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Proper quantification of the relative influence of soil and plant host on the root-associated

microbiome can only be achieved by studying its distribution along an environmental

gradient. Here, we used an undisturbed salt marsh chronosequence to study the

bacterial communities associated with the soil, rhizosphere and the root endopshere

of Limonium vulgare using 454-pyrosequencing. We hypothesize that the selective force

exerted by plants rather than soil would regulate the dynamics of the root-associated

bacterial assembly along the chronosequence. Our results showed that the soil and

rhizosphere bacterial communities were phylogenetically more diverse than those

in the endosphere. Moreover, the diversity of the rhizosphere microbiome followed

the increased complexity of the abiotic and biotic factors during succession while

remaining constant in the other microbiomes. Multivariate analyses showed that the

rhizosphere and soil-associated communities clustered by successional stages, whereas

the endosphere communities were dispersed. Interestingly, the endosphere microbiome

showed higher turnover, while the bulk and rhizosphere soil microbiomes became more

similar at the end of the succession. Overall, we showed that soil characteristics exerted

an overriding influence on the rhizosphere microbiome, although plant effect led to a

clear diversity pattern along the succession. Conversely, the endosphere microbiome

was barely affected by any of the environmental measurements and very distinct from

other communities.

Keywords: root-associated bacteria, salt marshchronosequence, primary succession, plant selective force, soil

type

INTRODUCTION

Assessments of microbial diversity have revealed soils—the habitats where plants and microbes
live together and build highly diverse interactions—as being among the most biologically diverse
on Earth (Curtis et al., 2002; Gans et al., 2005; Philippot et al., 2013; Saleem and Moe, 2014).
From the perspective of plants, soil represents a reservoir of microbes that can potentially affect
their biomass, fitness and stress tolerance (Saleem et al., 2007; Buée et al., 2009; Faure et al.,
2009; Lambers et al., 2009; Lugtenberg and Kamilova, 2009; Chaparro et al., 2012). From the
perspective of microorganisms, plant roots represent true microbial oases, by creating a very
selective environment with lower biodiversity but higher activity compared with the bulk soil
(Kuzyakov, 2002; Berendsen et al., 2012; Cibichakravarthy et al., 2012), the so-called rhizosphere
effect (Smalla et al., 2006; Hartmann et al., 2008; Faure et al., 2009).
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The rhizosphere community also represents the source of
endophytic bacteria, which cross the root barrier and colonize
the plant tissues, the endosphere (Sessitsch et al., 2002; Compant
et al., 2005; Hardoim et al., 2008). The selective force plants
exert on the endophytic communities, therefore, is predicted
to be stronger than that on the rhizosphere. Endophytes differ
according to their root colonization mechanisms. Some soil-
inhabiting bacteria might become endophytic by stochasticity
(e.g., via colonization of natural wounds), being considered as
passenger endophytes (Hardoim et al., 2008). Rare rhizosphere
microbiome selected stochasticly by different Nicotiana root
was found to contribute major root colonists (Saleem et al.,
2015). Opportunistic and competent endophytes, however, show
particular root colonization characteristics (e.g., chemotaxis
response), in addition, competent endophytes could be well
adapted to the plant environment and lead to the beneficial
maintenance of the plant-microbe association (Hardoim et al.,
2008). Moreover, endophytes are better buffered against abiotic
stresses, common in the complex soil environment (Hallmann
et al., 1997). Studies have indicated that endophytic bacterial
communities are dynamic over time, with endophytes following
the development of plant growth (Hardoim et al., 2008; van
Overbeek and van Elsas, 2008). Overall, from the bulk soil and
rhizosphere microbiome, plant roots recruit a very rare fraction
of microbiota as endophytes, whereas their distribution across
root morphological gradient may vary depending on plant and
soil types (Saleem et al., 2015).

As discussed above, it is evident that plants exert a very strong
selective force on the microbiome associated with the roots
(rhizosphere and endophytes). However, this selective force is
rather different at different locations, which has been justified by
differences in agricultural practices (Salles et al., 2006), sampling
sites (Costa et al., 2006), or soil type (Inceoǧlu et al., 2010).
This is not surprising, considering that soil properties such as
pH or organic carbon, known as major drivers of soil bacterial
community assembly (Fierer and Jackson, 2006; Lauber et al.,
2009; Dini-Andreote et al., 2015), vary according to soil type
(Marschner et al., 2001) or land use (Lauber et al., 2008). Thus,
the proper quantification of the relative influence of soil type and
plant species on plant associated bacterial community can only
be achieved by sampling the same plant species in a gradient of
soil types, while controlling for environmental conditions and
meta-communities. Soils undergoing primary succession would
provide such a perfect system.

