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Drought being a yield limiting factor has become a major threat to international
food security. It is a complex trait and drought tolerance response is carried out by
various genes, transcription factors (TFs), microRNAs (miRNAs), hormones, proteins,
co-factors, ions, and metabolites. This complexity has limited the development of wheat
cultivars for drought tolerance by classical breeding. However, attempts have been
made to fill the lost genetic diversity by crossing wheat with wild wheat relatives. In recent
years, several molecular markers including single nucleotide polymorphisms (SNPs)
and quantitative trait loci (QTLs) associated with genes for drought signaling pathways
have been reported. Screening of large wheat collections by marker assisted selection
(MAS) and transformation of wheat with different genes/TFs has improved drought
signaling pathways and tolerance. Several miRNAs also provide drought tolerance to
wheat by regulating various TFs/genes. Emergence of OMICS techniques including
transcriptomics, proteomics, metabolomics, and ionomics has helped to identify and
characterize the genes, proteins, metabolites, and ions involved in drought signaling
pathways. Together, all these efforts helped in understanding the complex drought
tolerance mechanism. Here, we have reviewed the advances in wide hybridization,
MAS, QTL mapping, miRNAs, transgenic technique, genome editing system, and above
mentioned functional genomics tools for identification and utility of signaling molecules
for improvement in wheat drought tolerance.
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INTRODUCTION

Global warming has resulted in decreased precipitation and increased evaporation, causing more
frequent drought spells worldwide. Drought reduces the plant yield up to 50% which is a great
economic loss for the farming community (Akpinar et al., 2013). Consequently, development of
drought tolerant wheat cultivars has become a serious challenge for the plant breeders to ensure the
food security of the masses (Budak et al., 2013a). Drought is a multifaceted trait; plant responses
to drought are affected by various factors including growth conditions, physiology, genotype,
developmental stage, drought severity, and duration. Thus, drought tolerance mechanisms involve
diverse gene expression patterns and as complex signaling pathways (Kantar et al., 2011a; Akpinar
et al., 2012). Bread wheat is an important staple food worldwide, therefore efforts have been
made to develop drought tolerant varieties (Budak et al., 2013b). Drought signaling pathways
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involve crosstalk among various biomolecules which makes
breeding for drought tolerance an uphill task (Akpinar et al.,
2012). In recent years, genomics knowledge based on Next
Generation Sequencing (NGS), gene editing systems (Shan et al.,
2013), gene silencing (Yin et al., 2014), and over-expression
methods (Saad et al., 2013) have increased our understanding
about drought signaling pathways. At the transcriptome level,
the RNA deep sequencing (Akpinar et al., 2015) and microarray
analyses (Ergen et al., 2009) are employed to elucidate the
differential expression of RNA transcripts involved in drought
response. Moreover, microRNAs (miRNAs; Budak and Akpinar,
2015), hormones (Reddy et al., 2014), quantitative trait loci
(QTLs; Barakat et al., 2015), metabolites (Xiao et al., 2012),
transcription factors (TFs), and drought-related proteins (Lucas
et al., 2011a; Alvarez et al., 2014) are key players in drought
signaling. These factors regulate the gene expression in response
to drought. TFs also interact with plant stress hormones,
e.g., abscisic acid (ABA), jasmonic acid (JA), and salicylic
acid (SA) in mediating drought response (Nakashima et al.,
2014). To elucidate complex wheat drought signaling which
will help in developing improved varieties, powerful tools
are required for multiplexed or simultaneous detection of
signaling molecules. Advances in functional genomics tools
have provided us the opportunity to detect above mentioned
molecules with ease, efficacy and accuracy thus opening a new
era of crop improvement (Colmsee et al., 2012). In this review,
we have summarized the advances in genetics, genomics, and
functional genomics for identification of novel genes and their
subsequent use in breeding programs for improved drought
tolerance.

SIGNALING PATHWAYS IN WHEAT FOR
DROUGHT TOLERANCE

Drought signaling is categorized into ABA-dependent and ABA-
independent pathways as ABA is the first line of defense
against drought. ABA-dependent signaling consists of two main
gene clusters (regulons) regulated by ABA-responsive element-
binding protein/ABA-binding factor (the AREB/ABF regulon)
and the MYC/MYB regulon. Previous studies have shown that
AP2/EREBP (ERF) TFs are engaged in both ABA-dependent and
independent signaling pathways. Despite being two distinct and
independent pathways, there is plausibly some crosstalk between
both (Lata and Prasad, 2011). The AP2/ERF TFs family includes
the ethylene-response factors, e.g., a TaERF promotes drought
tolerance in wheat with increased proline and chlorophyll levels
(Rong et al., 2014). The sucrose non-fermenting1-related protein
kinase 2 family (SnRK2) consists of plant specific Ser/Thr
kinases which are positive regulators of ABA signaling. SnRK2s
were first reported to be involved in ABA signaling in wheat
(PKABA1; Fujii and Zhu, 2012). The SnRK TFs are also
involved in ABA independent pathway (Lata and Prasad, 2011).
Although not specifically studied in wheat, the ABA-dependent
pathways in rice and Arabidopsis have been extensively analyzed
(Todaka et al., 2012). The ABA-independent regulons include the
CBF/DREB (cold-binding factor/dehydration responsive element

binding), NAC, and ZF-HD (zinc-finger homeodomain; Lata
and Prasad, 2011). The transcriptional regulatory network based
on DREBs is induced by dehydration in wheat. There are two
known DREB regulons; DREB1/CBF and DREB2 (Edae et al.,
2013). Above mentioned signaling pathways and their roles
in drought tolerance have been extensively discussed in this
review.

GENETICS BASED IMPROVEMENT IN
DROUGHT SIGNALING

The selection of an appropriate breeding strategy to develop
drought tolerant cultivars is the key step for a successful breeding
program. Therefore, strategies which can transfer specific genes,
exploit wild relatives of crops, identify and transfer genes with
ease, require less time, and labor to develop cultivars are of great
value (Hussain, 2015). The advances in genetics, genomics, and
functional genomics have enabled researchers to combine one
or more advantages of different strategies to develop drought
tolerant wheat. Here, we have described the advances in these
methods.

