of
Pongsu Seribu 2 and MR219, and the F1 hybrid was produced
(Supplementry Figure S1). After confirming the hybridity of
the plants, true hybrid heterozygous plants were backcrossed
with recurrent parent MR219, and BC1F1 generation seeds
were produced. Foreground selection for the desired alleles
and background selection for the recovery of the recurrent
parent were performed. The plants with the desired allele and
maximum recovery of recurrent parents were again backcrossed,
and subsequently the BC2F1 generation was produced. The same
steps were followed for the BC2F1 generation, and the best
plants were selfed to produce the BC2F2 generation seed. The
complete genome genotyping with SSR markers was performed,
distributed over all 12 rice chromosomes. The true plants on
the basis of genotype with the desired alleles were backcrossed
in each generation. In every generation, the plant showing the
heterozygous allele for Pongsu Seribu 2 was selected. At the
final stage, 15 homozygous plants carrying target alleles along
with a similar genome of MR219 in each chromosome were
selected in the BC2F2 generation, and blast resistant lines were
produced.

Microsatellite Analysis
Markers for Foreground Selection
The robust tightly linked marker RM208F 5′-
tctgcaagccttgtctgatg-3′ , RM208R 5′-taagtcgatcattgtgtggacc-3′
on chromosome 2 linked to the Pi-b gene (Wang et al.,
1999) and RM206 5′-cccatgcgtttaactattct-3′ , RM206R 5′-
cgttccatcgatccgtatgg-3′ on chromosome 11 linked to the Pi-kh
gene (Sharma et al., 2005) were used for selecting the target
genes.
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Markers for Background Selection
A total of 72 polymorphic markers were identified from 300
SSR markers with known chromosomal position covering all
12 rice chromosomes. SSR markers unlinked to the target gene
covering the entire chromosome, including carrier chromosomes
2 and 11 that were polymorphic between the recurrent and donor
parent, were used for the background selection to recover the
recurrent parent genome. At least five polymorphic markers per
chromosome were used to generate the data. The assessment of
the recovery of the recurrent parent genome was based on the
selection of SSR marker data that was carried out by using the
software program Graphical Geno Types (GGTs) version 2.0.

DNA Extraction
Total genomic DNA was isolated from 21-days-old young fresh
leaves of plants of each backcross generation using the CTAB
method as mentioned by Doyle (1990) with minor changes.

PCR Amplification
For PCR amplification, the protocol described by McCouch et al.
(2002) was adapted. The total volume of the PCR reaction was
15 μl, including 70 ng template DNA, 1.0 μl of forward primer,
1.0 μl of reverse primer, 7.4 μl master mix (premixed containing
Taq DNA polymerase, dNTPs, and MgCl2) and 4.6 μl nuclease
free water. PCR amplification was performed using the touch
down PCR program using the following protocol: 94◦C for 3 min
followed by 10 cycles of 94◦C for 30 s, 62◦C for 1 min (decreasing
1◦C per cycle), and 72◦C for 30 s, and 30 cycles of 94◦C for 30 s,
52◦C for 1 min, 72◦C for 2 min, and a final extension at 72◦C for
10 min by rapid cooling to 4◦C prior to analysis.

Gel Electrophoresis
The gel was prepared by mixing 3.0% metaphorTM agarose
(Lonza) gel in 1× TBE buffer (0.05 M Tris, 0.05 M boric acid,
1 mM EDTA, pH 8.0). In total, 1 μl Midori green was also added
for staining. The gel was run at 80 V for 80 min, and finally
the amplified product was visualized in the Molecular imager R©

(GelDocTM XR, Bio-Rad Laboratories, Inc., USA).

