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Plants are exposed to a wide range of abiotic stresses (AS), which often occur
in combination. Because physiological investigations typically focus on one stress,
our understanding of unspecific stress responses remains limited. The plant redox
homeostasis, i.e., the production and removal of reactive oxygen species (ROS), may
be involved in many environmental stress conditions. Therefore, this study intended to
identify genes, which are activated in diverse AS, focusing on ROS-related pathways.
We conducted a meta-analysis (MA) of microarray experiments, focusing on rice.
Transcriptome data were mined from public databases and fellow researchers, which
represented 36 different experiments and investigated diverse AS, including ozone
stress, drought, heat, cold, salinity, and mineral deficiencies/toxicities. To overcome the
inherent artifacts of different MA methods, data were processed using Fisher, rOP, REM,
and product of rank (GeneSelector), and genes identified by most approaches were
considered as shared differentially expressed genes (DEGs). Two MA strategies were
adopted: first, datasets were separated into shoot, root, and seedling experiments, and
these tissues were analyzed separately to identify shared DEGs. Second, shoot and
seedling experiments were classed into oxidative stress (OS), i.e., ozone and hydrogen
peroxide treatments directly producing ROS in plant tissue, and other AS, in which ROS
production is indirect. In all tissues and stress conditions, genes a priori considered
as ROS-related were overrepresented among the DEGs, as they represented 4%
of all expressed genes but 7–10% of the DEGs. The combined MA approach was
substantially more conservative than individual MA methods and identified 1001 shared
DEGs in shoots, 837 shared DEGs in root, and 1172 shared DEGs in seedlings. Within
the OS and AS groups, 990 and 1727 shared DEGs were identified, respectively. In
total, 311 genes were shared between OS and AS, including many regulatory genes.
Combined co-expression analysis identified among those a cluster of 42 genes, many
involved in the photosynthetic apparatus and responsive to drought, iron deficiency,
arsenic toxicity, and ozone. Our data demonstrate the importance of redox homeostasis
in plant stress responses and the power of MA to identify candidate genes underlying
unspecific signaling pathways.
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INTRODUCTION

While most animals can move and escape from harmful
conditions, plants cannot. Drought, flood, salinity, extremes
of temperature, nutrient deficiency, UV radiation, pollutants,
herbicides, and pathogens are some of the factors a plant needs
to cope with to survive and grow, usually with more than one at
time. These factors limit crop yields and quality (Gill and Tuteja,
2010; Miller et al., 2010; Wang and Frei, 2011). Understanding,
how a plant responds to such stresses and the mechanisms
underlying stress tolerance can give us a better view of how
to improve the global food production. Investigating the stress
responses of rice (Oryza sativa L.) is particularly rewarding,
because it is both a global staple food of great agronomical
importance, and a well-studied model organism, for which many
transcriptome profiling studies have been published. About 32%
of the rice annual production fluctuations (corresponding to
around three million tons) can be attributed abiotic stresses (AS),
and specifically variations in climate including precipitation and
temperature (Ray et al., 2015).

A common responses to different environmental stresses,
both abiotic and biotic, is the excessive generation of reactive
oxygen species (ROS) including superoxide (O·−

2 ), perhydroxy
radical (HO·−

2 ), hydrogen peroxide (H2O2), hydroxyl radical
(OH·), singlet oxygen (1O2), and organic hydroperoxide
(ROOH; Gill and Tuteja, 2010; Bhattacharjee, 2012). Plant
cells continuously produce ROS as by-products of various
metabolic processes including respiration and photosynthesis.
However, these molecules can directly react with DNA,
proteins and lipids causing severe damage to individual
cells and whole organisms. For this reason, every aerobic
organism tightly controls its ROS concentration by ROS-
scavenging pathways composed of many enzymatic and
non-enzymatic antioxidant components (Gill and Tuteja,
2010).

However, many studies have shown that ROS play important
roles in plants’ stress signaling processes (Fujita et al., 2006; Miller
et al., 2010; Mittler et al., 2011; Kim et al., 2012; Pucciariello
et al., 2012). There are many advantages in the use of ROS as
signaling molecules. The cell can rapidly produce and scavenge
different forms of ROS in a simultaneous manner, enabling
rapid and dynamic changes in ROS levels (caused by simply
tilting the balance between cellular production and scavenging
rates; Bhattacharjee, 2012). Each form of ROS has its own
characteristics, such as mobility, process and location of origin
and its reactivity with DNA, proteins or lipids (Bhattacharjee,
2012). Another advantage is the tight control over the subcellular
localization of ROS signals in cells, with the regulation of enzymes
specific of each of the cell compartments (Mittler et al., 2011).
ROS may even act as “secondary messengers” modulating the
activities of specific proteins or expression of genes by changing
the redox balance of the cell. The network of redox signals
orchestrates the metabolism for regulating energy production to
utilization, interfering with primary signaling agents (hormones)
to respond to changing environmental conditions at every stage
of plant development (Bhattacharjee, 2012). Oxidative signaling
is now considered to be a key in the responses to stress,

involved not only in the defense to these stresses but also in the
regulation of the plant growth and development (Noctor et al.,
2014).

