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Although genetically modified (GM) plants have improved commercially important traits,
such as biomass and biofuel production, digestibility, bioremediation, ornamental value,
and tolerance to biotic and abiotic stresses, there remain economic, political, or social
concerns over potential ecological effects of transgene flow from GM plants. The current
solution for preventing transgene flow from GM plants is genetically engineering sterility;
however, approaches to generating both male and female sterility are limited. In addition,
existing strategies for creating sterility lead to loss or modifications of entire flowers
or floral organs. Here, we demonstrate that instead of the 1.5-kb promoter, the entire
SOLO DANCERS (SDS) gene is required for its meiocyte-specific expression. We then
developed an efficient method to specifically ablate microspore and megaspore mother
cells using the SDS and BARNASE fusion gene, which resulted in complete sterility in
both male and female reproductive organs in Arabidopsis (Arabidopsis thaliana) and
tobacco (Nicotiana tabacum), but did not affect plant growth or development, including
the formation of all flower organs. Therefore, our research provides a general and
effective tool to prevent transgene flow in GM plants.

Keywords: completely both male and female sterile plants, flower structure, genetic ablation, gene flow,
microspore and megaspore mother cells, SOLO DANCERS

INTRODUCTION

Since genetically modified (GM) plants were produced in 1983 (Caplan et al., 1983; Murai et al.,
1983), the number of GM plants has been rapidly increasing yearly (Husken et al., 2010). GM trees,
turf grasses, biofuel and forage crops, and ornamentals have improved commercially important
traits, including biomass and biofuel production, digestibility, bioremediation, ornamental value,
and tolerance to biotic and abiotic stresses (Wang and Ge, 2006; Groover, 2007; Harfouche et al.,
2011; Xu et al., 2011; Wang and Brummer, 2012; Wilkerson et al., 2014); however, the approval for
commercialization of GM plants is subject to complicated and stringent government regulations
due to economic, political, or social concerns over potential ecological effects of transgene flow
and floral-modified plantations (Goeschl and Swanson, 2003; Hills et al., 2007; Van Acker et al.,
2007; Strauss et al., 2009; Lombardo, 2014).

Transgene flow from GM plants to non-GM plants and wild populations is mainly mediated
by dispersal of pollen and seeds. Early studies found that the pollen-mediated gene flew from
GM Roundup Ready creeping bentgrass (Agrostis stolonifera) occurred within 2 to 21 km
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(Watrud et al., 2004). The non-GM rabbitfoot grass (Polypogon
monspeliensis) could pollinate the GM creeping bentgrass to
produce transgenic intergeneric hybrid offspring, suggesting that
the transgene escape is also mediated by the female part of
GM plants (Zapiola and Mallory-Smith, 2012). Long distance
pollen-mediated gene flow occurred between weed beets (Beta
vulgaris) as far as 9.6 km and the resulting interfield gene
flow was unavoidable (Fenart et al., 2007). Pollen migration
from poplars (Populus trichocarpa) often went beyond 10 km
(Slavov et al., 2009; DiFazio et al., 2012), indicating that
similar issues happened in GM trees. Moreover, gene flow
from GM crops to native populations was detected in maize
(Zea mays), soybean (Glycine max), wheat (Triticum aestivum),
and canola (Brassica napus; Pineyro-Nelson et al., 2009; Liu
et al., 2010b; Rieben et al., 2011; Wang and Li, 2012). To
overcome regulatory hurdles to field research and, ultimately,
commercial uses of GM plants, a practical solution is to create
sterile plants by ablating floral organs/tissues using toxic genes
under control of specific promoters or by altering flowering
time and floral organs via manipulating genes critical for flower
development.

Strategies on making male sterility have been extensively and
successfully employed to prevent the pollen-mediated transgene
flow. In the male reproduction organ anther, tapetum is a layer
of nutritive cells, which is required for pollen development.
Therefore, genetic ablation of tapetal cells by tapetum-specific
promoters driven toxic genes, such as ribonuclease BARNASE
and diphtheria toxin fragment A (DTA) genes, is commonly
used to create male sterility in various plants. The widely
used tobacco tapetum promoter TA29 was first employed to
drive BARNASE to create male sterile tobacco and oilseed
rape (Brassica napus) plants (Mariani et al., 1990). TA29::DTA
tobacco transgenic plants are also male sterile (Koltunow
et al., 1990). Since then, various male sterile plants were
achieved using other tapetum or anther-specific promoters,
including A9, A6, E1, T72, PS1, and PsEND1 in Arabidopsis,
rapeseed (Brassica napus), rice (Oryza sativa), and pea (Pisum
sativum) plants (Paul et al., 1992; Hird et al., 1993; Zhan
et al., 1996; DeBlock et al., 1997; Roque et al., 2007). This
strategy was also applied to perennial grasses and trees. The
TAP::BARNASE creeping bentgrass is completely pollen sterile
(Luo et al., 2005). PrMC2, a pine male cone-specific gene,
was successfully used to generate male sterile pine (Pinus
radiata) and Eucalyptus (sp.) plants by driving a modified
BARNASE gene (Zhang et al., 2012). It was recently reported
that the TA29::BARNASE transgenic poplar constantly showed
robust male sterility during a 4-year field trial (Elorriaga
et al., 2014). Attempts were also made to abolish male and
female fertility together. In Arabidopsis, BARNASE driven
by the second intron of AGAMOUS resulted in ablation
of stamens and carpels (Liu and Liu, 2008). Male and
female sterile tobacco plants were generated by expressing
BARNASE under control of both the tapetum promoter p108
and the transmitting tract promoter sp41 (Gardner et al.,
2009).