Phenotypic Screening of Plants against Magnaporthe
oryza Pathoype P7.2
The most virulent pathotype P7.2 of the M. oryzae isolate
was provided by MARDI (Malaysian Agriculture and Research
Development Institute). The plants of the donor parent, recurrent
parent and BC2F2 generations were phenotypically screened in
field conditions. The young plants of 21 days were inoculated
by spraying spore suspension at a concentration of 1.5 × 105
conidia/ml, and 90% humidity was maintained by covering the
plants with plastic bags to develop the disease. The inoculated
plants were observed after 9 days of inoculation for blast disease
lesions. The plants and blast lesion degrees (BLDs) were evaluated
on the basis of 0-9 of the IRRI-SES scale (IRRI, 1996). The
percentage of disease leaf area (%DLA) and blast lesion type
(BLT) were scored as described by Correa-Victoria and Zeigler
(1993). The percentage of DLA was calculated from 0 to 100%.
For the BLT score, either 0 (highly resistant: no any symptoms),
1-2 (no sporulation, lesion 1–2 mm), 3 (little sporulation, round

lesion), or 4 (heavy sporulation, spindle shaped lesion) were
scored. For single-gene model analysis, if the plant showed lesion
type 0-3, the plant was considered a resistant plant, and plants
showing lesion type 4 or above were considered to be susceptible
for the selected pathotype P7.2 in the selected BC2F2 population.
For the two-gene model, blast resistance was classified as resistant
(R) (1-2), moderately resistant (MR) (3), moderately susceptible
(MS) (4-6) and susceptible (S) (7-9). The protocol of Singh et al.
(2013) was followed with minor modification for plant disease
reaction. The phenotypic segregation of plants for the two-gene
model was calculated as 9:3:3:1 (R: MR:MS: S). A test for an effect
of duplicate dominant gene action (epistasis) was analyzed by
observing the resistant versus susceptible plants 15(R):1(S) ratio
in the BC2F2 population. The plants showing a disease lesion
score of 0-6 were resistant plants and 7-9 were susceptible plants.

Agronomic Performance of the Selected Best Lines
of the BC2F2 Generation
The lines having a maximum recovery of the recurrent parent
along with target genes and phenotypic similarity with the
recurrent parent were used to observe the agro-morphological
traits. Different parameters related to yield and yield contributing
factors were recorded, such as days to 50% flowering, days to
maturity, plant, panicles per plants, effective tillers per plants,
panicle length, seed setting rate, full filled grain per plants seed
setting rate, 1000-grain weight, yield per plant, grain length, grain
width, flag leaf length and flag leaf width (Supplementry Table
S1). These traits were recorded from all of the best selected lines
of BC2F2 along with the recurrent parent.

Statistical Analysis
The BC2F2 population segregation data were analyzed using
a chi-square test (χ2). An analysis for goodness of fit to the
expected ratio of 3:1, 9:3:3:1, and 15:1 was calculated using the
chi square formula χ2 = (O-E)2/E, where O represents observed
value and E is the expected value. Analysis of a single marker
was performed using SAS 9.3 software as mentioned by Divya
et al. (2014). This analysis of single markers was fitted to the
linear regression model: Y- bo+blx+e. The results were obtained
as the estimate of R2 value and the F statistic for each marker.
The R2 significance indicates the linkage of markers with the
trait. The SSR genotyping data were analyzed using GGT software
2.0. The mean difference for the selected best lines of BC2F2 and
the recurrent parent MR219 was analyzed using an independent
t-test in the SAS 9.3 software.

RESULTS

Marker-assisted Foreground Selection
Crosses were made between the parental line of MR219 and
Pongsu Seribu 2, and F1 seeds were produced. The best F1 plants
were screened with foreground markers to identify the true F1
plants carrying the gene of interest in a heterozygous form. The
six gene positive plants were backcrossed with the recurrent
parent to generate the next generation BC1F1 seed. The BC1F1
plants were screened for the selection of a heterozygous allele
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at the putative Pi-b and Pi-kh locus with RM208 and RM206
markers along with phenotypic maximum similarity with the
recurrent parent. The allele size in base pairs (bp) of both the
parents MR219 and Pongsu Seribu 2 amplified by both markers
has been given in Supplementry Table S2. The best plants of
BC1F1 having an appearance similar to MR219 and carrying
the target gene were again crossed with the recurrent parent
and 320 plants of the BC2F1 generation were selected. Similarly,
BC1F1 plants were screened to identify the plants in heterozygous
form with maximum RPG recovery. Selfing was performed in the
BC2F1 plants, and the BC2F2 generated seeds were grown and
plants with similarity to MR219 along with homozygous resistant
alleles using RM208 and RM206 were selected (Figure 1). The
genotypic segregation of the BC2F2 population using linked
markers RM208 and RM206 is shown in Table 1. Both of the
markers represent a good fit to the expected marker segregation
ratio (1:2:1) according to the expected Mendelian ratio. From this
selection, 15 best improved blast resistant lines were evaluated
and selected.