One limitation in the understanding of ROS homeostasis in
AS is that most of the knowledge on molecular mechanisms of
stress response was obtained from experiments under controlled
laboratory conditions and focused on only one stress at a time.
However, plants are often simultaneously exposed to many biotic
and AS in their natural or agronomic habitats (Hazen et al., 2003;
Rasmussen et al., 2013). By combining the data from different
experiments it is possible to identify common and specific
elements expressed in response to different stresses (Rabbani
et al., 2003; Fujita et al., 2006; Yang et al., 2013).

With the rapid advances in biological high-throughput
technology, a large and diverse set of genomic data has become
publicly accessible. Combining information from multiple
existing studies can increase the reliability and generalizability of
results. The use of statistical techniques to combine results from
independent but related studies is called “meta-analysis (MA).”
Through MA, we can increase the statistical power to obtain a
more precise estimate of gene expression differentials (Ramasamy
et al., 2008; Tseng et al., 2012). The most common types of
Microarray MA are a combination of p-values, a combination of
effect sizes (fold change) or a combination of ranks, each method
with its limitations and advantages (Tseng et al., 2012).

In the present study, instead of choosing one of those, we used
an integrative approach to combine the forces of those different
microarray MA methods and overcome possible biases, such
as a “fishing for significance” effect for preferring one method
over the others (Ioannidis, 2005; Ostlund and Sonnhammer,
2014). However, within these three categories of MA, there
are many statistical methods to choose from, we selected them
based on their evaluation in recent studies (Tseng et al., 2012;
Chang et al., 2013; Ostlund and Sonnhammer, 2014). Among
the methods of combination of p-values, we chose two distinct
methods: Fisher’s (Rhodes et al., 2002), the most commonly
implemented MA method, and rOP (rth ordered p-value) that
is more restrictive but still flexible (Song and Tseng, 2014).
Between the combined effect size methods, the random effect
model, REM is the most adequate for a heterogeneous group
of samples, as the one processed in the present study (Choi
et al., 2003). Furthermore, the MA by ranks was computed by
the program GeneSelector that produces a rank combining seven
distinct statistic methods (Boulesteix and Slawski, 2009; Ostlund
and Sonnhammer, 2014). Only genes elected by the majority of
methods (at least three of those four) were further processed in
our analyses. Although this strategy may be rather restrictive,
it increases the power of our analysis, since each differentially
expressed gene (DEG) was confirmed by at least three different
statistic methods.

The goal of this MA was to detect DEGs involved in ROS
homeostasis, which respond to AS treatments. The transcriptome
data from rice plants subjected to different classes of AS were
analyzed: drought, submergence, salinity, cold, heat, excess
and/or deficiency of essential nutrients, such as phosphorus (P),
zinc (Zn), and iron (Fe), and toxicity of heavy metals such as
arsenic (As), cadmium (Cd), chrome (Cr), and lead (Pb). Also,
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to identify genes specifically involved in the redox homeostasis,
data from experiments with ozone (O3) and hydrogen peroxide
were included (Table 1), because these treatments are presumed
to produce direct oxidative stimulus, unlike with the indirect
forms of oxidative stress (OS) occurring in other environmental
conditions.

More specifically, the following questions were addressed in
this study:

(1) How does a MA integrating several of the MA approaches
described above compare to individual MA approaches, and
are the results more conservative?

(2) To what extent do stress responses differ between different
stresses and plant tissues, and what is the role of ROS-related
genes?

(3) Through MA, can we nominate possible key genes as major
hubs of ROS-related stress signaling, and what are their
putative functions?

MATERIALS AND METHODS

Data Mining
For this study, expression data of rice plants exposed to
diverse AS were combined. The raw expression data of different
experiments were obtained from the Rice Oligonucleotide Array
Database1 (Cao et al., 2012), the NCBI’s Gene Expression

1http://www.ricearray.org/

TABLE 1 | Experimental conditions of microarray raw data used for meta-analysis.