In addition, manipulating genes regulating flowering time,
floral meristem identify, floral organ identity, and floral organ

establishment is used to abolish plant fertility. Silencing the
tobacco LEAFY genes NFL1 and NFL2 resulted in plants without
flowers (An et al., 2011). Tomato (Lycopersicon lycopersicum)
AGAMOUS RNAi lines showed “fruit-in-fruit” phenotype, but
did not produce seeds (Pan et al., 2010). Down-regulation of
APETALA3 genes OsMADS16 and MtNMH7 caused stamen to
carpel transformation and male sterility in rice and Medicago
truncatula, respectively (Xiao et al., 2003; Roque et al., 2013).
Expression of TFL1, a strong floral repressing gene, led to the
non-flowering phenotype in red fescue (Festuca rubra; Jensen
et al., 2004). Moreover, overexpression of miR156 inhibited
flowering in switchgrass (Panicum virgatum; Fu et al., 2012).
Besides generating sterile plants, plastid transformation is also
an excellent approach to prevent pollen-mediated transgene
flow, since plastids, including chloroplasts, are maternally
inherited in most plants (Ruf et al., 2007; Wani et al.,
2010).

Although male sterility has been successfully achieved via
different approaches in various plant species, it cannot completely
prevent transgene flow. Seed development in male sterile GM
plants can be rescued by the long-distance transfer of pollen
from non-GM plants. The same is also true for female sterile
GM plants which disperse pollen to non-GM or male sterile
GM plants. Thus, completely abolishing both male and female
fertility is the only fail-safe way to prevent transgene flow
(Stewart, 2007). So far, approaches to generating complete
both male and female sterility are limited. Moreover, existing
strategies for creating male and/or female sterility lead to loss
or modifications of entire flowers or floral organs (Xiao et al.,
2003; Roque et al., 2007; Pan et al., 2010; An et al., 2011),
which may cause potential ecological effects on biodiversity of
species associated with flowers, such as insects. In economically
interesting species, for example ornamentals, altered flowers
may also be undesirable. Furthermore, since the remaining
toxicity of BARNASE or DTA in non-target organs due to
the non-specific basal activities of employed promoters often
inhibits plant survival and growth (Lannanpaa et al., 2005;
Wei et al., 2007), it is difficult to obtain usable sterile plants
that have normal biomass and yield. Therefore, it is imperative
to generate sterility in both male and female reproductive
organs without affecting plant growth or modifying flower
structure.

In Arabidopsis, the SOLO DANCERS (SDS) gene, which
encodes a meiosis-specific cyclin, is required for homolog
interaction during meiotic prophase I in Arabidopsis (Azumi
et al., 2002). With normal growth and development, the
sds mutant is both male and female sterile. RNA in situ
hybridization analysis showed that SDS transcripts were
specifically present in microspore mother cells (male
meiocytes) in anthers and megaspore mother cells (female
meiocytes) in ovules (Azumi et al., 2002). Here, we report
our new approach to create complete both male and
female sterility in Arabidopsis and tobacco by specifically
ablating microspore and megaspore mother cells using the
SDS and BARNASE fusion gene. Our research provides a
general and effective tool to prevent transgene flow in GM
plants.
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MATERIALS AND METHODS

Plant Materials and Growth Condition
Arabidopsis thaliana Landsberg erecta (Ler) and tobacco
(Nicotiana tabacum Petit Havana SR1) were used in this study.
Plants were grown in Metro-Mix 360 soil (Sun-Gro Horticulture,
Agawam, MA, USA) in a growth chamber under a 16-h light/8-h
dark photoperiod regime at 22◦C and 50% of humidity.