Screening against Blast Disease in
MR219 and Pongsu Seribu 2
Pongsu Seribu 2, the donor parent having Pi genes, expressed a
strong spectrum of resistance against pathotype P7.2 with a score
of 0-1 while the recurrent parent showed susceptibility with a
score of 5-9 (Figure 2). The blast disease reaction is shown in
Supplementry Figure S2.

Screening against Blast Disease in
Improved Blast Resistant Lines of the
BC2F2 Population
The advance 15 improved MR219 lines carrying blast resistance
genes produced from both of these parents, 5-3-7-1, 5-3-7-4, 5-
3-7-13, 5-3-7-19, 5-3-7-24, 5-3-7-29, 5-3-7-31, 5-3-7-36, 5-3-7-
40, 5-3-7-69, 5-3-17-2, 5-3-17-4, 5-3-17-11, 5-3-17-19, 5-3-17-21,
showed a great magnitude of resistance with a score of 0-1. The
distribution of the BLD treated with M. oryzae pathotype P7.2 in
the parental lines and advanced improved lines with introgressed
blast resistant genes of the BC2F2 populations is summarized in
Figure 3.

TABLE 1 | Analysis of markers in BC2F2 segregating population.

Markers Marker segregation analysis χ2(1:2:1) Probability

AA = R AB = SG BB = S

RM208 53 106 41 2.16 0.339

RM206 55 107 38 3.87 0.144

According to model on single dominant gene, (AA): Resistant; (BB): Susceptible;
and (AB): Segregant. df = 2; χ2(0.05,2) = 5.99.

Assessment of the Phenotypic
Segregation of Blast Resistant versus
Susceptible Plants
A chi-square test was performed to evaluate the blast disease in
the BC2F2 families. Different models, i.e., the single-gene model,
two independent gene model and interaction of two different
loci (Epistasis) were tested to assess which model population
fit to the expected ratio. The number of expected resistant and
susceptible plants for the phenotypic segregation ratio was not
significantly different from the number of the observed resistant
and susceptible plants and followed the expected Mendelian (3:1)
ratio (Table 2).

The BC2F2 population did not follow the two-gene model.
Phenotypic disease segregation of the BC2F2 population did not
show a good fit to the expected 9:3:3:1 ratio (Table 3). The present
results do not support the idea of the two-gene model, thus
indicating that resistance to blast in the BC2F2 generation was not
regulated by two different genes. Similarly, the chi-square value
for an epistatic effect of the resistant versus susceptible plants
does not segregate into 15:1 (Table 3) for the BC2F2 population,
therefore the epistatic/two locus interaction was absent.

Marker-trait Association
Marker-trait association was analyzed by using SAS 9.3 software
to identify the association among the resistance component, i.e.,
BLD, BLT and %DLA, with tightly linked polymorphic markers
of corresponding blast resistance genes. Data of genotypic
segregation of linked SSR markers obtained from the BC2F2
population were combined with phenotypic segregation data
of the BC2F2 population for blast resistance traits. The data
were interrogated to determine the significance level and linear

FIGURE 1 | Genotyping of blast resistant improved homozygous lines using tightly linked marker RM208 and RM206.
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FIGURE 2 | Distribution of blast lesion degree in the parental line of MR219 and Pongsu Seribu 2.