Experiments Source

Shoots Roots Seedlings GEO series Reference Platform

O3 GSE11157 Cho et al., 2008 GPL892

O3 NA Frei et al., 2010a GPL892

Submergence GSE18930 Mustroph et al., 2010 GPL2025

Drought GSE21651 Pandit et al., 2011 GPL2025

Salinity GSE21651 Pandit et al., 2011 GPL2025

–N GSE66935 Takehisa et al., 2015 GPL6864

–K GSE66935 Takehisa et al., 2015 GPL6864

–P GSE66935 Takehisa et al., 2015 GPL6864

–P GSE17245 Zheng et al., 2009 GPL2025

–Fe GSE17245 Zheng et al., 2009 GPL2025

–Fe –P GSE17245 Zheng et al., 2009 GPL2025

–P –P GSE6187 Pariasca-Tanaka et al., 2009 GPL892

+Fe +Fe NA Wu et al., unpublished data GPL19782

–Zn –Zn NA Wu et al., unpublished data GPL19782

–Zn +Fe –Zn +Fe NA Wu et al., unpublished data GPL19782

Drought Drought GSE26280 Wang et al., 2011 GPL2025

+As GSE25206 Dubey et al., 2010 GPL2025

+Cd GSE25206 Dubey et al., 2010 GPL2025

+Cr GSE25206 Dubey et al., 2010 GPL2025

+Pb GSE25206 Dubey et al., 2010 GPL2025

–K GSE37161 Ma et al., 2012 GPL2025

Salinity GSE14403 Cotsaftis et al., 2011 GPL2025

H2O2 GSE19983 Mittal et al., 2012a GPL9956

Cold GSE19983 Mittal et al., 2012a GPL9956

Heat GSE19983 Mittal et al., 2012a GPL9956

H2O2 GSE32704 Mittal et al., 2012b GPL8852

H2O2 + cold GSE32704 Mittal et al., 2012b GPL8852

H2O2 + heat GSE32704 Mittal et al., 2012b GPL8852

heat GSE14275 Hu et al., 2009 GPL2025

Cold GSE6901 Jain et al., 2007 GPL2025

Drought GSE6901 Jain et al., 2007 GPL2025

Salinity GSE6901 Jain et al., 2007 GPL2025

Salinity GSE16108 Pandit et al., 2011 GPL2025

+As GSE4471 Norton et al., 2014 GPL2025

–K GSE44250 Shankar et al., 2013 GPL2025

–Pi GSE35984 Dai et al., 2012 GPL2025
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Omnibus repository2 (Barrett et al., 2013), and from fellow
researches. The criteria for inclusion of those dataset were:
relatively similar genetic background, plants must be from
O. sativa indica or japonica subgroups; the RNA should have
been extracted only from shoots, roots, or seedlings (whole
plant), excluding other tissues such as flowers, seeds, or cali; the
experiments must involve only against AS treatments; the data
must originate from Affymetrix or Agilent microarray platforms,
and the original study must follow the “Minimal Information
About a Microarray Experiment” (MIAME) requirements
(Brazma et al., 2001).

Individual Datasets Analysis
Microarray expression data from each source study was pre-
processed separately as individual datasets. Agilent microarray
data were processed in the R program using the packages LIMMA
(Smyth, 2005), while the package Affy was used for data from
the Affymetrix platforms. The raw data from both were treated
using Robust Multi-array Average (RMA) background correction
and quantile normalization. Non-informative and low-intensity
probes were declared following the program standard settings,
while duplicated probes were converted into their corresponding
genomic locus. The ArrayQualityMetrics package (Kauffmann
and Huber, 2013) was used to assess the quality of the
normalized datasets. A sample was included or excluded in
further analysis based on three different evaluations made by this
program: distance between array, array intensity distributions,
and individual array quality. The values normalized by RMAwere
used for the subsequent MA.

A contrast between each treatment and its control was
estimated with the LIMMA package. In studies including
several genotypes the genotype factor was not considered.
After fitting the data into a linear model, the standard
errors were corrected using a simple empirical Bayes model.
Moderated t-statistic and log-odds of differential expression
were computed for each contrast for each gene. Genes that
showed significant P-value (FDR = 5%) were considered as
DEG and log2-fold-change values of each experiment/dataset
were saved for further analysis. Relative gene expression values
corresponding to the same stress in different datasets were
averaged for a simplified evaluation of the gene’s response to each
condition.

Combined Meta-Analysis
Two different strategies were implemented in the present
study. The first (MA.1) investigated the effect of the stresses
in different tissues, for which the datasets were separated
into shoots, roots and seedling microarrays and processed
separately. In the second approach (MA.2), data from shoots
and seedlings were combined, while the data set was separated
into direct OS and others AS to compare the effects of direct
and indirect OS on gene expression. Hydrogen peroxide and
ozone stress were considered as OS, because these treatments
directly lead to the production of ROS in plant tissue (Uchida
et al., 2002; Kangasjärvi et al., 2005). For both approaches,

2http://www.ncbi.nlm.nih.gov/geo/

the normalized expression values were used. Since the probe
nomenclature differs between platforms, the MSU-ID was used,
and when multiple probes matched to the same gene they were
averaged.

The datasets were merged using the packages metaDE (Wang
et al., 2012), and this merged dataset was once more filtered,
excluding 20% of un-expressed genes (with small expression
intensities) and 20% of non-informative genes (genes with small
variation). Each independent study sample was processed with a
modified two-sample t-statistics (modt) contrasting treated and
control samples.

In an effort to overcome the inherent artifacts of each MA
statistical method, we ran our data through the three common
types of MA (i.e., by p-value, by effect size and by rank) to
identify genes that are considered differentially expressed by
distinct methods. Two methods of combination by p-value were
used: Fisher and rOP. The classical Fisher’s method sums the
log-transformed p-values obtained from individual studies and,
under null hypothesis, follows a chi-squared distribution with 2K
degrees of freedom, where K is the number of studies combined
(Rhodes et al., 2002). However an extremely small p-value in
only one study can be sufficient to cause statistical significance,
even if the same gene are not significant in any other study.
A more restrictive but flexible method is rOP, that combines
Fisher with a generalized vote counting statistic. It uses the rth
order statistic among sorted p-values of K combined studies,
where r is a pre-determined minimum number of studies, in
which a gene’s p-values must be small to be significant (Song and
Tseng, 2014). In our analysis we implemented K/2 ≤ r ≤ K, i.e.,
each gene must be differentially expressed in at least half of the
combined studies to be significant. Taking into consideration the
heterogeneity of our cluster of studies and the residual “noise”
data derived from technical and biological differences between
the studies, a more restrictive approach was not implemented
(i.e., r = K).