In this study, we aim at exploring the importance of
the selective force exerted by the plant in regulating the
dynamics of bacterial communities around (rhizosphere) or
inside (endosphere) the roots, as well as in the bulk soil,
in different soil types, along a salt marsh primary succession
gradient (Olff et al., 1997; Dini-Andreote et al., 2014, 2015).
We chose Limonium vulgare, a typical perennial salt marsh
plant, as our focus species because of its broad distribution
along the chronosequence. The main hypotheses were based
on the assumption that the selection by plants rather than soil
would regulate the dynamics of the root-associated bacterial
assembly along the chronosequence. Specifically, as a result of
plant selection, we expect (i) phylogenetic diversity to decrease as

we intensified the association with the plant—higher in bulk soil
and lower in the endosphere—regardless of the soil successional
stage. Moreover, we expect (ii) diversity to be constant within
the rhizosphere and endosphere across different successional
stages but variable in the bulk soil. In addition, we predict (iii)
the structure of the plant associated bacterial communities to
cluster according to the degree of connection with plant rather
than soil successional stages. Within each community, however,
we expected (iv) the distribution of the bacterial patterns to
cluster according to three main successional—initial, middle and
late stages—following the soil and vegetation development along
the chronosequence (Schrama et al., 2012). Finally, considering
the general principle that the plants function as “filters” of
soil organisms, we expect (v) the bacterial communities in
the endopshere to be less variable than those associated with
rhizosphere and bulk soil.

MATERIALS AND METHODS

Study Site and Sample Collection
The salt marsh chronosequence that we investigated is located
on the island of Schiermonnikoog, the Netherlands (53◦30′N,
6◦10′E), and spans more than 100 years of primary succession
(Olff et al., 1997). The succession starts from the east and
develops to the west of the island. Permanent plots have been
monitored at different successional stages during the last 20 years
to verify the space-for-time replacement in this chronosequence
(vanWijnen et al., 1997). Salt marsh age at each successional stage
was estimated from topographic maps, aerial photographs, and
the thickness of the sediment layer accumulated on top of the
underlying sand layer (Olff et al., 1997; Schrama et al., 2012).
For this study, samples were collected in 2014 at locations with
successional ages of 5, 15, 35, 65, and 105 years. Three sampling
plots (5 × 5m) within each of the locations were established at
the similar base elevation (vertical position relative to mean sea
level at the initial elevation gradient on the bare sand flats). A base
elevation of 1.16 ± 2.2 cm (mean ± SE) above Dutch Ordnance
Level was used to select the sampling plots in this study. Different
base elevations are exposed to different inundation regimes and,
therefore, possess unique successional trajectories (Olff et al.,
1997). As the salt marsh developed, clay sediments trapped by
vegetation increased the elevation of the soil surface by ∼16 cm
over 100 years of succession (Schrama et al., 2012).

Sampling was performed twice (May and August) on all of
the triplicate plots in the five stages to investigate the differences
in season. As mentioned above, in order to quantify the relative
influence of soil type and plant species on plant associated
bacterial community, L. vulgare was selected as the focal plant
in this study, as it is one of the dominant plant species along the
chronosequence, and occurring throughout the succession, from
the successional age 5 years onwards, peaking in abundance at
35 years (Schrama et al., 2012).Within each plot, four healthy-
looking L. vulgare of similar sizes with attached soil adhering to
the intact roots were collected as a composite sample using sterile
spades and gloves. Therefore, thirty composite samples in total
were collected (5 stages × 3 plots for each stage × 2 seasons).
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Each sample was placed in a sterile plastic bag, sealed and
transported to the laboratory within 24 h. Spades were sterilized
with 70% ethanol between different sampling plots and plants.
From each composite sample we sampled bulk soil, rhizosphere,
and endosphere (see below).

Bulk (Non-Rhizosphere) and Rhizosphere
Sample Pretreatment
The plants were separated carefully from the adhering soil
without damaging the roots by gentle shaking. All bulk
(non-rhizosphere) soil samples were sieved (2mm mesh size)
and stored at −20◦C for DNA extraction and 4◦C for
physicochemical measurements. Ten grams of roots with
tightly adhering soil (rhizosphere soil) were transferred to
an Erlenmeyer flask containing 180mL of sterile sodium
pyrophosphate (0.1%). After 30min of shaking at 200 rpm at
room temperature, 0.5mL of the suspension with rhizosphere
soil was used for DNA extraction or stored at−20◦C.