Classical Breeding for Improving
Drought Tolerance in Wheat
Classical breeding dates back to 5,000–10,000 years when
man domesticated selective plant species based on their better
taste. Domestication was followed by selection of high yielding
genotypes and cross-hybridization to recombine tolerance genes
from different sources (Hussain, 2015). The presence of genetic
variation in wheat is the key to identify the contrasting parents
for classical breeding (Shelden and Roessner, 2013). Significant
genetic variation in wheat for drought tolerance has been
identified for selection of diverse parents. Cross-hybridization
of wheat diploid progenitors produce drought tolerant synthetic
hexaploid (SHs) wheat (see the section Introgression of Drought
Tolerance Genes fromWild Species) with introgression of several
novel drought tolerance genes (Zhang et al., 2005). Most of
plant breeders selected the drought and other stress tolerant
wheat varieties on the basis of higher yields and ignored the
physiological mechanism behind it. Therefore, few cultivars
having drought and abiotic stress tolerance have been developed
in comparison to the ones improved for high yield (Hussain
et al., 2015). Under drought, plant machinery shifts its focus
to ABA production for downstream activation of signaling and
tolerance mechanisms which lowers the grain filling and yield.
Therefore, the balance between yield and drought tolerance
needs to be investigated (Alvarez et al., 2014). ABA content has
been used as selection index for screening wheat under drought
and contrasting parents for its production have been crossed.
Several QTLs and genes involved in signaling pathways have been
identified in subsequent segregating populations (Iehisa et al.,
2014; see the section QTL Mapping for Drought Signaling Genes
in Wheat). Longer time, intensive labor requirements, transfer
of non-desirable genes, limited resistance resources, genetic
barriers and limited understanding of tolerance mechanisms
are problems associated with classical breeding (Hussain, 2015).
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Since breeding to date has not been focused on signaling
pathways, there is a need to combine the available information
collected by QTLs, MAS, and Omics tools with traditional traits
for improved wheat drought tolerance.

Introgression of Drought Tolerance
Genes from Wild Species
Significant loss of genetic diversity has occurred at three
levels: (a) Species level (domestication), (b) Varietal level (green
revolution), and (c) Gene level (breeding cycles). High yielding
wheat developed through green revolution has less stress
tolerance (Hussain, 2015). It is the time for plant breeders to
look back and utilize this lost genetic diversity as some wild
wheat relatives are potential sources of drought tolerance. For
example, wild emmer wheat (Triticum dicoccoides) has inter and
intra-varietal genetic diversity for water use efficiency (WUE),
phenology, and contains several genes and QTLs for drought
tolerance (Nevo and Chen, 2010). Gene expression studies in
emmer wheat identified over 13,000 expressed sequence tags
(ESTs) in response to drought (Ergen and Budak, 2009), and
33 outlier loci for drought tolerance were identified by single
nucleotide polymorphisms (SNPs) markers (Ren et al., 2013).
Transcriptomic analysis identified several genes and TFs involved
in ethylene, IP3, and ABA dependent signaling pathways in wild
emmer wheat (Ergen et al., 2009). SHs wheat constituted by
crossing these wild relatives gained many novel QTLs and genes
for ABA responsiveness and signaling (Iehisa et al., 2014). Role of
DREBs in conferring drought tolerance to T. dicoccoides has also
been established (Lucas et al., 2011b).

Introgression of drought tolerance to cultivated wheat from
Aegilops tauschiiwas achieved by crossing it with durumwheat to
make SHs wheat. DNA fingerprinting of SHs showed high genetic
diversity with longer roots and higher soluble carbohydrates
to resist water deficiency (Reynolds et al., 2007). D genome
of A. tauschii contains several drought responsive genes
potentiating the development of drought tolerant SHs wheat
through crossing. A. tauschii and related SHs showed significant
variation for ABA responsiveness when gene expression analyses
were performed for ABA inducingWABI5 and three downstream
Cor/LEA protein coding genes (Wrab18, Wrab17, and Wdhn13)
while the line with enhanced expression of Wdhn13 showed
salt and dehydration tolerance (Iehisa and Takumi, 2012).
Proteomics approach has identified several proteins involved
in ABA signaling (ABA 8′-hydroxylase, MPK6, dehydrin, 30S
ribosomal protein S1, retrotransposon protein, a 70 kDa HSP)
in the wild wheat relative, Kengyilia thoroldiana under drought.
Proteins involved in antioxidative enzyme activity (thioredoxin
peroxidase, ascorbate peroxidase, Cu/Zn superoxide dismutase)
also showed increased expression levels (Yang et al., 2015). The
value of wild wheat relatives as donors of drought genes has not
only been established on morphological bases, but also validated
with genomics (QTLs) and functional genomics (transcriptomics,
proteomics, ESTs, SNPs) tools. Furthermore, their utility as
drought gene donors has been confirmed in SHs. Therefore, we
suggest that plant breeders should focus on wheat wild relatives
to enhance the genetic diversity of wheat for drought tolerance.

Molecular Markers for Identification of
Drought Signaling Genes
Selection in classical breeding is performed on the basis of
morphological and economical traits which are highly influenced
by the environment. Environmental influence on phenotypic
expression creates confusion in selection of desirable traits.
Discovery of DNA markers for economic and stress related
crop traits have helped to select the desirable traits and parents
with ease, efficacy and reliability in remarkably shorter time.
Therefore markers, especially the SNPs have added more power
to identify the genes linked to drought and other stresses
(Budak et al., 2013b; Hussain, 2015). DNA markers for various
genes involved in drought signaling have been reported, e.g.,
RAPD markers by using P21F/P21R and P25F/PR primers in A
genome; and P18F/P18R primer in B genome mapped DREB1
on 3A chromosome (Huseynova and Rustamova, 2010). In
wheat, DREBs were tagged with five SNPs in A (P21F/P21R
and P25F/PR primers), B (P18F/P18R primer), and D genome
(P20F/P20R and P22F/PR primers). DREB1 gene was tagged on
chromosome 3A, 3B, and 3D. S646 and S770 SNPs were used
and SNP S770 mapped DREB-B1 between markers Xfbb117 and
Xmwg818 on chromosome 3BL (Wei et al., 2009). SNPs identified
the involvement of five signaling genes in yield and drought
tolerance pathways. The DREB1A correlated with heading date,
vegetation index and biomass, while flag leaf width, harvest
index and leaf senescence were associated with ERA1-B and
ERA1-D (enhanced response to ABA) genes. Other signaling
genes, 1-FEH-A and 1-FEH-B (fructan-1-exohydrolase) were
linked to yield and thousand kernel weight (Edae et al., 2013).
Significant relationships between morpho-physiological traits
and SNPs suggested key role of detected SNPs in drought
tolerance.