Generation of Constructs and
Transgenic Plants
PCR reactions (see all primers in Supplementary Table S1) were
performed using Phusion High-Fidelity DNA Polymerase (New
England Biolabs, Ipswich, MA, USA). The 1.5-kb promoter of
the SDS gene (upstream of the SDS coding region and the 3′
non-coding region of the SDS adjacent gene) was amplified
and cloned into the pENTR/D-TOPO vector (Invitrogen, Grand
Island, NY, USA) to generate pENTR-SDS. The SDS genomic
fragment from the beginning of the 1.5-kb promoter region to
the last exon was introduced into the pENTR/D-TOPO vector
to generate pENTR-SDS::SDS. The BARSTAR gene amplified
from the pABGCZ vector (Zhang et al., 2012) was introduced
to the pEarleyGate303 vector at the Nsi site to generate
pEarleyGate303-BARSTAR.AnXhoI site was introduced between
BglII and XbaI sites right after attR2 to generate pEarleyGate303-
BARSTAR(XhoI). The BARNASE fragment amplified from
pABGCZ was cloned into pEarleyGate303-BARSTAR(XhoI)
using the XhoI and XbaI sites to generate pEarleyGate303-
BARSTAR-BARNASE. Using the Gateway LR recombinase II
enzyme mix (Invitrogen, Grand Island, NY, USA), SDS::GUS,
SDS::BARNASE, SDS::SDS-GFP, and SDS::SDS-BARNASE binary
vectors were generated between pENTR-SDS and pGBW3-
GUS, pENTR-SDS and pEarleyGate303-BARSTAR-BARNASE,
pENTR-SDS::SDS and pGBW4-GFP, as well as pENTR-SDS::SDS
and pEarleyGate303-BARSTAR-BARNASE, respectively.

The floral dip method was used to generate Arabidopsis
transgenic plants (Clough and Bent, 1998). Transformants of
SDS::GUS and SDS::SDS-GFP were screened on 50 μg/mL of
kanamycin and 25 μg/mL of hygromycin. Transformants of
SDS::BARNASE and SDS::SDS-BARNASEwere screened on 1% of
Basta (PlantMedia, Lubbock, TX, USA).

Tobacco transformation was performed as described
previously (Curtis et al., 1995). Briefly, leaf disks were inoculated
with the Agrobacterium strain GV3101 containing the SDS::SDS-
BARNASE binary vector and cultured for 1 day in the dark,
followed by 2 days under light. Then, leaf disks were screened on
shoot and root selection medium containing 4% of Basta. The
regenerated seedlings were transferred into soil and sprayed with
4% of Basta solution one week later. The surviving plants were
used for further analyses.

Pollen Staining and Anther Semi-Thin
Sections
To examine pollen viability in Arabidopsis plants, Alexander
pollen staining was carried out as described previously (Zhao
et al., 2002). Briefly, main inflorescences were collected when

1–4 flower(s) were opened. Inflorescences were fixed for 24 h
in the fixative containing methanol, 60 mL; chloroform, 30 mL;
distilled water, 20 mL; picric acid, 1 g; and HgCl2, 1 g. After
transferring through 70, 50, and 30% ethanol series (30 min
in each change), inflorescences were finally incubated with
water. Inflorescences were them transferred into the staining
solution (ethanol 95%, 10 ml; malachite green, 10 mg; acid
fuchsin, 50 mg; orange G, 5 mg; phenol, 5 g; glacial acetic
acid, 2 ml; glycerol, 25 ml; and distilled water 50 ml) and
kept at 50◦C for 48 h. Individual anthers were dissected out
from flowers and then mounted on the glass slides together
with the staining solution for observation. Mature anthers
from tobacco plants were collected and analyzed using the
same method. Pollen grains were released from anthers before
imaging.

Semi-thin sectioning was performed as described in our
previous studies (Zhao et al., 2002; Jia et al., 2008). Briefly,
dissected floral buds were fixed in 2.5% (vol/vol) glutaraldehyde
in 0.1 M HEPES (N-2-Hydroxyethyl piperazine-N_-2-
ethanesulfonic acid) buffer (pH 7.2) and 0.02% TritonX-100
overnight at room temperature. Samples were washed three
times for 15 min each in 0.1 M HEPES buffer with 0.02%
Triton X-100 and then fixed in 1% OsO4 overnight at room
temperature. Samples were then dehydrated in a graded acetone
series (10% increments) for 60 min each. Infiltration started
with 20% Spurr’s resin and then 40, 60, and 80% Spurr’s resin
every 3 h. Samples were transferred to 100% Spurr’s resin three
times for 24 hours each. Samples were finally embedded in 100%
Spurr’s resin and polymerized at 60◦C overnight. Semi-thin
(0.5μm) sections were made using an Ultracut E ultramicrotome
(Reichert–Jung) and were stained with 0.25% Toluidine Blue
O.