Endosphere Sample Pretreatment
Plant roots (about 8 g) were thoroughly washed with running
tap water, trimmed to remove adhering soil and dead
tissues, and surface sterilized by immersion into 1.5% NaClO
solution (3min), 70% ethanol (3min) and sterile distilled water
(3 × 3min). Sterility checks were performed by tissue-blotting
surface-sterilized plant samples on R2A plates, and checking
the plates after 2–7 days incubation at 28◦C. Samples without
bacterial growth were considered successfully sterilized and used
for further study. The surface-sterilized root parts (5 g) were
sliced with a sterile scalpel and immersed into 15mL NaCl
solution (0.9%). After shaking incubation for 1 h at 28◦C, the
suspension with root pieces was shaken using a horizontal vortex
instrument (4 × 1min, 30 s in-between). Large plant and fungal
cells were removed with 5-µm filters (Sessitsch et al., 2012),
and the residual cells were pelleted by centrifuging (12,000 × g,
10min) and then stored at−20◦C for DNA extraction.

Soil Physicochemical Parameters
Measurements
Soil samples stored at 4◦C were used for measuring nitrate (N-
NO−

3 ), ammonium (N-NH+

4 ), pH, and soil water content (SWC).
The remaining soil samples (4◦C) were dried at 40◦C, ground
with a grinding mill, and then used for measuring sodium (Na),
magnesium (Mg), calcium (Ca), potassium (K), phosphate (P),
and total nitrogen (TN). Soil physicochemical analyses were
carried out in collaboration with the Department of Community
and Conservation Ecology in the University of Groningen.

Soil N-NH+

4 and N-NO−

3 content was measured by extraction
of 12.5 g soil with 30mL KCl (1M) overnight. After filtering the
suspension, the extract was analyzed for N-NH+

4 and N-NO−

3 on
a continuous flow auto analyzer (Skalar-40) using a colorimetric
method (Keeney and Nelson, 1982). Soil exchangeable elements
(Na, Mg, Ca, and K) were measured by extraction of 5 g soil
with ammonium acetate (1M) for 1 h (Knudsen et al., 1982;
Lanyon and Heald, 1982). The filtrate was then analyzed on an
atomic absorption spectrometer (AAS) set. Soil P was tested by
extraction of 2.5 g soil with 5% HCl for 4 h. The filtered extract

was then diluted with deionized water and a color developing
reagent was added. The color intensity was measured at a
wavelength of 420 nm on spectrophotometer after 1 h (Olsen
and Sommers, 1982). The loss on ignition (LOI) method was
applied for measuring soil organic matter (SOM) (Schulte and
Hopkins, 1996). After soil samples had been measured for
SWC at 105◦C, they were placed in a muffle furnace at 550◦C
overnight, cooled down to room temperature in desiccators,
and weighed. Soil texture data (sand:silt:clay % content) were
referred to Dini-Andreote et al. (2014).We pooled the data of soil
physicochemical parameters from both sampling periods, as the
variation in soil environment between these two seasons (spring
and summer) was small according to Dini-Andreote et al. (2014).

Total DNA Extraction and Multitag
Pyrosequencing of Partial 16S rRNA Gene
A total of 30 bulk soil samples and 30 rhizosphere samples (five
successional stages× two sampling times× three replicates) were
subjected to total DNA extraction using 0.5 gram of soil and
0.5mL of the suspensionwith rhizosphere soil, respectively, using
the MoBio PowerSoil DNA extraction kit (MoBio Laboratories,
Carlsbad, CA, USA). We followed the instruction manual, except
for the addition of glass beads (diameter 0.1mm, 0.25 g) to
the MicroBead tube and three cycles of bead beating (mini-
bead beater, BioSpec Products, USA) for 60 s. A total of 26
composite endophytic cell pellet samples (four stages × two
sampling times × three replicates; 4 samples from the 5 year
stage (including 3 samples from May and 1 sample from
August) were excluded because of very small pellets) were
subjected to total DNA extraction using the MoBio UltraClean
Microbial DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA,
USA). We followed the instruction manual, except for heating
the preparations at 65◦C for 10min with occasional bump
vortexing for a few seconds every 2–3min. Extracted DNA was
further quantified using the PicoGreen dsDNA assay (Invitrogen,
Carlsbad, CA, USA) within the wavelength range of 485–535 nm.