High resolution melting (HRM) technology is the most
powerful tool to identify the allelic variations. Use of HRM found
that allelic variation in DREB TFs identified by SNPs led to
variation in peptide sequences as well. The variation in peptide
sequences was linked with differences in protein geometry and
recognition of cis-elements involved in ABA signaling (Mondini
et al., 2015). Two important TFs, i.e.,DREB1,WRKY1, and a Na+
transporter, HKT-1 conferring drought and salt tolerance were
also mapped by SNPs (Mondini et al., 2012). SNPs were used to
map TaSnRK2.8 gene which plays important role in carbohydrate
metabolism, protein–protein interaction, and ABA signaling
(Zhang et al., 2013). Chromosome locations and primers for these
markers are given in Table 1. It can be concluded that MAS has a
lot of promise to identify the signaling genes. Strong association
between signaling genes and drought related physiological traits
suggest that MAS should be focused to identify the signaling
genes (Edae et al., 2013). This can help to improve the drought
tolerance with less effort, time and resources and can speed up
the breeding programs in future.

Transgenic Approaches for Improving
Drought Signaling
Loss of tolerance genes by genetic erosion should be filled with
such efficient and reliable methods that can transfer genes in
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TABLE 1 | Molecular markers identified for wheat drought signaling genes.

Marker
type

Primer Chromosome
location

Target drought signaling
gene

Reference

SNP P21F/P21R and P25F/PR 3A DREB1 Wei et al., 2009

SNP S770
P18F/P18R 3BL

Xfbb117-Xmwg818
DREB1 Wei et al., 2009

SNP P20F/P20R and P22F/PR 3D DREB1 Wei et al., 2009

RAPD P25F/PR 3A DREB1 Huseynova and
Rustamova, 2010

RAPD P18F/P18R 3A DREB1 Huseynova and
Rustamova, 2010

SNP DREB1a and DREB1b U16709.1∗ DREB1 Mondini et al., 2012

SNP WRKY1 DQ323885.1∗ WRKY1 Mondini et al., 2012

SNP HKT-1 AF303376.1∗ HKT-1 Mondini et al., 2012

SNP P21 3A DREB1A Edae et al., 2013

SNP ERA1B 3A, 3B, 3D ERA1-B Edae et al., 2013

SNP ERA1D – ERA1-D Edae et al., 2013

SNP W12 6A 1-FEH-A Edae et al., 2013

SNP W32 – 1-FEH-B Edae et al., 2013

SNP M13 5A TaSnRK2.8 Zhang et al., 2013

SNP DREB2a and DREB2b – DREB2 Mondini et al., 2015

SNP DREB3a and DREB3b – DREB3 Mondini et al., 2015

∗Ref gene.

a short time. Recombinant DNA technology has emerged as a
powerful tool for the purpose. It provides the additional benefit
of having no genetic barriers, thereby; so can transferring the
genes from any wild relative, land race or other species (Hussain,
2015). Candidate genes for drought tolerance in wheat include
TFs which regulate the signaling genes, genes encoding defense
molecules [Reactive oxygen species (ROS), proline, JA, SA], and
for production of defense proteins (Yang et al., 2010). Here, we
have described the major achievements in wheat (see summary in
Table 2).

Drought Signaling by Introducing DREBs
A soybean based DREB gene (GmDREB; Accession No.
AF514908) was transformed to wheat by gene gun bombardment
using ubiquitin and RD29A promoters, and transgenic plants

with both promoters showed increased drought and salt tolerance
(Shiqing et al., 2005). This increased tolerance of the crop
was linked with to twofold higher proline production, stay
green phenomenon under drought and survival and recovery
on re-watering (SURV) after drought spell (Wang et al.,
2006) suggesting a role of signaling pathway in downstream
proline production. Transformation of wheat with a cotton
originating DREB (GhDREB) improved drought, salt, and
freezing tolerance due to higher production of soluble sugars
and chlorophyll in leaves (Gao et al., 2009). Transgenic
wheat with DREB1A was subjected to field screening on
the basis of SURV and WUE. Although the event was
selected in greenhouse, plants showed even higher yield
under field drought (Pierre et al., 2012). However, there is
dire need to find out activated genes or expressed proteins

TABLE 2 | Improvement in wheat drought signaling and tolerance by transgenic approaches.

Transformed gene Improvement in signaling and tolerance Reference

HVA1 Abscisic acid (ABA) signaling, produce Late embryogenesis abundant 3 (LEA3) for cell membrane integrity,
higher biomass production and water use efficiency (WUE), drought, and salt tolerance

Sivamani et al., 2000

HVA1 ABA responsiveness, ABA signaling, higher WUE and relative water content (RWC), stable yield, drought
tolerance

Bahieldin et al., 2005

GmDREB ABA independent signaling (AIS), drought, and salt tolerance Shiqing et al., 2005

GmDREB AIS, 2-fold higher proline production, stay green, SURV, drought tolerance Wang et al., 2006

GhDREB AIS, higher soluble sugars and chlorophyll production, improved drought, salt, and freezing tolerance Gao et al., 2009

DREB1A Higher SURV, WUE, and yield under drought Pierre et al., 2012

SNAC1 Activation of sucrose phosphate synthase, type 2C protein phosphatases and
1-phosphatidylinositol-3-phosphate-5-kinase genes for ABA signaling, high RWC, chlorophyll content and
biomass, enhanced salinity and drought tolerance

Saad et al., 2013

Alfalfa aldose reductase Antioxidant defense, ABA signaling, detoxification of aldehyde substrate, green biomass production, drought
tolerance

Fehér-Juhász et al., 2014
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by these TFs to fully understand their role in signaling
pathways.

Drought Signaling by Introducing HVA1 Gene
Various studies aimed to find the function of ABA in regulating
the expression of drought tolerance genes. A number of
such genes code for the proteins involved in stomata closure
to check the transpiration against the cell dehydration. Late
embryogenesis abundant 3 (LEA3) in barley is one of such
protein encoded byHordeum vulgare abundant protein 1 (HVA1)
gene. This gene is activated by ABA treatment and several crops
transformed with the HVA1 gene showed improved drought
and salt tolerance (Nguyen and Sticklen, 2013). HVA1 gene was
transformed to spring wheat by gene gun and its over-expression
under maize ubiq1 promoter resulted in improved biomass
production, WUE, drought, and salt tolerance due to activation
of ABA signaling (Sivamani et al., 2000). Field evaluation of
transgenic wheat with HVA1 for six cropping seasons at four
locations (USA and Egypt, both irrigated and rainfed area)
showed stable yield, higher WUE and relative water content
(RWC). These tolerance traits were directly correlated with the
expression of HVA1 gene in transgenic plants (Bahieldin et al.,
2005). It is important to note that to date, the research station has
not released it as a variety (Hayes and Xue, 2014).