FIGURE 3 | Calculation of the distribution of blast lesion length after
inoculation with Magnaporthe oryzae pathotype P7.2 in parental lines
along with improved introgressed blast resistant gene lines of the
BC2F2 population (n = 200).

TABLE 2 | Phenotypic segregation ratio of observed and expected number
of resistant and susceptible plants in the BC2F2 population inoculated
with highly virulent pathotype P7.2 of Magnaporthe oryzae.

Disease reaction No. of observed
plants

Expected No. χ2(3:1) P-value

Resistant 161 150 0.389

Susceptible 39 50 1.36

Total 200 200 1.749 0.0724

df = 1, χ2(0.05,1) = 3.84.

model regression analysis for association between the marker
genotypes and resistance component traits. The markers RM208
and RM206 showed significant association with BLD, percentage
diseased leaf area (%DLA) and BLT with a simple linear
regression (R2) value of more than 10 (Table 4).

Variation and Correlation among Traits
The trait variations (means of the parents and BC2F2 population)
for pathotype P7.2 are shown in Table 5. The average leaf blast
disease severity score for recurrent parent MR219 was 6.63 for
BLD, 3.43 for BLT and 61.43% for DLA. For the donor parent
Pongsu Seribu 2 cultivar, the leaf blast disease severity score was
1.92 for BLD, 2.34 for BLT, and 12.4% for DLA. The parental
cultivar showed a significantly different (P < 0.01) leaf blast
resistance. In the BC2F2 population, the score for BLD, BLT,
and DLA was 4.48, 2.5, and 47.18% with standard deviations
of 2.24, 1.17, and 22.54, respectively. The selected best 15 lines
from the BC2F2 population showed strong resistance against leaf
blast for specific pathotype P7.2. The mean of disease severity
of the selected improved lines for BLD, BLT, and DLA was 0.97,
0.88, and 3.96%. The disease severity showed a strong correlation
among resistance components BLD, BLT, and %DLA in the
BC2F2 families (Table 6).

Recovery of the Recurrent Parent
Genome in Selected Improved
Homozygous Lines
A total of 72 markers were used for background and the
selection of improved blast resistant lines, and a genetic map was
constructed covering 1266 cM with an average marker distance
of 15.91 regions of the whole genome ofOryza sativa. A graphical
representation of the carried chromosome 2 (putative Pi-b) and
chromosome 6 (putative Pi-kh) of the selected improved blast
resistance lines is shown in Figure 4. The minimum recovery
of the recurrent parent genome in an improved lined was 94%
and the maximum recovery in an improved line was 97.5%
(Figure 5). Most of the residual segments from donor genome
content were distributed on chromosomes 4, 9, and 10; however,
other chromosomes were completely recovered. The percentage
of chromosome segments derived from Pongsu Seribu 2 was
2.5% and remained constant in all of the advanced improved
lines. The average proportions of the recurrent parent genome
in all 15 improved lines were 96.17%, showing the maximum
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TABLE 3 | Chi-square test for independent gene model (9:3:3:1) and epistatic effect (15:1) for blast resistance in BC2F2 population inoculated with
pathotype P7.2 of Magnaporthe oryzae.

Gene model Observed ratio Expected ratio χ2 value P-value

R MR MS S

Two gene 99 62 20 19 9:3:3:1 29.173 <0.0001

Epistatic effect 165 – – 35 43.200 <0.0001

χ2(0.05,3) = 7.81, df = 3, χ2(0.05,1) = 3.84, df = 1; R, resistant; MR, moderately resistant; MS, moderately susceptible; S, susceptible.

TABLE 4 | Association between the marker and trait in the BC2F2

population analysed by regression analysis.

Traits Markers R2 (%)

BLD RM208 25.93∗∗

RM206 19.6∗∗

BLT RM208 15.99∗∗

RM206 13.4∗∗

%DLA RM208 24.3∗∗

RM206 18.6∗∗

∗∗Significance at 0.01 level, BLD, blast lesion degree; %DLA, percentage diseased
leaf area; BLT, blast lesion degree.

similarity observed at the phenotypic level with the recurrent
parent (Table 7).