GUS Staining Assay
Histochemical GUS staining assay was performed as previously
described (Liu et al., 2010a).

Briefly, tissues were collected and fixed for 1 h in 90%
acetone at –20◦C. After washing tissues in washing buffer [0.1 M
phosphate (pH 7.0), 10 mM EDTA, and 2 mM K3Fe(CN)6]
twice for 5 min under the vacuum, the drained tissues were
transferred into the GUS staining buffer [0.1 M phosphate (pH
7.0), 10 mM EDTA, 1 mM K3Fe(CN)6, 1 mM K4Fe(CN)6·3H2O,
and 1 mg/ml X-GLUC)] and incubated overnight at 37◦C. GUS-
stained tissues were then fixed in a 3:1 mixture of ethanol
and acetic acid. Tissues were mounted onto the glass slides for
observation.

Real-Time qRT-PCR
Inflorescences of wild-type (WT) and SDS::SDS-BARNASE
independent Arabidopsis transgenic plants were collected
for RNA isolation using the RNeasy Plant Mini Kit
(Qiagen, Valencia, CA, USA). After determining the RNA
quantification by the NanoDrop 2000c (Thermo Scientific,
Bannockburn, IL, USA), RNA reverse transcription was
conducted using the QuantiTect Reverse Transcription Kit
(Qiagen, Valencia, CA, USA). Real-time PCR (DNA Engine
Opticon 2 system, Hercules, CA, USA) and data analysis
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were performed as previously described (Liu et al., 2010a)
to evaluate expressions of A9, ATA7, DMC1, and SWI1
(Supplementary Table S1). The ACTIN2 gene was used as an
internal control. Three independent biological repeats were
carried out.

Microscopy
Pollen staining samples, GUS staining and semi-thin sections
were observed and imaged with Olympus SZX7 and BX51
microscopes (Olympus, Center Valley, PA, USA), respectively.
Images were obtained with an Olympus DP 70 digital
camera (Olympus, Center Valley, PA, USA). For confocal
microscopy analysis, anthers and ovules were dissected and
mounted in water. The GFP signal was observed with a
Leica TCS SP2 laser scanning confocal microscope (Leica,
Buffalo Grove, IL, USA) using a 63×/1.4 water immersion
objective lens. The 488-nm laser line was used to excite
GFP and it also induced chlorophyll autofluorescence. The
PMT gain settings was held at 650. GFP and chlorophyll
autofluorescence were detected at 505–530 nm and 644–719 nm,
respectively.

RESULTS

BARNASE Driven by the 1.5-kb Promoter
of the SDS Gene Caused Various Defects
in Growth and Reproduction
To create completely both male and female sterile plants without
altering flower structure, we first generated the SDS::BARNASE
construct using the 1.5-kb promoter of the SDS gene and
a modified BARNASE (Zhang et al., 2012) to genetically
ablate microspore and megaspore mother cells in Arabidopsis
(Figure 1A). Among 66 examined SDS::BARNASE transgenic
plants, none of them showed the specific phenotype in
sterility. Instead, compared with the wild type (Figure 2A),
SDS::BARNASE young plants were defective in vegetative
growth, indicated by abnormal shape and numbers of rosette

FIGURE 1 | Schematic diagrams of constructs generated in this study.
(A) SDS::BARNASE. (B) SDS::GUS. (C) SDS::SDS-GFP.
(D) SDS::SDS-BARNASE. LB and RB, the T-DNA left and right border,
respectively; BAR, the gene conferring resistance to the herbicide Basta;
SDS::, the 1.5-kb promoter of the SDS gene; BARNASE, the bacterial
ribonuclease; KAN, the kanamycin resistance gene; GUS, the gene encoding
β-glucuronidase; GFP, the gene encoding green fluorescent protein; HPT, the
hygromycin phosphotransferase gene; and SDS::SDS, the SDS genomic
fragment containing a 1.5-kb promoter followed by a DNA fragment
consisting of seven exons and six introns.

leaves (Figures 2B,C). Different from the WT adult plant
(Figure 2D), SDS::BARNASE adult plants also exhibited various
abnormal phenotypes, such as dwarf and fertile (Figure 2E),
dwarf and sterile (Figure 2F), and even no inflorescence
(Figure 2G). The height of mature SDS::BARNASE plants was
significantly reduced (Figure 2H). Moreover, SDS::BARNASE
plants produced significantly fewer rosette leaves than that
of wild type (Figure 2I). Various defects of SDS::BARNASE

FIGURE 2 | SDS::BARNASE Arabidopsis plants were abnormal in
growth and development. (A–C) Compared to wild type (A), three-week old
SDS::BARNASE (B,C) plants produced less rosette leaves with irregular
shape. Bars = 0.5 cm. (D–G) Six-week old wild-type (WT, D) and
SDS::BARNASE plants showing fertile but dwarf (E), dwarf and sterile (F), and
no inflorescence (G) phenotypes. Bars = 1 cm. (H) Six-week old
SDS::BARNASE plants were significantly shorter than the wild type. (I) The
rosette leaf number of SDS::BARNASE adult plants was significantly reduced.
“n” indicates the number of examined plants. Stars indicate significant
difference (P < 0.01).
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plants in growth and development suggest that the 1.5-
kb promoter of the SDS gene failed to drive the specific
expression of BARNASE in microspore and megaspore mother
cells.