A second way to combine expression data across different
microarray studies and platforms is using effect size values. The
REM method was implemented because it possesses a random
effect element corresponding to the unknown heterogeneities
between very distinct studies, such element is not present in the
alternative method, the fixed effect model, FEM (Choi et al.,
2003). The results of each of these analyses were corrected with
the Benjamini andHochberg procedure with a false discovery rate
(FDR) of 5% as threshold.

For a MA based on the rank method, the normalized values
were processed using GeneSelector (Boulesteix and Slawski,
2009). This package allows a ranking analysis of the data with
seven distinct methods: ordinary t-test; Baldi and Long Bayesian
t-test (Baldi and Long, 2001); Winconxon–Mann–Whitney U
test; Fox and Dimmic Bayesian t-test (Fox and Dimmic, 2006);
SAM statistics (Tusher et al., 2001); limma: moderated t-statistic
based on a Bayesian hierarchical model which is estimated by
an empirical Bayes approach (Smyth et al., 2003), and simple
fold-change estimation (in log2). The obtained gene rankings
were then aggregated by the mean value of the rank positions
given by each method (AggMean), or aggregated on the basis
of a Markov Chain model, AggMC (DeConde et al., 2006).
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A combined rank was produced by combining the top genes
obtained by each of the seven ranking methods, together with
the AggMean and AggMC lists. Genes of this combined list
were compared with DEGs obtained by Fisher, rOP, and REM
methods.

The DEGs shared by at least three of these four methods were
further studied.

Gene Analysis
The genes elected by the combined meta-analyses MA.1 and
MA.2, were further analyzed and characterized. First, the
result lists were combined and compared with a list of genes
described in the literature as involved in ROS scavenging
and signaling processes. This list was curated based on recent
studies (Frei et al., 2010a; Liu et al., 2010; Kim et al., 2012;
Shaik et al., 2014). This list includes genes involved in the
biosynthesis and recycling of enzymatic [such as superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX),
glutathione peroxidase (GPX), and glutathione reductase (GR))
and non-enzymatic antioxidants (such as ascorbic acid (AsA),
reduced glutathione (GSH) and thioredoxin (Trx)], and also
transcription factors such as zinc-fingers, MYB (myeloblastosis)
and WRKY (that contains the WRKYGQK amino acid
conserved sequence) families and other elements described as
directly or indirectly in involved in signaling and response
to OS. Co-occurrence of DEG with the resulting list was
represented with Venn’s diagrams using Venny 2.0 (Oliveiros,
2015).

Gene Ontology (GO) Enrichment analysis of the DEGs
obtained by MA.1 and MA.2 was conducted using the AgriGO
platform (Du et al., 2010). A Singular Enrichment Analysis was
performed using the Rice Gramene Locus set as reference (Jaiswal
et al., 2002).

Genes differentially expressed in both OS and AS (MA.2
approach) were studied in depth. The STRING (Search Tool for
the Retrieval of Inter-acting Genes/Proteins) database was used to
detect functional association between those genes. This database
constructs associations based on distinct lines of evidences:
Experimental evidence from protein–protein interaction assays;
co-expression data based on the expression data stored in
the NCBI GEO database; co-occurrence of the genes in the
same organisms; available information of other databases;
recurring neighborhood of the genes in known genomes;
events of fusion between those genes or orthologs; pathway
annotation data in other databases such as Gene Ontology
or Kyoto Encyclopedia of Genes and Genomes (KEGG), and
automated text-mining based on Medline abstracts and a large
collection of full-text articles (Szklarczyk et al., 2015). STRING
computes a confidence score for those interactions based on the
available evidences, from medium (score above 0.4) to highest
(above 0.9).

Using the expression values obtained in the individual dataset
analysis (a log2 fold change difference between control and
treated expression values of each gene), an average value of the
most relevant conditions was obtained and represented in a
heatmap. The heatmap was made using the package gplots in R
(Warnes et al., 2015).

RESULTS

The Percentage of ROS Related DEGs is
Constant in the Response to Different
Stresses
After search in the available databases and quality control
analysis, raw microarray data from 36 independent experiments
were selected. To obtain a global analysis, AS from different
categories were chosen: drought, submergence, salinity,
cold, heat, excess and/or deficiency of essential nutrients as
Phosphorus (P), zinc (Zn), and iron (Fe), heavy metal toxicity
(As, Cd, Cr, and Pb), and direct OS (O3 and H2O2; Table 1).