Comparison of Agro-morphological
Performance of Improved Lines versus
Recurrent Parent MR219
Agro-morphological traits of the advanced improved lines
carrying additional blast resistant genes were measured and
compared with the recurrent parent lines of MR219 (Table 8).
There was minor variation in the days to flowering and total
grain per panicles. However, other improved lines showed mostly
similar performance and there was no significant differences
found for other traits, such as plant height, days to maturity,
total tiller/hill, effective tiller/hill, panicle length, no. of filled
grains/panicle, seed setting rate, 1000 grain weight, yield/plant,
grain length, grain width, flag leaf length, and flag leaf width.

DISCUSSION

Rice production is always constrained by several biotic stresses,
among which blast diseases impose both several yield and
quality losses. These serious and most challenging issues could
be overcome by utilizing resistance genes (Tabien et al., 2002).
Pyramiding major resistance genes into elite rice cultivars with
the application of conventional breeding were always hindered
by environmental factors and the number of generations needed
to achieve the goal. However, marker-assisted selection saves
time and offers a very simple, efficient, and accurate method
to improve the blast resistance of elite genotypes (Singh
et al., 2012). The linkage drag can be minimized within a
few generations, and the recurrent parent genotype can be
stored easily with additional genes of interest (Joseph et al.,
2004; Shanti et al., 2010). However, in the backcross breeding

program, the choice of the recurrent parent plays a vital role
(Ye and Smith, 2010). Blast resistance provided by identified
genes is always race specific against the pathotype. Ultimately,
the resistance of most of the varieties is lost due to variability
of pathogenicity of the pathotype. The blast pathotypes of
M. oryzae are able to change their virulence according to
the environment. Therefore, the identification of more closely
linked markers with blast resistance genes can help to introgress
identified genes into improved cultivars through marker-assisted
selection. The closely linked marker helps to monitor blast
resistance genes for several generations (Jena and Mackill, 2008).
Breeders have reduced the yield loss due to blast disease by
introgressing the beneficial alleles from the wild rice genotype
into elite high yielding rice cultivars (Brar and Khush, 1997).
DNA marker technology has greatly facilitated the tagging of
novel resistance genes from wild rice species and provides a
straight forward way to identify and transfer the major genes
from unadapted germplasm to adapted germplasm (Gu et al.,
2013).

The present research was conducted to improve the blast
resistance of the elite Malaysia rice variety MR219 through
a MABC breeding approach along with phenotypic selection
for agro-morphological traits. From previous studies, the IR64
rice variety was improved for blast resistance coupled with
phenotypic selection for agro-morphological traits similar to
our study (Sreewongchai et al., 2010). By using the MABC
strategy, improved versions of the elite Basmati variety, Pusa
Basmati 1, Pusa RH10 and KMR-3R were also released for
bacterial blight resistance (Gopalakrishnan et al., 2008; Basavaraj
et al., 2010; Hari et al., 2011). Narayanan et al. (2002)
introgressed Piz-5 blast resistance gene into rice cultivar IR50
and improved the blast resistance. Singh et al. (2012) introgressed
the blast resistance gene Pi-54 (previously known as Pi-kh)
into Pusa Basmati 1 from donor parent Tetep. This is first
report in Malaysia documenting the stacking of two major
genes (Pi-kh and Pi-b) in elite rice cultivar MR219 through
MABC breeding coupled with phenotypic selection for agro-
morphological traits.

For PCR-based DNA markers used in the present study,
RM208 tightly linked with the Pi-b gene (Wang et al., 1999;
Roychowdhury et al., 2012) and RM206 tightly linked with
the Pi-kh gene (Sharma et al., 2005; Singh et al., 2012; Hari
et al., 2013). The RM208 marker presents on chromosome 2
and RM206 on chromosome 6 below the centromere. Both of
these markers are highly polymorphic and can be detected very
easily and therefore have great potential to serve as an important
tool to introgress Pi-b and Pi-kh blast resistant genes into blast
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TABLE 5 | Trait variation for selected pathotype P7.2 of Magnaporthe oryzae inoculated in BC2F2 population.