Twenty-five µL PCR reactions were performed using 0.25µL
5U µL−1 FastStart High Fidelity (FSHF) Taq DNA Polymerase,
2.5µL 10 × FSHF Reaction buffer without MgCl2, 2.3µL
25mM MgCl2 stock solution, 0.5µL 10mM PCR nucleotide
mix, 0.25µL 20mg mL−1 bovine serum albumin (BSA) (Roche
Diagnostics GmbH, Mannheim, Germany), and 0.5µL each of
10µM primer and 5 ng DNA template. The thermal cycler
protocol was 95◦C for 5min, 30 cycles of 95◦C for 40 s, 56◦C
for 45 s, 72◦C for 40 s and a final 10-min extension at 72◦C. The
primer set 515f/1061r targeting regions V4–V6 of the 16S rRNA
bacterial gene was used, which can provide sufficient resolution
for the precise taxonomic classification of microbial sequences
(Liu et al., 2007) and amplify 16S rRNA genes from a wide
range of bacterial groups with few biases (Bates et al., 2011).
For multiplexing, both primers were tagged using a unique short
nucleotide sequence (10-bp) named “MID” for Roche GS-FLX
454 pyrosequencing, which act as barcodes to distinguish each
sample and to detect external contaminants from sample DNA
sequences (Parameswaran et al., 2007).

Pooled triplicate amplicons were run with 1% (w/v) agarose
gel, and the gel containing the extract bands was excised and
purified using theQIAquick Gel Extraction kit (QIAGENGmbH,
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Hilden, Germany), and then quantified using PicoGreen dsDNA
assay (Invitrogen, Carlsbad, CA, USA). Amplicons from all
samples were pooled in equimolar concentrations into four
composite samples containing 25, 25, 27, and 29 samples,
respectively, and sequenced at Beckman Coulter Genomics
(Danvers, MA, USA) on a Roche GS-FLX 454 automated
pyrosequencer running Titanium chemistry.

Sequence Processing
Before analyses, raw sequencing data generated from the 454-
sequencing runs were demultiplexed and processed using the
Quantitative Insights into Microbial Ecology (QIIME) toolkit
(Caporaso et al., 2010b). Briefly, the multiplex reads were
assigned to samples based on their unique nucleotide barcodes
with quality filtration using the default parameters, except that
the range of the sequence lengths was set from 300 to 900.
Quality filtered data was then denoised using Denoiser (Reeder
and Knight, 2010). After denoising, the quality reads were binned
into operational taxonomic units (OTUs) at 97% sequence
similarity using UCLUST (Edgar, 2010), followed by picking
a representative sequence for each OTU. Chimeric sequences
were identified using ChimeraSlayer (Haas et al., 2011) and
then removed. The representative sequence for each OTU was
aligned referring to the Greengenes core set template (DeSantis
et al., 2006) using PyNAST (Caporaso et al., 2010a), and then
assigned to respective taxonomy identity with RDP classifier
(Cole et al., 2005). The alignment was filtered to remove gaps
in every sequence prior to the phylogenetic tree construction
with FastTree (Price et al., 2009). For all OTU-based analyses,
the original OTU table was rarified to a depth of 760 sequences
per sample (the minimum number of sequences per sample) to
minimize the sampling bias for analysis. Beta-diversity (weighted
UniFrac distance in this study; Lozupone et al., 2006) and alpha-
diversity metrics (the count of unique OTUs, Faith’s phylogenetic
diversity indices and Shannon diversity index) were also
generated by QIIME. All sequencing data have been deposited
in the MG-RAST database (http://metagenomics.anl.gov/).

Data Analyses
Significant differences in taxonomic relative abundance and
alpha-diversity among different successional stages and different
sources (bulk soil, rhizosphere, and endosphere) were identified
usingOne-way analysis of variance (ANOVA), followed by Tukey
HSD pairwise group comparisons in the R environment (http://
www.r-project.org). To test the significance of the dissimilarity
among different sources and different successional stages in
the weighted unifrac distance matrix, we used permutational
multivariate analysis of variance (PerMANOVA) (Anderson,
2001) in the vegan package (Oksanen et al., 2007). Constrained
Analysis of Principal Coordinates (CAP) was applied on the
weighted unifrac distance matrix by constraining the influence
of sources and successional stages, in order to show the
community clustering effects under the corresponding influence.
The method investigates the results of a Principal Coordinates
Analysis (function cmdscale) with linear discriminant analysis
(lda), resulting in the best prediction of group identities
of the sites (Anderson and Willis, 2003). The significance
of the differences among different successional stages were

tested by using the function pairwise.perm.manova within the
RVAideMemoire package, to perform the pairwise comparisons
using PerMANOVA on the weighted unifrac distance matrix.
Different clusters separated by sources or by successional
stages were visualized by using the function of ordihull in the
vegan package. Changes in beta-diversity between two-adjacent
succession stages along the chronosequence were calculated
using the weighted UniFrac distance matrice. Graphs of alpha-
diversity, taxonomic composition and variations of beta-diversity
were constructed using Origin Pro 8.5 software.