Drought Signaling by Introducing Other Genes
Transformation of wheat with SNAC1 gene under the control
of ubiquitin promoter showed enhanced salinity and drought
tolerance at seedling stage in lab conditions. Transgenic
plants showed higher biomass, RWC, and chlorophyll content.
Expression studies of SNAC1 by qPCR showed over-expression
of sucrose phosphate synthase, type 2C protein phosphatases
and 1-phosphatidylinositol-3-phosphate-5-kinase genes, which
are involved in ABA signaling (Saad et al., 2013). Transgenic
wheat with cDNA of alfalfa aldose reductase recipient gene,
involved in antioxidant defense and exhibited 1.5–4.3 times
more detoxification of aldehyde substrate and 12, 26, and 41%
increase in green biomass production in three separate transgenic
lines, resulting in enhanced drought tolerance (Fehér-Juhász
et al., 2014). Although the transfer of DREBs, HVA1, and NAC
have resulted in enhanced drought tolerance by improving
signaling pathways, there are no studies to date that show
whole downstream signaling cascade improved in transgenic
plants.

GENOMICS BASED IMPROVEMENT OF
DROUGHT SIGNALING

Although a reference whole genome sequence has not been
reported for wheat to date, efforts have been put to identify
potential genomic regions carrying genes for drought signaling
pathways. QTLs, miRNAs, and genome editing systems (e.g.,
CRISPR/Cas system) are major genomics based methods applied
to discover and manipulate related genomic regions. The role
of these approaches in characterizing genes involved in drought
signaling in wheat is discussed below.

QTL Mapping for Drought Signaling
Genes in Wheat
Drought tolerance is a complex and quantitative trait encoded
by many genes, and thus, the identification of genomic
regions carrying genes for drought signaling is important.
Doubled haploids (DHs), F2 populations (Ibrahim et al., 2012),
recombinant inbred lines (RILS), near isogenic lines (NILS) are
suitable populations for QTL mapping (Budak et al., 2013b). In
wheat, the QTLs for yield and yield related traits in drought,
and biomolecules involved in signaling pathways have been
mapped. Inheritance of ABA accumulation and distribution in
plants is not simple and several genes/QTLs are involved in it.
A major QTL for ABA production was mapped on the long
arm of the 5A chromosome between Xpsr575 and Xpsr426 loci
(8 cM from Xpsr426) in single chromosome substitution line
and their subsequent F2 and DHs populations. Substitution
lines were developed by from hybridization of low and high
ABA producing Chinese Spring’ and ‘SQ1’ genotypes (Quarrie
et al., 1994). This QTL showed strong linkage with Dhn1/Dhn2
locus depicting a direct association between ABA accumulation
and early flowering based drought tolerance in wheat (Ibrahim
et al., 2012). Nine QTLs were mapped in wheat in response to
exogenously applied ABA, SA, JA, and ethylene, suggesting the
presence of potential genes involved in signaling in these regions
(Castro et al., 2008).

Several QTLs linked to ABA accumulation in leaves were
mapped in an F2 population developed from the cross of
contrasting genotypes for ABA production. But one novel QTL
was linked to both higher ABA content and smaller leaf size
due to genetic linkage between the genome regions. The QTL
location was a homoeolog of the major wheat geneVrn1 that code
for number of tillers, ABA accumulation and leaf size (Quarrie
et al., 1997). A major QTL for ABA production was mapped on
chromosome 6D in an F2 population developed from contrasting
SHs. This QTL region has several genes for ABA responsiveness,
seed dormancy, and regulation of LEA proteins that protect the
cell machinery under dehydration stress (Iehisa et al., 2014).
A major QTL for higher grain yield (21%), chlorophyll content
and wider flag leaf on 7A chromosome was mapped in a DH
wheat line by using psp3094 SSR. Exogenous ABA application
activated this QTL suggesting that genes in this region might be
involved in ABA signaling (Quarrie et al., 2007). Four homologs
of Arabidopsis ABA signaling genes (TmABF, TmVP1, TmERA1,
and TmABI8) were mapped in a wheat RILs population derived
by crossing T. boeoticum and T. monococcum. The location of
these QTLs was chromosome 3Am, 4Am, and 5Am (Nakamura
et al., 2007).

Seven QTLs for ABA production in response to drought
were identified on chromosomes 2A, 3A, 1B, 7B, and 5D in
an F4 population at 33% field capacity. The most important
QTLs for ABA content were mapped on chromosomes 3B, 4A,
and 5A on the marker location of Wmc96, Trap9, and Barc164
(Barakat et al., 2015). In another study, five major QTLs for
ABA responsiveness were identified on chromosomes 1B, 2A,
3A, 6D, and 7B in a wheat RILs population. A QTL located
on chromosome 6D contributed 11.12% to variation for ABA
against 5–8% contribution by other QTLs. Expression analysis
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showed allelic differences in QTLs for three ABA responsive
Cor/LEA protein coding genes, Wrab15, Wdhn13, and Wrab17.
The expression of these genes was influenced by QTLs present
on chromosomes 2A, 7B, and 6D in ABA treated seedlings
(Kobayashi et al., 2010). In conclusion, several QTLs for ABA
production and downstream signaling pathways have been
mapped in wheat (Table 3) but most of studies have not focused
further on this aspect. We recommend the use of functional
genomics tools along with QTLs to identify the genes located in
QTL regions.

miRNAs Involved in Drought Signaling
and Tolerance
Extensive application of NGS platforms has greatly contributed
in identification of 20–22 nt short non-coding RNAs called as
miRNAs that play regulatory roles in many processes (Budak
et al., 2015a). miRNAs bind to their target transcripts through
complementary base pairing, and either direct the cleavage of
the target or repress its translation, leading to the decreased
expression of the target transcript. Thus, miRNAs can act both
at the transcriptional or post-transcriptional levels. miRNA
mediated gene-silencing mechanism regulates the expression of
plant hormones, TFs, and other developmental/stress signaling
pathways (Curaba et al., 2014). Gene silencing involved in
plant stress regulation is also mediated by naturally occurring
small RNAs (siRNAs; Lu et al., 2012), and complementary
double-stranded RNA (dsRNA) generated from inverted repeat
(IR) transgenes (Frizzi and Huang, 2010). Post transcriptional
gene silencing is carried out by miRNAs and virus-derived
small interfering RNAs (vsiRNAs) which helps in discovering
gene functions and developing crops with improved stress
tolerance (Feng et al., 2013). miRNAs are important regulators
in plant drought signaling because their target genes have
key roles in metabolism and signal transduction (Yin et al.,
2014).