Traits Means of parents BC2F2 population (n = 200) Selected best plants (n = 15)

MR219 (n = 100) P.Seribu 2 (n = 100) Mean SD Mean

BLD 6.63 1.92 4.48 2.24 0.97

BLT 3.42 2.34 2.5 1.17 0.88

%DLA 61.43 12.4 47.18 22.54 3.96

TABLE 6 | Correlation coefficient between BLD, BLT, and %DLA for
pathotype P7.2 in BC2F2 population.

Traits BLD BLT %DLA

BLD 0.0

BLT 89.35∗∗ 0.0

%DLA 98.53∗∗ 88.28∗∗ 0.0

∗∗Correlation is significant at the 0.01 level (two tailed).

TABLE 7 | Introgressed and background recovery analysis in selected
improved lines.

Improved individuals A (%) B (%) H (%) Total (cM) H-segment

5-3-7-1 95.1 2.5 2.3 1266 2

5-3-7-4 94.5 2.5 3 1266 3

5-3-7-13 94 2.5 3.5 1266 3

5-3-7-19 96.3 2.5 1.1 1266 1

5-3-7-24 94.1 2.5 3.3 1266 2

5-3-7-29 97 2.5 0.5 1266 1

5-3-7-31 95.1 2.5 2.4 1266 2

5-3-7-36 97.1 2.5 0.4 1266 1

5-3-7-40 96.8 2.5 0.7 1266 1

5-3-7-69 97 2.5 0.5 1266 1

5-3-17-2 97.5 2.5 0 1266 0

5-3-17-4 97 2.5 0.5 1266 1

5-3-17-11 97.5 2.5 0 1266 0

5-3-17-19 96.8 2.5 0.7 1266 1

5-3-17-21 96.8 2.5 0.7 1266 1

Average 96.17 2.5 1.30 1266 1.33

A = Recurren; B = Donor; H = Heterzygous; cM, Centimorgan.

susceptible rice varieties. The importance and benefit of using
tightly linked markers for gene pyramiding have been discussed
earlier by Hittalmani et al. (2000) and Hayashi et al. (2006) for
blast disease screening. However, the success of marker-assisted
selection heavily depends upon the strong linkage between the
marker and target gene. Thus, from the blast disease screening
results, 15 best selected lines, 5-3-7-1, 5-3-7-4, 5-3-7-13, 5-3-
7-19, 5-3-7-24, 5-3-7-29, 5-3-7-31, 5-3-7-36, 5-3-7-40, 5-3-7-
69, 5-3-17-2, 5-3-17-4, 5-3-17-11, 5-3-17-19, 5-3-17-21, showed
strong resistance against virulent pathotype P7.2 similar to
the donor parent. Among the introgressed lines, BC2F2 with
genes Pi-b and Pi-kh showed high resistance at both locations.
The results of the phenotypic screening against blast disease
reaction of the improved lines carrying the putative Pi-b and
Pi-kh genes with a background of the recurrent parent MR219
conferred complete resistance to the highly virulent pathotype

TABLE 8 | Performance of major agronomic traits of BC2F2 improved lines
carrying blast resistant (putative Pi-b and Pi-kh) gene.

Traits MR219
(recurrent parent)