To explain the partition of variation in the weighted-unifrac
distances for bulk soil, rhizosphere, and endosphere, we
used Constrained Analysis of Principal Coordinates (CAP)
(Anderson and Willis, 2003) in the vegan package. Before
being input into CAP analysis, soil physicochemical parameters
were pre-filtered by using the bioenv function in the vegan
package to select the best subset of environmental variables with
maximum correlation with community dissimilarities (Clarke
and Ainsworth, 1993). The pre-filtered parameters were then
combined with soil texture indicators (Sand, Silt, and Clay%)
as total soil factor. Venn diagrams were performed to shown
the explained variation by soil factor, successional stages and
seasonal changes.

RESULTS

Site Characteristics
A detailed description of the soil data is given in Table S1. In
brief, compared to other successional stages, the 5-year stage
showed the lowest level of nutrients (TN, SOC, NO−

3 , NH4+,
P2O5, Ca, Mg, K), salinity (measured as the concentration of
sodium, expressed in mg/kg dry soil), and soil water content
(SWC). The soil pH, however, was highest at the 5-year stage
(mean pH 8.51± 0.07) and decreased over succession (mean pH
7.51 ± 0.16 at the 105-year stage). With the development of the
succession and sedimentation caused by the tidal regime, the soil
physicochemical conditions and the level of silt and clay particles
on the salt marsh with progressively increasing elevation were
found to improve along the chronosequence, reaching a peak
at the 65-year stage (except for nitrate levels). In addition, the
salinity level also increased over time during succession, due to
an accumulative effect.

α-diversity Measurements
To investigate the diversities of the bacterial communities
associated with bulk and rhizosphere soil and endosphere along
the chronosequence, the pyrosequencing data were rarefied to
the depth of 760 reads per sample after being binned into
46,972 different OTUs, of which 48.76% of the sequences (22,905
OTUs in total) were singletons. Similar α-diversity values were
shown for bulk soil and rhizosphere, which were significantly
higher than those observed for endosphere (Figure 1), partially
confirming our hypotheses that diversity should decrease as
the association with the plant is intensified. Regarding the
variation in diversity along the chronosequence, we observed no
significant differences in Faith’s phylogenetic diversity and OTU
richness between stages nor patterns for endosphere and bulk soil
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FIGURE 1 | Variation patterns of α-diversities of the bacterial communities associated with bulk soil, rhizosphere and endosphere along the

chronosequence. (A) OTU richness, (B) Faith’s phylogenetic diversity (PD) and (C) Shannon diversity index. The polynomial models for each of the indices were

performed using Origin Pro 8.5 software. Samples color coding: black, bulk soil; red, rhizosphere, and blue, endosphere.

communities, whereas for the rhizosphere soil both measures of
diversity were significantly lower at the 5-year stage and peaked at
the 65-year stage (Figures 1A,B). In terms of Shannon diversity, a
similar hump-shaped pattern for the rhizosphere soil community

from the first sampling and an increasing tendency for the bulk
soil community from the second sampling were shown. For
the endosphere, however, a reverse hump-shaped variation was
found for the community from the second sampling, reaching
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the lowest point at the 65-year stage (Figure 1C). All these α-
diversity results lead us to reject the prediction that diversity
would be constant within the rhizosphere and endosphere but
follow a successional pattern in the bulk soil. In fact, only
rhizosphere-associated communities seem to corroborate the
changes in the biotic and abiotic variables associated with the
different successional stages.

Phylogenetic β-diversity
The clustering of bacterial communities from the bulk soil,
rhizosphere and endosphere at different successional stages,
performed with CAP analyses by using sources as the constraint.
The first two constrained axes explained 28.97% of the total
variation, with a significant effect of source (Pseudo-F =

17.192, R2 = 0.29, P < 0.001), successional stage (Pseudo-
F = 3.136, R2 = 0.134, P < 0.001) and sampling time
(Pseudo-F = 4.117, R2 = 0.047, P < 0.01; Figure 2A).
Regarding the level of relationship with the plants, bacterial
communities associated with the endosphere were significantly
distinct from the bulk soil and rhizosphere. In order to further
identify the community clustering effects between the bulk soil
and rhizosphere, a similar analysis was performed but now
excluding the endosphere samples (Figure 2B). The bulk soil
and rhizosphere were significantly distinguished from each other
(Pseudo-F = 3.85, R2 = 0.06, P < 0.001) with 20.84% of the
total variation explained by CAP1, and there were a significant
seasoning effect (Pseudo-F = 5.615, R2 = 0.088, P < 0.001) and
a more important effect of successional stage (Pseudo-F = 5.40,
R2 = 0.28, P < 0.001).