The miRNA gene transcripts ‘MIR’ are spatially and
temporally influenced by cellular signaling factors, particularly
plant hormones such as ABA under stresses (Jung et al., 2015).
Some conserved plant miRNAs such as miR159 (Triticum,
French bean, cotton, maize), miR164 (Triticum, Brachypodium,

sugarcane), miR172 (Triticum, Arabidopsis, Brachypodium,
Oryza, cotton) and miR393 (Triticum, Oryza, Medicago,
Pinguicula, Arabidopsis) control the expression of key TFs
which regulate development and signaling pathways (Gupta
et al., 2014). miRNAs are involved in various drought related
cellular pathways, including auxin signaling, ABA response,
antioxidant defense, osmoprotection, cell growth, respiration,
and photosynthesis, e.g., miR169 shows bread wheat specific
differential expression under drought (Ding et al., 2013). Several
signaling genes (ARF, MYB33, MYB101, TIR1, AGO1,) and
growth regulation factors (GRF) are targeted and regulated
by drought responsive miRNAs and DREBs (Covarrubias and
Reyes, 2010). Most of the miRNAs have their specific putative
targets which lead to regulation of specific genes/TF involved in
signaling/tolerance mechanisms. In such a study, various bread
wheat based miRNAs and their targets (shown in parentheses)
were identified as tae-miR159a,b (MYB3), tae-miR159c-5p
(Dihydro-flavonoid reductase-like protein), tae-miR171f (sensor
histidine kinase), tae-miR395i (ATP sulfurylase), tae-miR156k
(SBP), tae-miR166l-5p (FAM10 family protein), tae-miR168b
(dehydrogenase/reductase), tae-miR444c.1 (MADS-box TF),
tae-miR1432 (mitochondrial phosphate transporter), tae-
miR160a (ARF), tae-miR164b (NAC), tae-miR166h (HD-ZIP4),
tae-miR169d (CCAAT-box TF), tae-miR319c (Acyl-CoA
synthetase), tae-miR393b,i (TIR1), tae-miR396a,c,g (GRF),
tae-miR444d (IF3), tae-miR827-5p (finger-like protein). The
above mentioned miRNAs regulated the expression of their
targeted TFs/genes thus playing key roles in drought tolerance
mechanism (Ma et al., 2015).

Similarly, increased expression of miR156 in T. dicoccoides
targets the SBP TFs and promoted flowering while miR398
targets copper superoxide dismutases, cytochrome C oxidase,
and regulates ROS production under drought stress. Increased
expression level of miR1432 targets calcium-binding EF which
activates signal transduction pathways. Other important drought
responsive miRNAs in T. aestivum and T. dicoccoides are
miR396, miR528, miR6248 (Kantar et al., 2011b; Budak et al.,
2015b), miR1435, miR5024, and miR7714 (Akpinar et al., 2015).
On the other hand, miR166 exhibits decreased expression in
T. dicoccoides under drought which targets HD-ZIP3 TF and

TABLE 3 | Quantitative trait loci (QTLs) mapped for drought signaling molecules in wheat.

Chromosome location Function Reference

MAPMAKER QTL; 5A Located between Xpsr575-Xpsr426, ABA production Quarrie et al., 1994

2A ABA production, smaller leaf size, homoeolog of wheat gene Vrn1 that controls number of tillers and ABA
accumulation

Quarrie et al., 1997

7A Activated on exogenous ABA application, involved in ABA signaling Quarrie et al., 2007

3Am, 4Am, 5Am QTLs for ABA signaling genes (TmABF, TmVP1, TmERA1, and TmABI8) Nakamura et al., 2007

6A Located at Xgwm459 and gwm334a region, activated by exogenous ABA, salicylic acid (SA), jasmonic acid
(JA), and ethylene application, contains signaling genes

Castro et al., 2008

1B, 2A, 3A, 6D, 7B ABA responsiveness, regulate expression of ABA responsive LEA protein coding genes, i.e., Wrab15, Wdhn13,
and Wrab17

Kobayashi et al., 2010

MAPMAKER QTL; 5A Linked to Dhn1/Dhn2 genes, early flowering based drought tolerance Ibrahim et al., 2012

6D ABA production and signaling, seed dormancy, regulation of LEA proteins Iehisa et al., 2014

3A, 1B, 4A, 5A, 5D, 7B Enhanced ABA production, located at marker locations of Wmc96, Trap9, and Barc164 Barakat et al., 2015
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plays role in developmental while miR171 targets GRAS TF
and is significant in abiotic stress responses (Kantar et al.,
2011b). A summary of miRNAs involved in drought response and
signaling is given in Table 4. For a further comprehensive reading
on drought responsive miRNAs, we would recommend our
reader to go through other articles from our group (Lucas et al.,
2011b; Budak et al., 2015a,b). From above discussion, it is evident
that miRNAs have a key role in regulating drought tolerance
pathways and should be exploited for wheat improvement.

CRISPR/Cas Genome Editing System
In addition to ZEN and TALEN, an efficient bacterium
based genome editing system called the Clustered Regulatory
Interspaced Short Palindromic Repeats (CRISPR), with
associated protein Cas (CRISPR/Cas system) has emerged.
The CRISPR are loci with variable short spacers interspersed by
short repeats, later transcribed into non-coding RNAs (ncRNA).
This ncRNA then forms a complex with the Cas and guides the
complex to slice complementary target DNA. The development
of single guide RNAs (sgRNAs) which are fusions of essential
parts of trans-activating crRNA (tracrRNA) and the sgRNA of
CRISPR RNA (crRNAs) proved to be an essential improvement
in adopting the CRISPR-Cas system for targeted editing of
complex eukaryotic genomes (Jiang et al., 2014). Following
Arabidopsis, the system has also been demonstrated in rice

and other crop plants. In protoplasts of bread wheat cultivar
Kenong199, an ortholog of the barley MLO protein, TaMLO
gene was targeted and showed high INDEL frequencies of
26.5–38.0%. The number of unique sgRNA target candidates
generated on average were 21 per cDNA of either A or D
genomes. The mean mutagenesis frequency in protoplasts was
28.5% with the transformation efficiency of 70–80% (Shan et al.,
2013). The ability of this system to delete large DNA segments
stably is valuable in wheat genomics given its large genome
size and complexity. Development of transgenic wheat cultivars
with stable drought tolerance through targeted genome editing
will potentially revolutionize crop breeding. To date, the use
of this system in engineering abiotic/drought stress tolerance
or signaling has not been reported; however, in the future, it
may prove to be a valuable tool in discovering the functions of
signaling pathway components.