BC2F2 improved
lines

Days to 50% flowering (day) 88.53 ± 0.36 87.66 ± 0.33

Plant height (cm) 95.3 ± 0.31 95.8 ± 0.24

Days to maturity (day) 117.8 ± 0.26 117.5 ± 0.25

Total tiller/Hill (no) 17.00 ± 0.30 17.26 ± 0.28

Effective tiller/Hill (no) 16.40 ± 0.28 16.5 ± 0.25

Panicle length (cm) 25.20 ± 0.20 25.60 ± 0.23

Total grain/panicle (no) 166.9 ± 1.46 167.5 ± 1.36

Seed setting rate (%) 90.33 ± 0.23 90.26 ± 0.34

1000 grain weight (gm) 25.88 ± 0.24 26.23 ± 0.13

Yield/plant (gm) 42.06 ± 0.28 42.26 ± 0.26

Grain length (mm) 9.71 ± 0.02 9.74 ± 0.03

Grain width (mm) 1.98 ± 0.029 2.00 ± 0.03

Grain length/width 4.92 ± 0.07 4.94 ± 0.09

Flag leaf length (cm) 33.86 ± 0.29 33.53 ± 0.27

Flag leaf width (cm) 1.5 ± 0.003 1.52 ± 0.27

No. of filled grain/panicle 154.1 ± 1.35 154.4 ± 1.08

Significance at 5% level with independent t-test.

P7.2, indicating the strong bond between these markers with the
trait.

Seventy-two polymorphic SSRmarkers between parental lines
with at least five markers per chromosome were used for
genetic background selection. Most of the recurrent parent
segments were fully recovered in improved lines, but in some
improved lines, some chromosomes were not recovered. Some
heterozygous segments were found in some improved lines. The
results are consistent with the finding of Tian et al. (2006) and
Hirabayashi et al. (2010), who described that some regions of
the BC2F2 generation may not be fully recovered if the marker-
assisted selection is not performed until the BC3F2 generations.
Some other biological factors may also be involved, such as
gametophyte, heading date and hybrid sterility (Doi et al., 1997).
Recurrent parent phenotype can be recovered in one or two
backcrosses if more than one resistance gene is transferred from
indica to japonica cultivars (Singh et al., 2001; Rajpurohit et al.,
2011). Similarly, Shu (2009) transferred multiple resistance genes,
such as Xa4, xa5 and Xa21, from the indicia cultivar to the
japonica cultivar for BB resistance and mentioned that at least
three backcrosses are required to recover the recurrent parent
phenotype. In this study, a similar approach was adopted for
foreground and background selection for higher recovery of the
background genotype and introgression of target genes in the
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FIGURE 4 | Graphical genotyping of selected 15 improved lines with introgressed Pi genes along with MR219 background developed in this study.
The red color indicates homozygous regions for MR219, the blue color indicates homozygous regions for Pongsu Seribu 2 and the light green color indicates
heterozygous regions.

indica/indica cultivar in two backcrossed and one self-generation.
This strategy is very effective in minimizing the cost and time
required to recover the desirable recombinants to a considerable
extent with target resistance genes in the indica/indica crosses.

The donor parent Pongsu Seribu 2 and the recurrent parent
MR219 showed significantly different agro-morphological traits.

However, in the blast resistant, improved lines of MR219, no
apparent yield penalty was related with the presence of the blast
resistance genes, and putative Pi-b and Pi-kh were observed.
Therefore, the cultivation of our improved blast resistant lines
would be of great advantage to reduce the yield losses in blast
disease endemic areas. The introgression of blast resistance genes
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FIGURE 5 | Graphical genotyping of the improved lines with the lowest (A) and highest (B) recovery among the best 15 improved lines. The red color
indicates homozygous regions for MR219, the blue color indicates homozygous regions for Pongsu Seribu 2 and the light green color indicates heterozygous
regions.