The 1.5 kb Upstream Region of the SDS
Gene did not Confer its
Meiocyte-Specific Expression
Genetic ablation relies on the specificity of employed promoters.
To examine why BARNASE under the control of the 1.5-
kb SDS promoter did not achieve specific ablation effects
on microspore and megaspore mother cells, we generated
SDS::GUS plants to test the transcriptional activity of the
1.5-kb promoter (Figure 1B). Among 25 examined SDS::GUS
transgenic plants, GUS signals were detected in cotyledons,
true leaves, and shoot apical meristem of young seedlings
(Figure 3A), as well as in carpels and stigmas of young buds
(Figures 3B–D). Thus, our results suggest that the 1.5-kb
promoter of the SDS gene was not sufficient for conferring
its meiocyte-specific expression, which resulted in abnormal
plant growth and development when it drove the expression of
BARNASE.

The Entire SDS Gene Led to the
Meiocyte-Specific Expression of the SDS
Protein
The possible existence of regulatory elements in SDS introns
may contribute to the SDS meiocyte-specific expression. To test,
how to achieve the specific expression of SDS in microspore and
megaspore mother cells, we generated SDS::SDS-GFP constructs
by fusing the SDS genomic fragment, containing the 1.5-kb
promoter, seven exons and six introns, with the GFP gene
(Figure 1C). In examined 18 SDS::SDS-GFP transgenic plants,
we did not detect the GFP signal during the seedling stage and
later in the vegetative growth stage. We, however, observed GFP
signals only in microspore mother cells in anthers (Figure 3E)
and megaspore mother cell in ovule during the reproductive
stage (Figure 3F). Therefore, our results indicate that the entire
SDS gene led to the meiocyte-specific expression of the SDS
protein.

SDS::SDS-BARNASE Caused Complete
Both Male and Female Sterility but did
not Affect Growth or Development in
Arabidopsis
To generate complete both male and female sterility by
specifically ablating microspore and megaspore mother cells,
we made the SDS::SDS-BARNASE construct by fusing the
SDS entire gene with the BARNASE gene (Figure 1D). We
performed three transformations, resulting in 97, 80, and
126 SDS::SDS-BARNASE transgenic plants, respectively. All
independent transgenic plants were sterile. We first evaluated
the effects of SDS::SDS-BARNASE on growth and development.
SDS::SDS-BARNASE transgenic plants produced rosette leaves
with the same number, size, and shape as that of WT plants

FIGURE 3 | The entire SDS gene but not the SDS 1.5-kb promoter
confers the SDS meiocyte-specific expression. (A–D) GUS staining of
SDS::GUS plants showing GUS signals in cotyledons, true leaves, and shoot
apical meristem of a young seedling (A), as well as in carpels and stigmas of
young buds (B–D). (E) A confocal image from an SDS::SDS-GFP stage-5
anther showing the GFP signal (green color) only in microspore mother cells
(arrows). Red and yellow colors showing merged autofluorescences. (F) A
confocal image from an SDS::SDS-GFP stage 2-IV ovule showing the GFP
signal only in the megaspore mother cell (arrow). Bars = 0.1 cm (A,B),
0.5 mm (C,D), 50 μm (E), and 10 μm (F).

(Figures 4A,B). No morphological changes were observed in
SDS::SDS-BARNASE inflorescences and flowers (Figures 4C,D).
Moreover, mature SDS::SDS-BARNASE plants had a similar
height to the wild type (Figures 4E–G). The flowering time of
SDS::SDS-BARNASE plants was not affected either, because the
same rosette leaf numbers as the wild type were produced when
flowering (Figure 4H).