FUNCTIONAL GENOMICS FOR
DISCOVERING DROUGHT SIGNALING
MOLECULES

In recent years, the use of functional genomics tools has
considerably increased in elucidating abiotic stress tolerance in
plants. These methods include transcriptomics, metabolomics,

TABLE 4 | Wheat miRNAs involved in drought stress signaling.

miRNAs Differential expression
under drought

Target genes related to signaling Function Reference

miR159a-5p ↑ MYB TF, GAMYB1 GAMYB2, genes for
oligopeptide transport

Auxin Signaling, Oligopeptide transporter Liu et al., 2013;
Gupta et al., 2014

miR159a,b ↓ WRKY TF; MYB3; alkaline phosphatase,
cytochrome P450, Mob1-like and TLD protein

Signaling Ma et al., 2015

miR160a ↑ HSP 70; ARF; tetratrico peptide repeat (TPR) Stress adaptation Liu et al., 2015

miR164 ↑ NAC domain TF, phytosulfokines, sHSPs 17; NAC
TF; genes involved in MAPK signaling pathways

Signaling pathway, oxidative stress
response

Gupta et al., 2014

miR166h ↑ Class III HD-ZIP protein 4 Stress response, phytohormones Ma et al., 2015

miR167 ↑ Dnaj heat shock n-terminal domain-containing
protein

Auxin signaling pathway, developmental
response

Liu et al., 2015

miR168 ↑ Argonaute Signal transduction, stress response Gupta et al., 2014

miR169d ↓ CCAAT-box TF ABA-responsive transcription, drought
tolerance

Ma et al., 2015

miR171f ↓ Sensor histidine kinase Stress response Li et al., 2013

miR172 ↑ Apetala2-like TF, ARF, helix-loop-helix DNA-binding
protein

Signaling Pathway, stress response,
development

Gupta et al., 2014

miR172a,b ↓ Floral homeotic protein, AP2 TFs Flower development signaling pathway

miR319 ↓ MYB3, Acyl-CoA synthetase Abiotic stress tolerance Zhou et al., 2010

miR393 ↑ bHLH TF, transport inhibitor response 1/auxin F-box Signaling pathway, genes in auxin signaling,
basal defense

Gupta et al., 2014

miR395i ↓ ATP sulfur lyasas and sulfur transporters Abiotic stress Sunkar et al., 2005

miR397 ↑ Ice1 (inducer of CBF expression 1) TF, laccase Response to water deprivation Gupta et al., 2014

miR398 ↑ COX, Superoxide dismutase (SOD) gene family Respiration pathway Kantar et al., 2011b

miR474 ↓ PPR, protein kinase, kinesin, Leucine-rich repeat Unknown Kantar et al., 2011b

miR1029 ↑ Apetala2-like TF, DREB TF Signaling pathway abiotic stress Gupta et al., 2014

miR1432 ↑ Mitochondrial phoshphate transporter – Ma et al., 2015

↑, increased expression levels; ↓, decreased expression levels.
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proteomics, and ionomics and are capable of discovering and
characterizing the expression of genes or other molecules in
drought with high accuracy and efficiency. These highly sensitive
tools can perform the spatial analysis of tissues which helps
to understand the drought tolerance mechanisms, see Figure 1
(Ergen et al., 2009).We have summarized the advances in OMICS
for discovery of drought signaling molecules below

Transcriptomics for Identification of
Drought Signaling Pathways
Transcriptomics is the study of whole set of RNA transcripts
(transcriptome) produced by an organism under certain
conditions, like drought. Microarrays were used first for profiling
transcripts in response to various stresses, but polyploidy has
limited the number of studies in wheat. Microarray based
analysis became more common after the commercial release
of wheat Affymetrix Gene Chip R© (Santa Clara, CA, USA)
which contained over 55,000 probes for wheat transcripts
(Nair et al., 2012). Ergen et al. (2009) identified several novel
genes and TFs involved in ABA, ethylene, and IP3 dependent
signaling by Affymetrix Gene Chip R© based spatial profiling
of root and leaf tissues in wild emmer wheat. In leaf tissue,
glutamine-dependent asparagine synthetase, a putative ATP-
binding protein, homeo-domain TF Hox22 homolog (linked
to LEA3 proteins), carotenoid producing 9-cis-epoxycarotenoid
dioxygenase, proline-rich protein precursor and many proteinase

inhibitors of Bowman Birk type showed highest increased
expression levels under drought. While, germin-like protein,
protein degrading cysteine proteinase precursors, bZIP TFs,
cytochrome P450, OsRR9 homolog (a signal receiver domain),
LOL1 protein, and G–C content rich motif binding MYB like
TF RADIALIS exhibited decreased expression levels. In root
tissues, several dehydrins, LEA/COR protein WRAB1, putative
lipases, a Rab GTPase homolog, several cold regulated proteins,
12-oxophytodienoic acid reductase, a cold shock protein A-2,
MYB-domain Hv1 TF, glutathione transferase (ROS scavenger),
PRP homologs and WCOR719 (actin depolymerization factor)
showed the highest increased expression levels. In contrast, many
HSPs, RmlC-type cupin domain, B12D proteins, two nodulin 93
proteins, RING-H2 finger protein and GTP-binding EF exhibited
decreased expression levels (Ergen et al., 2009).

Microarray gene chip based transcriptomic analysis of
TAM111 and TAM112 wheat genotypes identified 123 genes
for production of ABA, JA, auxin, cytokinin, brassinosteroid,
gibberellins, and ethylene, and signaling pathways involving these
hormones. These transcripts showed differential expression at
grain filling stage and transcripts for ABA biosynthesis exhibited
increased expression levels in both genotypes. Two transcripts
similar to PDR12 (coding for ABA transporter), transcripts
for auxin, LEAs, dehydrins, HSPs, aquaporins, and redox
homeostasis showed decreased expression levels. Transcript
analysis revealed a key role of ABA in regulation of transcripts

FIGURE 1 | Schematic diagram showing flow of information between functional genomics techniques for studying signaling pathways in plants.
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and physiological changes linked with drought adaptation.
Higher leaf ABA production showed strong association with
higher yield and biomass under field drought which reduced
the stomatal conductance and was linked to elevated transcript
changes in flag leaf (Reddy et al., 2014). Low chip-to-chip
variation, high reproducibility and probe density of Affymetrix
Gene Chip R© are its advantages but a major disadvantage of high
relative cost has limited large scale studies. Therefore, there is dire
need for more reliable and cost effective methods to study the
complex drought signaling pathways.