Some source data originated from experiments that tested
different stressors (Jain et al., 2007; Zheng et al., 2009; Dubey
et al., 2010; Mittal et al., 2012a,b); several time points after the
exposure to the stressor (Cho et al., 2008; Mustroph et al., 2010;
Dai et al., 2012; Ma et al., 2012; Mittal et al., 2012a); several
concentrations of a stressor (Takehisa et al., 2015), and/or several
genotypes, usually using contrasting lines (Pariasca-Tanaka et al.,
2009; Frei et al., 2010a; Cotsaftis et al., 2011; Pandit et al.,
2011; Norton et al., 2014; Supplementary Table S1). In these
cases, every possible contrast of stress condition versus control
was treated as a separate experiment. In total, plants from 21
different genotypes of domestic rice were used, 13 from the
indica and eight from the japonica subspecies (Supplementary
Table S1).

In parallel, a list of 1972 genes previously described as
involved in ROS scavenging and signaling processes was made
by combining information from the literature (Frei et al., 2010a;
Liu et al., 2010; Kim et al., 2012; Shaik et al., 2014). These
genes correspond to about 4% of the rice genes represented by
the microarray probes included in this analysis (Supplementary
Table S2) and represent a broad spectrum of functions,
ranging from reductase and peroxidase enzymes to transcription
factors.

In the different treatments and tissues, 7–10% of the DEGs
were included in the list of ROS-related genes, indicating that this
category of genes was overrepresented (Table 2). The proportion
of DEG considered as ROS-related was similar in OS and AS
experiments (Table 3).

MA.1: DEGs in Response to Diverse
Abiotic Stresses Differ Between Tissues
The microarray expression data was processed by two different
MA approaches. In the first, MA.1, our objective was to identify
DEGs in response to many AS in shoot, root, and seedling
samples separately. Using combined MA methods, 1001 DEGs
were identified in response to different stresses in shoots, 837
in roots and 1172 in seedlings, although only 14 were identified
in all three tissues (Figure 1B, Table 3). From the 2691 genes
elected by MA.1, 236 (9%) were included in the ROS-related list,
including the coding genes of 42 zinc-finger signaling proteins,
18 MYB transcript factors, nine glutathione S-transferases, a
Cu-Zn SOD, a copper chaperone for SOD, 19 peroxidase
precursors, APX2, GPX2, and GPX3 (Figure 1B, Supplementary
Table S5).
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TABLE 2 | Differentially expressed genes (DEGs) in response to different abiotic stresses and the proportion of those involved in ROS scavenging or
signaling mechanisms (ROS).

Shoots Roots Seedlings

DEG ROS DEG ROS DEG ROS

Drought 17682 7% Drought 11410 7% Drought 9756 7%

Salinity 7268 8% Salinity 3625 8% Salinity 11242 7%

–P 18116 8% –P 482 10% –P 15704 7%

–Fe 13548 8% +Fe 7938 7% Cold 11347 8%

–Zn +Fe 13679 7% –K 4243 7% Heat 14692 8%

O3 11979 8% +Cd 1011 10% –K 6275 7%

Submergence 14001 7% +As 8581 7% H2O2 15198 7%

+Pb 285 11% +As 7599 8%

TOTAL 23197 7% TOTAL 21273 7% TOTAL 21533 7%

Total number of DEGs detected in at least one dataset in each sample cluster: shoots, roots, and seedlings (FDR = 5%).

MA.2: DEGs Detected in Both Oxidative
and Others Abiotic Stresses
In a second approach, expression data from seedling and
shoot experiments were classed into two groups: OS (direct
OS, i.e., O3 and H2O2) and AS (all the other AS). It was
found that 679 DEGs were exclusive to OS and 1416 DEGs
were exclusive to AS (Table 3, Figure 1C). In total 1212
genes were detected by both MA.2 and MA.1, of which
197 coincided with OS, 760 with AS, and 255 with both
(Figure 1C). On the other hand, 50 ROS-related genes were
only detected by the OS analysis, including APX7 and nine

WRKY proteins, and 47 by the AS analysis (Supplementary
Table S5).

We then focused on the 311 DEGs shared by both OS and
AS. Among those, 33 were ROS-related genes, while others
belonged to many distinct gene families associated with the
response to stress and plant growth, such as Zn fingers, WRKY,
and TIFY transcript factors, cytochromes, photosystem subunits,
heat shock proteins, HIPPs (Heavy Metal Isoprenylated Plant
Proteins), kinases and phosphatases (Supplementary Table S5).

A network analysis using the platform STRING 10.0 detected
a cluster between 214 of those genes (Figure 2A). By increasing

TABLE 3 | Detected number of genes differentially expressed in response to abiotic stresses.