CAP analyses for bulk soil, rhizosphere, and endosphere
individually revealed a clear clustering effect of each successional
phase (initial, middle, late), by using successional stage as the
constraint (Figure 3). Bulk soil and rhizosphere showed similar
patterns—the community structures in the three successional
phases were significantly different from each other (pairwise
comparisons, P < 0.001) and reflecting the influence of
successional phase as well as sampling time. Interestingly,

the clustering effect within each phase became stronger after
the initial stage, reaching the highest level at the middle
stage (Figures 3A,B). On the contrary, endosphere-associated
bacterial communities were highly dispersed when compared
to the two other sources. Although significant differences were
observed between middle and late phases (pairwise comparisons,
P < 0.05), the difference level between each other was not
as strong as that for bulk soil and rhizosphere. In addition,
the dispersion level of the community structure within each
successional phase was found to increase toward the late
succession (Figure 3C). Indeed, by plotting the changes in
community structure from one stage to the next, we could
show that the turnover in community composition significantly
decrease (P < 0.001) along the succession for bulk soil
(from both samplings) and rhizosphere (from the first sampling)
associated bacterial communities—indicating a more stable
community structure as succession proceeded—whereas for the
endosphere, the differences between communities in initial stages
was lower than at late stages of succession (i.e., higher turnover;
Figure 4).

By partitioning the variation in the community dissimilarities
of bulk soil, rhizosphere, and endosphere, we found that
soil characteristic, including the selected subset of soil
physicochemical parameters (pH, SWC, TN, and Na) and the soil
texture indicators (sand, silt, and clay content), explained much
higher partition of the variation in community dissimilarities
for the microbiome associated with bulk soil (38.26%) and
rhizosphere (38.4%), compared with successional stages and
seasonal changes (Figure 5). Similarly, the successional stages
and seasonal changes explained only small partitions of variation
in the community dissimilarity in endosphere (7.78 and 7.99%,
respectively).

All together, these results partially corroborate our hypothesis
that bacterial community structure is determined by plant rather
than successional stage. This was especially true for endophytes,
where the effect of successional stages was completely absent. As
expected, clustering according to successional stage was detected

FIGURE 2 | Bacterial community structure of bulk soil, rhizosphere and endosphere. (A) Comparisons among the bulk soil, rhizosphere, and endosphere, (B)

Comparisons between the bulk soil and rhizosphere. Principal Constrained Analysis of Principal Coordinates (CAP) based on weighted-Unifrac distances was applied.
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FIGURE 3 | Bacterial community structure of bulk soil, rhizosphere, and endosphere over the succession. (A) Bulk soil, (B) Rhizosphere, and (C)

Endosphere. Constrained Analysis of Principal Coordinates (CAP) based on weighted-Unifrac distances was applied. Samples color coding: red, 5 years; blue, 15

years; orange, 35 years; green, 65 years; and purple, 105 years. Filled symbols represent the samples from the first sampling time (May), and unfilled symbols

represent the samples from the second sampling time (August).

FIGURE 4 | Community dissimilarities along the chronosequence for the bulk soil, rhizosphere, and endosphere. Variations in community dissimilarities

were calculated with weighted-Unifrac distance between two adjacent successional stages. The polynomial models performed using Origin Pro 8.5 software. Samples

color coding: black, bulk soil; red, rhizosphere, and blue, endosphere.

FIGURE 5 | Partitions of variation in the community composition of bulk soil, rhizosphere, and endosphere. Venn graphs were performed according to the

Constrained Analysis of Principal Coordinates (CAP) on the weighted-Unifrac distances of the bacterial communities within (A) Bulk soil, (B) Rhizosphere, and

(C) Endosphere. Circles were not drawn to scale.
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for bulk and rhizosphere bacterial communities. Intriguingly,
endophytes experienced higher turnover in community
composition at later stages of succession, contradicting our
prediction that plant selection should lead to more similar
communities.

Bacterial Community Composition
Among Bulk Soil, Rhizosphere, and Endosphere
At the phylum level (Figure S1), Proteobacteria dominated the
bulk soil, rhizosphere, and endosphere (51.6, 49.9 and 85.9%,
respectively), followed by Bacteroidetes (18.2, 16.1, and 5.3%,
respectively). The endosphere contained more Proteobacteria
(P < 0.05) compared with the bulk soil and rhizosphere.
The rhizosphere was found to accumulate significantly higher
Chloroflexi and Planctomycetes (P < 0.05) than the bulk soil
and endosphereat the middle stages (Figure S2).

Within the most predominant phylum, Proteobacteria, the
classes Alpha- and Gammaproteobacteria were more abundant
than Beta- and Deltaproteobacteria (Figure S2). Among the
three sources, the endosphere showed the highest value of
Gammaproteobacteria across the succession (P < 0.05,
except for the 5-year stage). Among the six main genera of
Proteobacteria (Figure S3), the endosphere showed the highest
percentage of Marinomonas (especially for the 15-, 35-, and 65-
year stages), which was the most abundant genus, belonging to
the family Oceanospirillaceae.