Deep sequencing (RNA-Seq) based transcriptomics has made
it a cost effective and powerful tool. There were unique transcripts
found in T. dicoccoides, and T. durum under drought that they
were engaged in drought signaling pathways (Akpinar et al.,
2015). It can be concluded that RNA-Seq based transcriptomic
analyses identified various drought signaling genes such as bZIP,
TdNAC, andMYB genes which can be exploited in future studies.

Proteomics for Identification of Drought
Signaling Pathways
Though transcriptomics provides the gene expression profiles,
these profiles do not necessarily reflect protein levels as some
transcripts may not be translated. Proteomics analysis provides
clues into the actual fluctuations of the protein levels involved
in signaling, regulatory, and enzymatic functions encoded by
genome through transcripts. Advanced bioinformatics tools have
helped to identify, characterize, and annotate novel proteins
(Colmsee et al., 2012). The proteomic analysis of two wheat
genotypes having contrasting drought tolerances showed that
among differentially expressed proteins, 26% were involved in
carbohydrate metabolism, 23% in detoxification and defense,
and 17% in storage proteins. In drought, WD40 repeat protein,
catalase isozyme 1, LEAs, Triticin precursor, sucrose synthase,
and alpha amylase inhibitors exhibited increased expression
levels in tolerant and decreased expression level in sensitive
cultivar. On the other hand, ascorbate peroxidase, small and
large subunit ADP glucose pyrophosphorylase and G-beta
like protein showed decreased expression levels in sensitive
cultivar (Jiang et al., 2012). Our group performed proteomics
analysis using two wild emmer wheat varieties (TR39477 and
TTD22), and one durum wheat cv. (Kızıltan). After 9 days
of drought exposure, 75 differentially expressed proteins were
detected with many being common to all three wheat genotypes,
e.g., manganese superoxide dismutase (MnSOD), a glutathione
transferase showed increased expression in the durum wheat
(Budak et al., 2013a).

Alvarez et al. (2014) identified 1656 proteins and two
unique peptides in wheat through proteomics analysis by
using roots of from drought tolerant (Nesser) and sensitive
(Opata) varieties for ABA-responsiveness. Important signaling
proteins including monomeric G-proteins and their regulators,
two lipoxygenases, K channel β subunits, a plasma membrane
proton ATPase, calnexin, and an elicitor-induced protein showed
an increased response to ABA in drought tolerant cultivar
and vice versa in the sensitive. Though signaling protein 14-
3-3 homologs exhibited increased expression in the drought
tolerant cultivar, they remained unchanged in the sensitive one.

Out of 151 ABA-responsive proteins, 100 showed increased
expression levels but the rest showed decreased expression
levels. An interesting finding was the abundance of multiple
porin proteins and β-expansin precursor in the sensitive
cultivar suggesting that the cell wall structure and membrane
permeability might have influenced different adaptation to
drought in both cultivars. Furthermore, six LEA proteins and
several phosphatases were also identified in both cultivars
(Alvarez et al., 2014).

Metabolomics for Identification of
Drought Signaling Pathways
Metabolites are considered as signaling molecules as they
are associated with physiological processes and are exported
from each organelle to cytoplasm in the form of retrograde
signals. Gas chromatography mass-spectrometry (GC–MS),
liquid chromatography mass-spectrometry (LC–MS), capillary
electrophoresis mass-spectrometry (CE–MS), and nuclear
magnetic resonance (NMR) are the major analytical tools in
metabolomics to detect, identify, and analyze small molecules.
Initially, the analysis of metabolites was limited to a few
compounds having major roles in drought tolerance. But,
advances in these methods have enabled us to identify a wider
range of metabolites produced under a specific condition.
Metabolite profiling is a powerful tool to characterize genotype
or phenotype of an organism for dissecting novel signaling
pathways (Xiao et al., 2012). Plants accumulate compatible
solutes to protect them from drought and oxidative stress
for survival. GC–MS based metabolite profiling in moss
Physcomitrella patens showed accumulation of compatible
solutes in response to drought stress (Zhan et al., 2014). In wheat,
levels of proline, tryptophan, and the branched chain amino
acids leucine, isoleucine, and valine increased under drought in
tolerant cultivars but organic acid levels decreased (Krugman
et al., 2011). There are various examples where metabolites
act as intracellular signals, e.g., in response to cytosolic sugar
levels, trehalose 6-phosphate (T6P) enhances the redox transfer
to AGPase, mediated by thioredoxin, mainly depending on
metabolite balance between the chloroplast and cytosol.
Metabolite profiling for elucidating signals in plants has been
characterization in form of methyl-erythritol-cyclo-diphosphate
(MECD; Xiao et al., 2012).

Ionomics for Identification of Drought
Signaling Pathways
Ionomics is a high throughput analysis of the ion
composition in an organism under a certain condition. It
has immense applications in forward and reverse genetics,
screening of mutants, finding mechanisms of ion uptake,
compartmentalization, transport, and exclusion, thus helps
to understand the mechanisms of drought and other abiotic
stresses in plants (Shelden and Roessner, 2013). In wheat,
ionomics studies under drought stress have not been reported
yet. Together, ionomics and other genomics data can provide a
complete picture of cellular changes against drought, enabling
a thorough understanding of the underlying mechanisms
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of tolerance (Colmsee et al., 2012). Furthermore, ionomics
can help to identify novel genes coding for ions by utilizing
phenotypic and genotypic data obtained from mapping
populations. It can thus help in understanding the gene networks
controlling the ion accumulation at different growth stages
under drought stress (Satismruti et al., 2013). It should be
noted that ionomics is a relatively new functional genomics
tool with limited number of studies available, but spatial
and highly sophisticated ion profiling will be a key in the

future to understand the signaling pathways for drought
tolerance.

SYSTEMS BIOLOGY APPROACHES TO
DISCOVER SIGNALING PATHWAYS

System biology is a recent, fast growing and comprehensive
analytical approach in life sciences to discover the control and

FIGURE 2 | Putative stress signaling pathway in wheat where functional genomics contribute.