Meta-analysis MA.1 MA.2

Shoots Roots Seedlings OS AS

(A) Samples

Number of studies 9 6 8 4 17

Experiments 32 22 23 10 67

Samples 123 104 87 42 167

DEGs 6336 6657 7988 7370 6966

(B) Number of differentially regulated genes in each MA approach

Fisher 5770 (91%) 3335 (50%) 6860 (86%) 2972 (40%) 6807 (98%)

rOP 5313 (84%) 3582 (54%) 6610 (83%) 2515 (34%) 6668 (95%)

REM 1058 (17%) 1317 (20%) 1199 (15%) 1320 (18%) 1707 (25%)

GeneSelector 100 (2%) 100 (2%) 100 (1%) 100 (1%) 100 (1%)

Shared DEG 1001 (16%) 837 (13%) 1172 (15%) 990 (13%) 1727 (25%)

(C) ROS related genes differentially expressed in each MA approach

Total DEGs 468 (7%) 540 (8%) 502 (6%) 548 (7%) 466 (7%)

Fisher 431 (7%) 339 (10%) 500 (7%) 271 (9%) 466 (7%)

rOP 398 (7%) 349 (10%) 499 (8%) 243 (10%) 465 (7%)

REM 79 (7%) 100 (8%) 119 (10%) 129 (10%) 142 (8%)

GeneSelector 7 (7%) 9 (9%) 4 (4%) 11 (11%) 12 (12%)

Shared DEG 72 (7%) 73 (9%) 116 (10%) 97 (10%) 148 (9%)

(A) Number of individual studies, experiments in which the contrast between treatment and control was evaluated, biological samples (microarrays) and number of
differentially expressed genes (DEGs) in at least one dataset. (B) DEGs obtained in each MA statistical approach (FDR = 5%), and the proportion in relation to the total
number of DEGs in parenthesis. Shared DEGs are genes elected by the majority of methods. (C) Number and proportion of the ROS-related genes in the DEGs obtained
by each approach (B). More details in Supplementary Tables S1–S4.
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FIGURE 1 | Venn Diagrams showing co-occurrence of differentially
expressed genes (DEGs) in response to many abiotic stresses in:
(A) Shoots samples processed by four different meta-analytical (MA)
statistical methods: Fisher, rOP, REM, and GeneSelector. (B) MA.1
combined analysis of shoots, seedlings, and roots samples, compared with
an a priori ROS-related gene list. (C) Oxidative stress (MA.2 OS) and other
abiotic stresses (MA.2 AS), compared with MA.1 and ROS-related genes.

the stringency of this analysis (confidence score > 0.9),
it was possible to isolate a cluster of 47 protein-coding
genes (Figure 2B). Most hub genes of this network code
proteins involved in the photosynthetic apparatus, e.g., ATP
synthase (LOC_Os02g51470), oxygen evolving enhancer protein
3 (LOC_Os07g36080), photosystem I reaction center subunit
III (LOC_Os03g56670), photosystem II core complex proteins
psbY (LOC_Os08g02630), photosystem II reaction center W
protein (LOC_Os05g43310) and many others chloroplastic
protein (Supplementary Table S5). Many of these genes showed a
similar expression pattern in the samples analyzed in this study
(Supplementary Table S7). They were more highly expressed
in response to iron deficiency and drought in roots, while
suppressed in the samples of submitted to As toxic level, ozone,
and submergence (Figure 3).

Shared DEGs are Involved Many
Metabolic, Response to Stimuli, and
Regulatory Processes
Gene Ontology enrichment analysis was conducted to
explore other possible functions of the DEGs detected in
the different MA approaches (Supplementary Table S6).
The most frequent and significant GO terms associated
with DEGs in MA.1, MA.2, AS, and OS are represented
in Figure 4. The biological processes terms suggest
constitutive roles for those genes, as part of metabolic
and biosynthetic processes, but also in the regulation of
those processes on different levels (transcription, post-
translational protein modification, macromolecule biosynthesis,
phosphorylation, signal transduction, transport, and proteolysis).
The enrichment of terms such as nucleic acid binding,
transcription regulator, kinase activity, transmembrane
transporter, and phosphatase activity indicates that many
of those shared genes are also involved in signaling processes
(Figure 4).

DISCUSSION

Advantages of a Combined MA Approach
With the objective of identifying genes involved in the plant
response to different AS and direct or indirect OS, the expression
data of rice plants exposed to many stress conditions were
combined. Instead of using one specific MA approach, we
combined the results of differentMA statistical methods to obtain
the most relevant genes. The stringency of this methodology
may exclude many important genes, but also excludes many false
positives that could be obtained as artifacts of each statistical
method (Tseng et al., 2012; Chang et al., 2013).

While methods such as Fisher’s identify a great number
of genes, many of those were not identified as differentially
expressed by size effect or ranking product methods (e.g.,
Figure 1A). Only a small fraction of the genes differentially
expressed was shared between the independent methods. For
example, while with the Fisher’s MA method the number of
DEGs was between 40 and 98% of the number of DEGs detected
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FIGURE 2 | Network analysis of the DEGs identified both in oxidative (OS) and abiotic stress (AS) analyses of MA.2 approach. (A) Networks formed by
STRING 10.0 database shows all connections of those genes with a confidence score > 0.4. (B) Even with a more conservative analysis (confidence score > 0.9),
47 of those genes formed a cluster (genes listed in Figure 3 and Supplementary Table S5). The connection colors represent the types of evidence for inferring
association: recurring Neighborhood in different genomes (green line), events of Gene Fusion (red), Co-occurrence of those genes in the same organisms (dark blue),
co-expression (black), Experimental protein–protein interaction data (pink), pathway described by other databases (light blue), literature text-mining (yellow), and
homology (purple lines). Source: STRING 10.0 (Szklarczyk et al., 2015).

in at least one experiment, our shared DEGs approach reached
13–25% (Table 3B).