Along the Chronosequence
Choloflexi and Gemmatimonadetes progressively increased
along the chronosquence within the bulk soil and rhizosphere
(Figure S4). In the endosphere, a progressively increasing trend
was also found for Firmicutes (P < 0.05). At the class
level of the phyla Proteobacteria, Deltaproteobacteria increased
significantly across succession in the bulk soil and rhizosphere
(P < 0.001). Conversely, Alphaprotobacteria in the bulk soil and
rhizosphere were found to show decreasing patterns (P < 0.05).
For Gammaproteobacteria, hump-shaped and inverse-hump-
shaped patterns were found in the bulk soil and rhizosphere,
respectively, reaching the peak at the 15-year stage (32.05 ±

5.42%) and the bottom at the 35-year stage (21.82 ± 4.07%).
Despite being the most dominant genus, no significant pattern
in relative abundance was shown for Marinomonas along the
chronosequence (Figure S5). In addition, large variability among
replicated endosphere samples was found at each successional
stage.

DISCUSSION

In this study we directly examined the relative contribution of
soil and plant effect on the diversity and structure of bacterial
communities varying in their degree of association with plants,
by making use of a gradient of soil development in a salt marsh
primary succession. We specifically investigated the drivers of
root-associated bacterial communities related to the rhizosphere
and endosphere of L. vulgare, a salt mash plant that is present
along most of the successional gradient.

By providing a comprehensive overview of the phylogenetic
diversity of root associated bacterial community along the salt

marsh chronosequence, we showed that bacterial communities
associated with bulk and rhizosphere soil were equally diverse
whereas those associated with the endosphere were significantly
less rich, which has also been reported recently (e.g., Saleem et al.,
2015). Interestingly, phylogenetic diversity in the rhizosphere
microbiome progressively increased, following the plant diversity
patterns along the chronosequence (Schrama et al., 2012), as they
both peak at the same successional stage. This result indicated
the influence of abiotic and biotic variables in regulating
bacterial diversity within rhizosphere. The increasing nutrient
level in the soil and the higher plant richness could enrich the
rhizosphere niches by providing more soil nutrients (De Ridder-
Duine et al., 2005) and root exudates (Compant et al., 2010),
therefore, possibly increasing the rhizosphere-driven selection on
the surrounding soil microbes. Although, these results rejected
our hypothesis that diversity would be constant within the
rhizosphere, in retrospect they provide stronger support for
the effect of plant in selecting the rhizosphere microbiome
and emphasize the intricate interactions between plant and soil
environment.

In opposition to the soil or rhizosphere microbiome,
endophytic bacterial communities are often simple,
encompassing up to hundreds of different bacterial types
(Hardoim et al., 2008). Hence, our data confirms that plants can
function as true “filters” of soil microorganisms, selecting a rare,
phylogenetically less diverse fraction of those that are successful,
competent endophytes (Sessitsch et al., 2002; Compant et al.,
2005; Saleem et al., 2015). This result partially confirmed our
hypothesis that diversity should decrease as the association with
the plant is intensified, although this effect was not observed for
rhizosphere communities. Moreover, the endophytic diversity
was relatively constant across the succession (Figures 1A,B),
confirming our prediction. Due to the intensified association
with plant hosts and less biotic and abiotic stresses in the
internal plant tissues (Hallmann et al., 1997; Rosenblueth and
Martínez-Romero, 2006; Schulz et al., 2006), root inhabiting
endophytes were barely influenced by the increasing nutrient
level along the succession.

We next focused on understanding the root-associated
bacterial community turnover across successional stages, by
assessing of the shifts bacterial β-diversity among bulk soil,
rhizosphere and endosphere. The distinctive community
structure established in each source corroborated our prediction
that the bacterial communities would cluster according to the
degree of connection to the plant (Figure 2). Thus, bacterial
composition is determined by the selection the plant exerts on
rhizosphere and endosphere (Germida et al., 1998; Barriuso et al.,
2005; Hartmann et al., 2009; Gottel et al., 2011). Importantly,
differences between the source of microbiome outweighed
differences in successional stage (proxy for soil characteristics)
and sampling time.