To further investigate sterility of SDS::SDS-BARNASE
transgenic plants, we analyzed both male and female fertilities.
Compared with the wild type (Figures 5A,H), SDS::SDS-
BARNASE plants produced short siliques (Figures 5B,I). Except
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FIGURE 4 | SDS::SDS-BARNASE Arabidopsis plants showed normal
growth and development. (A,B) Three-week old WT (A) and
SDS::SDS-BARNASE (B) plants. Bars = 0.5 cm. (C,D) Five-week old WT
(C) and SDS::SDS-BARNASE (D) inflorescences. Bars = 0.5 cm. (E,F)
Six-week old WT (E) and SDS::SDS-BARNASE (F) plants. Bars = 1 cm.
(G) No difference in average height between six-week old WT and
SDS::SDS-BARNASE plants. (H) Similar rosette leaf numbers indicating no
difference in flowering time between WT and SDS::SDS-BARNASE plants. “n”
in (G,H) indicates the number of examined plants.

short filaments, SDS::SDS-BARNASE plants formed flowers that
were the same as the wild type, indicated by four sepals, four
petals, six stamens, and two carpels (Figures 5D,E). In the WT
flower, pollen grains were released from anthers that reached
the stigma (Figure 5D), whereas in the SDS::SDS-BARNASE
flower, no pollen grains were observed on the anther surface
and anthers did not reach the stigma (Figure 5E). Furthermore,
different from the WT anther (Figure 5F), the SDS::SDS-
BARNASE anther did not produce pollen grains (Figure 5G),
indicating that SDS::SDS-BARNASE plants were male sterile.
Because pollination using the WT pollen did not rescue the
fertility (Figures 5C,J), SDS::SDS-BARNASE plants were female
sterile too. Thus, using SDS::SDS-BARNASE, we efficiently
created completely both male and female sterile Arabidopsis
plants that had normal vegetative and reproductive growth
and development, including the formation of all flower
organs.

SDS::SDS-BARNASE Inhibited Both Male
and Female Gamete Formation
To further understand ablation effects on microspore and
megaspore mother cells, we did semi-thin sectioning of anthers
and whole-mount squashes of ovules. At stage 5 (Sanders
et al., 1999; Zhao et al., 2002), when compared with the
WT anther (Figure 6A), the SDS::SDS-BARNASE anther
showed vacuolated microsporocytes (microspore mother cells)
and tapetal cells (Figure 6D), indicating the degeneration
of both cells. At stage 7 in the WT anther, successful male
meiosis resulted in the formation of tetrads (Figure 6B),
whereas in the SDS::SDS-BARNASE anther, tetrads, and

FIGURE 5 | SDS::SDS-BARNASE Arabidopsis plants were completely
both male and female sterile. (A–C) Primary branches showing normal
siliques in wild type (A) and short siliques indicating no developing seeds in
SDS::SDS-BARNASE plants without (B) and with (C) pollination.
Bars = 1 cm. (D,E) Side view of mature flowers (One sepal was removed,
respectively) showing the SDS::SDS-BARNASE flower (E) is similar to the wild
type (D) except short filaments. Pollen grains released from WT anthers
(D, inset), while no pollen grains from SDS::SDS-BARNASE anthers (E, inset).
Bars = 0.5 mm. (F,G) Pollen staining showing the WT anther full of viable
pollen grains (F), but no pollen grains from the SDS::SDS-BARNASE anther
(G). Bars = 30 μm. (H–J) Dissected individual siliques from primary
inflorescences (positions 1–9) were long in wild type (H), but short in
SDS::SDS-BARNASE plants (I, without pollination; J, pollinated with WT
pollen). Bars = 1 cm.

tapetal cells were collapsed (Figure 6E). At stage 9, the WT
anther contains developing pollen grains (Figure 6C), but the
SDS::SDS-BARNASE anther lacked developing microspores
(Figure 6F).

In embryo sacs of WT ovules, two nuclei at stage
FG3 (Pagnussat et al., 2009) (Figure 7A) and four nuclei
at stage FG4 (Figure 7B) were observed; however, in
SDS::SDS-BARNASE embryo sacs, only a single nucleus was
produced (Figures 7D,E). At stage FG6, the WT embryo
sac showed the central cell, the egg cell, and synergid cells
(Figure 7C), but the SDS::SDS-BARNASE embryo sac is empty
(Figure 7F).

Furthermore, our results showed that expressions of tapetal
cell marker genes A9 and ATA7 as well as microspore
and megaspore mother cell marker genes DMC1 and SWI1
were significantly decreased in SDS::SDS-BARNASE buds in

Frontiers in Plant Science | www.frontiersin.org 6 February 2016 | Volume 7 | Article 30

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Huang et al. Creating Male and Female Sterility

FIGURE 6 | Formation of male gametes was arrested in
SDS::SDS-BARNASE Arabidopsis plants. (A–C) WT anthers showing
microsporocytes (microspore mother cells) and surrounding tapetal cells at
stage 5 (A), tetrads and tapetal cells at stage 7 (B), and developing pollen
grains at stage 9 (C). (D–F) SDS::SDS-BARNASE anthers showing
degenerating microsporocytes and precociously vacuolated tapetal cells at
stage 5 (D), dead microsporocytes and tapetal cells at stage 7 (E), and a
nearly empty anther lobe at stage 9 (only one dead pollen, F). M,
microsporocytes (microspore mother cells); DP, developing pollen; T, tapetal
cell; and Tds, tetrads.