TABLE 5 | Functional genomics studies for identification of drought signaling molecule in recent years.

Functional
genomics tool

Drought signaling genes/molecules/mechanism identified Reference

Transcriptomics Hox22 TF linked to LEA3 proteins, ABA inducible LEA WRAB1, Dehydrins, Proline-rich protein precursor, Asparagine
synthetase, 9-cis-epoxycarotenoid dioxygenase, Rab GTPase homolog, A-2 cold shock protein, MYB-domain Hv1 TF,
glutathione transferase, WCOR719

Ergen et al., 2009

Transcriptomics Genes for ABA, JA, auxin, cytokinin, brassinosteroid, gibberellins, and ethylene production and drought signaling based on
these hormones. Transcripts for PDR12, auxin, LEAs, dehydrins, HSPs, aquaporins, redox homeostasis, and reduced
stomatal conductance

Reddy et al., 2014

Proteomics WD40 protein, catalase isozyme 1, LEA and alpha amylase inhibitors, ascorbate peroxidase, G-beta like protein, triticin
precursor, sucrose synthase

Jiang et al., 2012

Proteomics Ribulose-1,5-bisphosphate carboxylase large subunit, OsI_16800 protein, SORBIDRAFT_09g029170 protein, polyamine
oxidase, Os02g0101500, Os03g0786100, Ferredoxin-NADP(H) oxidoreductase, Os03g0786100, Glutathione transferase,
Mn superoxide dismutase, Cold regulated proteins

Budak et al., 2013a

Proteomics Monomeric G-proteins and their regulators, lipoxygenases, K channel β subunits, plasma membrane proton ATPase, calnexin,
an elicitor-induced protein, porin proteins, β-expansin precursor, LEAs, phosphatases

Alvarez et al., 2014

Proteomics 8′-hydroxylase, MPK6, dehydrin, 30S ribosomal protein S1, retrotransposon protein, 70 kDa HSP, thioredoxin peroxidase,
ascorbate peroxidase, Cu/Zn superoxide dismutase

Yang et al., 2015

Metabolomics Proline, tryptophan, leucine, isoleucine, and valine, organic acids Krugman et al., 2011

Metabolomics Trehalose 6-phosphate (T6P) promotes thioredoxin-mediated redox transfer to AGPase and MECD helped in elucidating
signaling in plants

Xiao et al., 2012
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regulation of intracellular biological systems, biochemical
cycles and pathways in plants under different environmental
stresses. Several computational studies have been involved,
from few decades, to find the biochemical function of
metabolites and small biomolecules responsible for biochemical
pathways under drought stress (Gutiérrez et al., 2005). Most
of the experimental methods are being used as the part
of system biology including various target and untargeted
metabolite analysis approaches used to identify the drought
specific metabolites in different species of plants. GC–MS is
one of the several approaches, was used to find metabolic
compounds differentially expressed in tolerant (Excalibur
and RAC875) and sensitive (Kukri) bread wheat cultivars
under drought stress environment (Bowne et al., 2012).
Another finding was aspartate-derived synthesis of few
amino acids including lysine, methionine, and threonine in
Arabidopsis thaliana done also explains the advantageous use
of system biology approach, model based on measured kinetic
parameters (Curien et al., 2009). Thus, system biology helps
to understand the relationship and inter-connection among
various types of bio-molecules involved in a certain tolerance
mechanism.

CONCLUSION

Significant wheat yield losses due to drought lower farmers’
income, food availability and ultimately affect the economy of
various countries. Few drought tolerant wheat varieties have
been developed as most of breeders have selected plants on the
basis of morphological traits and ignored physiological basis of
drought tolerance. Lost genetic variation for drought tolerance
has been patched up by using wild wheat T. dicoccoides and
A. tauschii in crossing and synthetic wheat showed improved
drought tolerance. The improvement has been measured in
terms of novel genes, QTLs, ESTs, and SNPs, e.g., three LEA
protein coding genes (Wrab18, Wrab17, Wdhn13) involved in
ABA signaling pathway were identified in SHs. Proteomics
analysis identified ABA 8′-hydroxylase, MPK6, dehydrin, 30S

ribosomal protein S1, and a 70 kDa HSP involved in ABA
signaling in wild emmer wheat. In recent years, MAS have been
used to select the plants which make the cultivar development
process less time consuming. SNPmarkers have identifiedDREB-
B1, DREB1A, ERA1-B, ERA1-D, 1-FEH-A, 1-FEH-B, WRKY1,
TaSnRK2.8, and HKT-1 genes in wheat. Many QTLs for ABA
production, SA, JA, ethylene, and ABA based signaling, and
QTL having genes for regulating other signaling genes (TmABF,
TmVP1, TmERA1 and TmABI8, Wrab15,Wdhn13, andWrab17)
have also been mapped. Transgenic approach provides the
benefit of speedy gene transfer without any genetic barriers.
Transformation of wheat with GmDREB, GhDREB, DREB1A,
HVA1, SNAC1, and aldose reductase genes improved drought
signaling and tolerance. Similarly, various miRNAs showed
differential expression in drought and enhanced or silenced the
expression of genes involved in drought signaling. However,
the signaling genes, miRNAs, TF, etc., don’t not express in
isolation but interact with each other in signaling pathways
(Figure 2).

In recent years, functional genomics has emerged as a power
tool to identify the molecules involved in drought signaling
pathways. Transcriptomics analyses identified various genes
including Hox22, bZIP TF, dehydrins,WRAB1,WCOR719, HSPs,
LEA, TaWRKY17, TaWRKY16, TaWRKY24, TaWRKY19-C,
TaWRKY59, TaWRKY82, TaWRKY61, TaWLIP19, TaWRKY10,
TaNAC69, and TaMYB33 for drought signaling pathways.
Proteomics and metabolomics have identified several proteins
(Monomeric G-proteins, lipoxygenases, potassium channel
β subunits, calnexin, LEAs, phosphatases) and metabolites
(Proline, tryptophan, leucine, isoleucine, valine) involved in
drought signaling as summarized in Table 5. In this way, highly
efficient functional genomics tools have helped in identifying
several important genes which can be exploited by breeders to
develop drought tolerant wheat cultivars in futures. Similarly,
genome-editing system CRSPR/Cas will be valuable in future for
better understanding of drought tolerance mechanisms due to
its ability to modify the genome. Study of miRNAs in future is
also important in future as they are key regulators of signaling
pathways.
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