MA.1: The Response to Stresses Varies
Between Tissues
In our first MA approach, microarray data were separated into
shoots, roots, and seedlings, and although those groups were
composed of samples of similar size (Tables 1 and 2), they showed
greatly distinct numbers of DEGs in response to stresses, and only
14 of those were shared between the three groups (Figure 2B).
This is in agreement with the concept that the transcriptome and
how it responds to a stress differs between tissues or organs of the
same organism (Hazen et al., 2003).

ROS-Related DEGs are Overrepresented
Among the DEGs Detected by MA.1 and
MA.2
Although the DEGs in response to different stresses varied
greatly, the proportion of those that were a priori considered
as ROS-related was rather constant (Table 2). And while these
ROS-related genes correspond to only 4% of the rice expressed
genes, this category accounted for up to 10% the shared

DEGs, highlighting the importance of ROS scavenging and
signaling to the response to stress (Table 3C). Interestingly,
the proportion was similar in OS and AS experiments. ROS
imbalance or oxidative bursts that characterize OS are often
indirect consequences of another environmental stresses (Guo
et al., 2006). In the MA.2 approach, direct OS were separated
and compared with other AS, such as salinity, drought, P
deficiency, or Fe toxicity (AS). Ozone and hydrogen peroxide
were used to generate the OS in the OS experiments. While
hydrogen peroxide is a normal product of the plant metabolism,
tropospheric ozone mostly originates from anthropogenic gas
emissions (Baier et al., 2005; Wang and Frei, 2011). Most
of the damage caused by this air pollutant is caused by its
immediate degradation into ROS in the apoplastic space of
plant cells, including hydrogen peroxide. Directly and indirectly
O3 induces a cascade of active ROS production and signaling
(Vaultier and Jolivet, 2015). Both OS treatments thus induce
direct OS, though from opposite starting sites. While the O3
treatment involved fumigating of leaves (Frei et al., 2010a; Cho
et al., 2013), the H2O2 treatment was performed by growing
seedlings in a solution containing 10 mM H2O2, starting
the oxidative reactions from the plant roots (Mittal et al.,
2012a,b).
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FIGURE 3 | Relative expression of the genes shown in Figure 2B in response to different treatments and in different tissues (R, Roots; S, Shoots; and
P, Seedlings) followed by each gene’s MSU locus, STRING node id and description. Each gene is represented in Figure 2B as a node identified by a
STRING node number or the locus name (loc). Color scale shows relative expression of each gene in relation to all tested treatments.

Despite the theoretical differences between OS and AS
experiments, the percentage of DEGs considered to be ROS-
related was similar (Tables 2 and 3). This data enforces the
concept that most AS generate OS or ROS signaling to some
degree and highlights the importance of ROS homeostasis in
AS response. Diverse studies claimed associations of OS with
the stresses included in this MA: drought (Noctor et al., 2014);
salinity (Miller et al., 2010; Chawla et al., 2012); temperature
extremes (Guo et al., 2006; Mittal et al., 2012a); zinc deficiency

(Frei et al., 2010b; Höller et al., 2014); phosphorous deficiency
(Hernandez and Munne-Bosch, 2015); potassium deficiency
(Cakmak, 2005; Ma et al., 2012), and iron deficiency (Zheng
et al., 2009); iron toxicity (Matthus et al., 2015); cadmium
toxicity (Uraguchi et al., 2011; Ogo et al., 2014); arsenic toxicity
(Azizur Rahman et al., 2007); and lead toxicity (Li et al., 2012).
In agreement with these studies, our results suggest that ROS
homeostasis plays a similarly important role in all of these
stresses.
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FIGURE 4 | Gene Ontology (GO) – Frequency of the most representative Biological Process terms. In blue DEGs obtained by the first meta-analysis
approach (MA.1), in red by oxidative stress (MA.2 OS) and in green by abiotic stress (MA.2 AS) of the second approach. The frequency of these terms in the
reference background (BG), the Rice Gramene Locus set is shown in black. GO analysis made in the AgriGO platform (FDR = 5%).

Putative Functions of
Multi-Stress-Responsive Genes
Detected by Combined MA Approaches
Differentially expressed genes detected by both approaches
(i.e., MA.1 and MA.2) shared many GO terms, and even
if the individual DEGs detected by each approach diverged

(Figures 1 and 4), their functions were rather conserved. The
DEGs identified by MA.1 and MA.2 were mostly related to
metabolic and cellular processes, but also involved in the response
to stimuli, regulation, transcription, and transport processes.
Many of those genes can be associated with signaling pathways
possessing functions such as catalytic, transferase, hydrolase,
transport activity, DNA binding, and transcript regulator activity
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(Figure 3). Interestingly, the terms signal transduction process,
metal ion binding activity, transcription factor activity and
pyrophosphatase activity were found only among OS DEGs
(Figure 4).