comparison to the wild type (Figure 8). In summary, the
specific expression of the SDS-BARNASE toxic fusion protein
in microspore and megaspore mother cells efficiently impaired
the production of both male and female gametes, which
led to absolute both male and female sterility, but did

FIGURE 8 | Expressions of tapetal cell as well as microspore and
megaspore mother cell marker genes. Real-time qRT-PCR showing
decreased expressions of tapetal cell marker genes A9 and ATA7 as well as
microspore and megaspore mother cell marker genes DMC1 and SWI1. Stars
indicate significant difference (P < 0.01).

not affect flower organ formation or plant growth and
development.

SDS::SDS-BARNASE Caused Complete
Both Male and Female Sterility but did
not Affect Growth or Development in
Tobacco
To test whether SDS::SDS-BARNASE can provide a general tool
to create both male and female sterile plants, we transformed
it into tobacco and generated SDS::SDS-BARNASE tobacco
transgenic plants by tissue culture. Among 14 examined
SDS::SDS-BARNASE tobacco transgenic lines, leaf shape and size

FIGURE 7 | Formation of female gamete was arrested in SDS::SDS-BARNASE Arabidopsis plants. (A–C) WT ovules showing two separated nuclei (arrows)
at the FG3 stage (A), four nuclei (arrows) at the FG4 stage (B), and the central cell, the egg cell, and synergid cells in a mature embryo sac (white dots outlined) at
the FG6 stage (C). (D–F) SDS::SDS-BARNASE ovules showing one small nucleus (arrow) at both FG3 (D) and FG4 (E) stages and a small empty embryo sac (white
dots outlined) at the FG6 stage (F). Bars = 10 μm. cc, central cell; ec, egg cell; and syn, synergid cells.
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FIGURE 9 | SDS::SDS-BARNASE tobacco plants showed normal growth and development. (A) Forty-day old tobacco WT and SDS::SDS-BARNASE plants.
Bar = 5 cm. (B,C) Sixty-day old WT (B) and SDS::SDS-BARNASE (C) plants. Bars = 10 cm. (D) No difference in average height between WT and
SDS::SDS-BARNASE adult plants. (E,F) Flower size, color, and structure remained the same in WT and SDS::SDS-BARNASE plants. Bars = 1 cm.

(Figures 9A–C), as well as the plant height (Figures 9B–D)
were the same as that of WT plants. In addition, the
SDS::SDS-BARNASE tobacco flower had the same size, color,
and structure as that of wild type (Figures 9E,F). Therefore,
SDS::SDS-BARNASE did not affect growth or development in
tobacco plants.

Ten examined SDS::SDS-BARNASE tobacco transgenic lines
were completely sterile. WT tobacco plants produced large fruits
and per fruit averagely contained 0.11 g of seeds (Figures 10A,D).
Conversely, SDS::SDS-BARNASE plants produced small fruits
and no seeds were found when self-pollenated (Figures 10B,D,
e.g., plants #1, 3, 5, and 7). Further pollen viability analysis
showed that WT tobacco anthers produced viable pollen,
indicated by red color (Figure 10E), whereas anthers from
sterile tobacco plants either lacked pollen grains (Figure 10F)
or formed dead pollen grains (Figure 10G). The four non-
absolutely sterile lines produced a few seeds (Figure 10D, e.g.,
plants #2, and 14) and only some functional pollen grains were
found in anthers of those lines (Figure 10H, e.g., plant #2). Our
results suggest that SDS::SDS-BARNASE impaired male fertility
in tobacco.

We then examined the female fertility in sterile tobacco
transgenic plants. The fertility of manually male-sterilized
WT flowers could be rescued by cross-pollination with WT
pollen (Figure 10D), but following cross-pollination with
WT pollen, the fruit size of SDS::SDS-BARNASE sterile
tobacco plants did not change (Figure 10C) and no seeds
were produced (Figure 10D, e.g., plants #1, 3, and 5).
Thus, SDS::SDS-BARNASE tobacco transgenic plants were
also female sterile. Manual pollination partially rescued the
fertility of line #7, indicating that the line #7 is a completely
male but partially female sterile plant, while lines #2 and
14 were nearly male and female sterile plants (Figure 10D).

Collectively, a majority of SDS::SDS-BARNASE tobacco
transgenic plants were completely male and female sterile,
suggesting that SDS::SDS-BARNASE is functionally conserved,
which can be used to create both male and female sterility in
general.