along with nearly complete recovery of the genome of the
recurrent parents in improved advanced MR219 lines and yield
is the greatest achievement of the current research. Yield and
grain quality traits are multigenically encoded by loci that are
distributed throughout the rice genome (Sundaram et al., 2008).
In this study, a higher recovery of desirable improved plants of
MR219 was obtained because of phenotypic-based selection for
agro-morphological traits from the BC1F1 generation onward
and screening of a quantifiable number of BC plants. The
current strategies of phenotypic-based along with marker-based
selection are consistent with results of Joseph et al. (2004)
and Gopalakrishnan et al. (2008), who adopted the phenotypic-
based selection for grain type and molecular-based for the
target trait (i.e., bacterial blight and blast resistance). Improved
blast resistant MR219 lines showed a similar agro-morphological
performance in the field as a par recurrent parent MR219 with a
minor acceptable difference. The mean value of blast resistance
lines (carrying the Pi-b and Pi-kh genes) for all morphological
characters were mostly similar with the recipient parent MR219,
indicating that the performance of introgression lines is similar
with MR219 for such traits. The present results strongly support
that our phenotypic selection practice was efficient. These results
are also consistent with the finding of Yoshimura et al. (1995)
and Steele et al. (2006) who found that the offspring of resistant
parental lines shows a similar or better level of resistance and has
preferable quality and yield characteristics for further selection.
Considering the agro-morphological traits, there was a significant
difference for days of 50% flowering; some lines took the same
time as MR219 and some lines were delayed in flowering. In
MR219, flowering was significantly earlier under the proper
irrigation (Rahim et al., 2012). The late flowering in some
introgression lines was due to donor parent Pongsu Seribu 2,
which takes more time compared to MR219. For the grain yield
per plant, there was not any significant difference among the
parental line and integration line. The present finding is similar to
Sabu et al. (2006), who also did not find any significant difference
in grain yield of parent lines and advanced backcrossed lines. The

entire advanced breeding line (ABL) grain characteristics were
similar to the recurrent parent (MR219). The number of panicles
depends on the effective tillers number; if there are more effective
tillers, there will be more panicles (Hossain et al., 2008). Biswas
et al. (1998) also studied the genotypic difference of grain yield
and reported that higher grain yield depended on the number
of effective tillers per hill and number of grains per panicle. Shi
et al. (2000) also reported that the exterior quality of the rice
grain depends on the grain length and width. The proportion
of the grain length to width in all backcross introgression lines
and MR219 was a slender grain shape. According to Rafii et al.
(2014), high grain length with low grain width could lead to a long
shaped grain. Grain shape is controlled by triploid endosperm,
cytoplasmic and maternal genes.

Until now, most of the breeders have introgressed a single
major gene into blast susceptible varieties. The high level of
instability in the pathogen genome could lead to break-down
of the resistance based on the single gene (Hittalmani et al.,
2000). The best way to sustain the resistance for long term is
the incorporation of partial resistance or combining putative
QTL or incorporating multiple genes that decrease the selection
pressure on the pathogen, thus resistance remains for a long
time (Bonman, 1992; Tabien et al., 2002; Lopez-Gerena, 2006).
However, pyramiding major resistance genes into a single cultivar
will be effective for a particular set of virulent pathotypes
(Hittalmani et al., 2000). Ultimately, rice cultivar with durable
resistance by accumulating major genes and QTL for partial
resistance against M. oryzae is an ideal strategy to control blast
disease.

CONCLUSION

The present study suggests that DNAmarkers for blast resistance
(putative Pi-b and Pi-kh) genes are reliable for marker-assisted
selection of blast resistance in rice breeding. The recovery of the
recurrent parent along with the intogression of blast resistance
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genes with MABC breeding was much faster than that with
conventional breeding. Fifteen improved blast resistance lines
were produced from a backcross between the parental line
MR219 and Pongsu Seribu 2. These improved blast resistant
lines could be utilized as a source of genetic material for blast
resistance with a high yielding background of MR219. The
introgressed resistant genes Pi-b and Pi-kh are dominant blast
resistance genes; therefore, the resistance in improved blast
resistant lines will remain for long periods, thus enhancing
the food security in Malaysia. These improved blast resistant
lines have a practical breeding value without yield penalty by
providing blast resistance against the highly virulent pathotype
P7.2 that exists in Malaysia. Identifying the most resistant
lines will lead to durable resistant rice varieties and serve as
a source of genetic resistance in the rice germplasm, which
will have a great impact on the rice yield sustainability and
stability. To our knowledge, this is the first report on the
successful introgression of blast resistant genes (Pi-b and

Pi-kh) into the elite high yielding rice cultivar MR219 in
Malaysia.
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