As the GO enrichment analysis demonstrated, the DEGs
elected by these MA approaches represented different classes
of proteins and are involved in many distinct processes.
In MA.2, 311 genes were identified in both OS and AS.
Between those genes, a great number of distinct transporters
were present, such as the calcium transporter ATPases
LOC_Os12g39660 and LOC_Os05g02940, the citrate transporter
protein LOC_Os02g57620, the inorganic phosphate transporter
LOC_Os02g38020, the sulfate transporter LOC_Os03g09930,
the amino acid transporter LOC_Os06g36180, the aquaporin
LOC_Os02g41860, and others (Supplementary Table S5). Among
those were also four HIPPs, proteins that can act as cytoplasmic
transporters of metallic ions and co-factor in the transcription of
many stress related genes (de Abreu-Neto et al., 2013).

Using the network tool STRING 10.0, we identified a cluster
of 36 DEGs that are mostly involved in the photosynthetic
apparatus and its regulation (Figure 2). Photosynthesis is a
main source of ROS in plants, which can be enhanced by
AS, leading to oxidative damage if not controlled (Foyer and
Shigeoka, 2011; Voss et al., 2013). Interestingly, only one of
those DEGs is directly involved in the ROS scavenging pathway.
The cytosolic monodehydroascorbate reductase 2 (MDAR2),
coded by LOC_Os08g44340, is an enzyme that regenerates
ascorbate back from its oxidized form (monodehydroascorbate;
Noctor et al., 2014). Most genes identified by this “interactomic
approach” did not belong to this group of well-studied
antioxidants and antioxidant enzymes, e.g., AsA, GSH, Trx,
CAT, APX, and GPX (Foyer and Shigeoka, 2011; Maruta et al.,
2012). Instead, the elected genes were directly involved in the
photosynthetic apparatus or regulatory elements, such as WRKY,
MYB, and TYFF transcription factors (Supplementary Table S5).
More than half of these genes showed a similar expression
pattern, being highly expressed in response to iron deficiency
and drought in roots, while suppressed in As toxicity, ozone,
and submergence (Figure 3). Curiously, they were induced
in roots and shoots under drought stress, but repressed in
seedlings in the same treatments. This apparent contradiction
could reflect differences in the age of the samples or the
methods used to simulate the stress. In the experiments where
roots and shoots were collected, the hydroponic solution in
which the plants grew were slowly drained (Wang et al.,
2011), while the whole seedlings were dried in tissue paper
(Jain et al., 2007). MDAR2 did not represents the same
expression pattern as this group of photosynthesis-related
genes (Figure 3) and was positioned as a terminal node of
the predicted cluster, connected only with LOC_Os06g0539,
that codes a plastid gene of unknown function (Figure 2B).
Although we cannot be certain about the involvement of
MDAR2 with the others DEGs of this cluster, many studies
have shown the importance of MDAR enzymes to the response
and tolerance to AS (Sultana et al., 2012; El Airaj et al.,
2013).

Among the DEGs shared between OS and AS, which did not
fall into that cluster, other genes possessing hub roles (connecting
distinct signaling and metabolic pathways) were also identified,
for example OsSRO1c (Similar to Radical-Induced Cell Death-
One 1c, LOC_Os03g12820). Radical-induced Cell Death1
(AtRCD1) received its name due to the ozone hypersensitive
phenotype observed in plant knock-outs to this gene (Ahlfors
et al., 2004; Miao et al., 2006). AtRCD1 activity is modulated
through oxidation by a GPX (AtGPX3; Ahlfors et al., 2004; Miao
et al., 2006). Recent studies have demonstrated that GPX proteins
play important roles as redox sensors and connect ROS signaling
with hormonal signaling pathways (Fourquet et al., 2008; Passaia
et al., 2013; Passaia and Margis-pinheiro, 2015). One way this
connection occurs is by SRO proteins (SRO), that were shown to
interact with many different transcription factors (e.g., DREB2A
and COL10) and are involved in transcription factor regulation
and complex formation (Ahlfors et al., 2004; Jaspers et al.,
2009). AtRCD1 plays a role in the plant development and
response to stress, mutants experiments show the participation
of this protein in ethylene, ROS, salicylic acid, abiscisic acid
(ABA), and jasmonic acid (JA) signaling pathway (Ahlfors
et al., 2004; Jaspers et al., 2009, 2010). A recent study have
demonstrated that OsSRO1c is induced in response to multiple
stresses and was show to improve drought and OS tolerance by
promoting stomatal closure and H2O2 accumulation (You et al.,
2013).

CONCLUSION

A MA approach integrating different statistical methods allowed
us to narrow down shared DEGs to a relatively small number
that should be further investigated in detail. The comparison of
shared DEGs with a list of genes a priori considered to be ROS-
related highlighted the importance of redox homeostasis in stress
response and signaling. Among the sharedDEGs identified in this
study are interesting candidates such as OsSRO1c, which regulate
a great number of other proteins and connect different signaling
pathways.
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