DISCUSSION

SOLO DANCERS, a unique type of (SDS-type) meiosis-specific
cyclin, is conserved in flowering plants (Wang et al., 2004; Zhang
et al., 2014; Wu et al., 2015). In our studies, the 1.5-kb SDS
promoter did not achieve the specific expression of SDS in either
microspore or megaspore mother cells. Conversely, the entire
SDS gene genomic fragment did. The intron-dependent spatial
expression has been revealed in different genes from various
species, including SUS3 and SUS4 in potato (Fu et al., 1995a,b),
OsTubA1 in rice (Jeon et al., 2000; Giani et al., 2009), PhADF1 in
petunia (Jeong et al., 2007), as well as AGAMOUS,ACT1 and PRF
in Arabidopsis (An et al., 1996; Sieburth and Meyerowitz, 1997;
Jeong et al., 2006). Therefore, it is possible that regulatory motifs
in SDS introns contribute to its specific spatial and temporal
expression. Future studies should be focused on dissecting the
functions of unknown regulatory motifs and then making a
synthetic promoter that confers the strong and specific expression
of SDS in microspore and megaspore mother cells. We found a
few non-completely sterile tobacco transgenic plants, suggesting
that the Arabidopsis SDS gene did not work efficiently in tobacco.
In order to achieve accurate and efficient ablation effects, it would
be more practical to use SDS orthologous genes of target species
or the synthetic promoter to drive BARNASE.

The existing methods for creating male sterile only GM
plants are not able to completely prevent transgene flow, because
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FIGURE 10 | SDS::SDS-BARNASE tobacco plants were completely both male and female sterile. (A–C) Large fruits from the WT plant (A) and small fruits
from SDS::SDS-BARNASE plants without (B) and with (C) manual pollination with WT pollen grains. Bars = 1 cm. (D) The weight of seeds per self-pollinated and
manually pollinated fruit (n = 5), respectively. Numbers indicate examined independent transgenic lines. (E) WT viable pollen grains in red color. (F–H) no (F), all dead
(G) and a few viable (H) pollen grains in SDS::SDS-BARNASE plants. Numbers indicate examined independent transgenic lines. Bars = 100 μm.

pollen from non-GM plants can rescue seed development.
In addition, current sterilization technologies either suppress
the production of entire flower or some floral organs,
which may cause potential ecological effects besides transgene
flow. Furthermore, BARNASE and DTA are very toxic.
Many “specific” promoters still have basal activities in other
organs; therefore, the low expression of BARNASE/DTA in
non-target organs often reduces plant survival rate and
inhibits plant growth. Microspore and megaspore mother
cells are two small groups of male and female reproductive
cells, which are differentiated after all floral organs are
established. Ablating microspore and megaspore mother cells
only leads to elimination of male and female gametes, but
it does not affect other somatic cell differentiation and
flower development. In this study, we specifically ablated
microspore and megaspore mother cells using the SDS and
BARNASE fusion protein. Thus, our research developed an
efficient strategy to successfully create completely both male
and female sterile plants; however, the plant growth and
development, including the formation of all flower organs, were
not affected.

Genetically modified crops have been widely cultivated in
many countries due to their improved agronomic traits; however,
the adoption of GM trees (e.g., poplar, eucalypts, and pines)
and perennial grasses (e.g., miscanthus and switchgrass) is

limited, because those plants are long-lived, weakly domesticated,
and important to ecosystems. Various studies has been
done to increase cold tolerance and biomass, modify lignin
and cellulose biosynthesis, or alter growth and flowering
of Eucalyptus (Girijashankar, 2011; Hinchee et al., 2011;
Klocko et al., 2015), aspen (Etchells et al., 2015), poplar
(Wilkerson et al., 2014), and switchgrass (Fu et al., 2011;
Shen et al., 2013; Baxter et al., 2014; Poovaiah et al., 2015).
Our research developed a general and effective approach to
create completely both male and female sterile plants by
specifically ablating microspore and megaspore mother cells,
which provides a solution for overcoming regulatory hurdles
to field research and ultimately commercial uses of GM
plants.

Besides the transgene containment, our method can be
applied for modifying invasive and ornamental plants. Male
and female sterilized invasive plants generated by our method
can be planted for multiple purposes, such as forestry and
horticulture. The main valuable trait for many ornamental trees,
such as cherries and plums, is the beauty of flowers. Fruits
often make the garden messy. Moreover, nutrient competition
from fruit setting affects flower organ differentiation, and
consequently reduces flower numbers in the coming year. Our
new method serves as an excellent tool to engineer ornamental
trees that still produce attractive intact flowers without
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fruit setting, which, therefore, maintains their ornamental value.
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