The clustering patterns according to successional stage
was shown for bacterial communities within bulk soil and
rhizosphere when those were analyzed separately (Figures 3A,B),
confirming, for those two communities, our hypothesis that the
distribution of the bacterial patterns would cluster according
to three main successional phases. Specifically, we observed a
unique cluster at the initial successional phase for soil and
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rhizosphere, which could be explained by the combination
effects of the significantly lower nutrient level and higher
flooding frequency (Table S1, Schrama et al., 2012; Dini-
Andreote et al., 2014, 2015). For the other stages along the
chronosequence, apparent clustering was shown for the middle
and late successional phases, reflecting the accretion of nutrients
in the soil, as well as clay and salt accumulation. In addition,
the clustering effect within each phase became stronger over the
succession indicating a lower turnover in community structure
for bulk and rhizosphere soil towards the end of the succession
(Figure 4). These data are consistent with successional dynamics
of macro organisms, where the buffering effects of soil as
well as plants becomes increasingly more dominant following
the development of succession, leading to reduced community
turnover and more stabilized community structure (Walker and
del Moral, 2003; Dini-Andreote et al., 2014). Thus, for bulk and
rhizosphere soil, we could conclude that as the variability of
nutrients as well as immigration (mainly derive from marine
associated microbial input, through flooding regimes) decreases
as the succession precedes, the community structure becomes
more similar. By partitioning the variation in the community
dissimilarities, we found the changes in soil environmental
conditions along the chronosequenceto drive the community
turnover for bulk and rhizosphere soils (Figures 5A,B).

The endophytic bacterial communities, however, showed
much higher dispersion level within each successional phase
(Figure 3C). In addition to this, the increasing variation of
community dissimilarity (Figure 4) contradicted our expectation
that the endophytic bacterial communities would be less variable
than those associated with rhizosphere and bulk soil. Although,
plants did select for different microbiomes, which were less
diverse and differently structured than those from the other
sources (bulk and rhizosphere soil), thus acting as “filters” of the
soil microbes (Sessitsch et al., 2002), this influence was barely
linked to succesional stage nor soil type nor was this influence
stable over time. Therefore, we suggest that except for the initial
plant-selective force exerted on the endophytic community, other
key factors alsomodulate the community structure in the internal
root tissues, such as plant age (Zinniel et al., 2002; Kuklinsky-
Sobral et al., 2004). Although, we looked for plants of similar
sizes when sampling, we cannot reject the possibility that plants
differ in age, which would be especially relevant in the later stages
of succession. Moreover, we could speculate that the peak of L.
vulgare abundance, which takes place at the intermediate stage
of succession, indicates the most appropriate successional stage
for this species. In that case, plants could be experiencing higher
competition for nutrients andmore demanding conditions due to
the increase in salt concentration, consequently influencing the
plant control over their microbiome, especially for endophytes.
Although, we cannot pinpoint the specific factor leading to the
higher turnover in endophytic communities at the end of the
succession, the opposite trend observed for the communities
associated with bulk soil and rhizosphere makes the selection
pressure exerted by plants even more spectacular.

Finally, by delving into the taxonomic composition of root-
associated bacterial assemblages along environmental gradients

of the succession, we could detect a few patterns. For
instance, Chlorofexi, Plantomycetes, and deltaproteobacteria
increased in relative abundance in the rhizosphere of L. vulgare
over the succession, whereas Gammaproteobacteria decreased,
mostly due to a decrease in the genus Pseudomonas. The
communities associated with endophytes were largely enriched
in Proteobacteria, which was the predominant phylum across
all samples. Within this phylum, the significant accumulation
of the genus Marinomonas within the endosphere corroborated
once more that the plant selective force plays a substantial role
in regulating the endophytic bacterial community composition
(Figure S3). The genus Marinomonashas been found among
many differentmarine environments (Sanchez-Amat and Solano,
2005), in association with species associated with marine
ecosystems such as seaweed (Singh et al., 2011) and salt
marsh grass (Andrykovitch and Marx, 1988). The dominance
of this group, which reached more than 70% of relative
abundance of the total families in some of our samples,
indicated their role as competent endophytes. The above studies
on the Marinomonas suggest it could exert beneficial traits
on the plant hosts, therefore leading to its dominance in
endosphere. Contrary to Marinomonas, the genus Pseudomonas
and Cellvibrio, could be considered as opportunistic endophytes
as their relative abundances peaked only at the early stage of
succession.

Overall, this study offers for the first time an overview of
the variation of root-associated bacterial composition along
a salt marsh chronosequence. Importantly, by focusing on
non-domesticated plants in a natural ecosystem, we could show
that the importance of soil in driving bacterial community
composition is dependent on the plant compartments,
being influential only in the rhizosphere but not on the
endosphere. The distinctive dominant bacterial composition
within endosphere validates the existence of the plant selective
force on the root-associated microbes, resulting in the distinctive
taxonomy composition and diversity in the rhizosphere and the
internal root tissues.
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