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The initial response of plants to aluminum (Al) is the inhibition of root elongation, while
the transition zone is the most Al sensitive zone in the root apex, which may sense the
presence of Al and regulate the responses of root to Al toxicity. In the present study, the
effect of Al treatment (30 µM, 24 h) on root growth, Al accumulation, and properties of
cell wall of two pea (Pisum sativum L.) cultivars, cv Onward (Al-resistant) and cv Sima
(Al-sensitive), were studied to disclose whether the response of root transition zone to
Al toxicity determines Al resistance in pea cultivars. The lower relative root elongation
(RRE) and higher Al content were founded in cv Sima compared with cv Onward, which
were related to Al-induced the increase of pectin in root segments of both cultivars. The
increase of pectin is more prominent in Al-sensitive cultivar than in Al-resistant cultivar.
Aluminum toxicity also induced the increase of pectin methylesterases (PME), which is
2.2 times in root transition zone in Al-sensitive cv Sima to that of Al resistant cv Onward,
thus led to higher demethylesterified pectin content in root transition zone of Al-sensitive
cv Sima. The higher demethylesterified pectin content in root transition zone resulted in
more Al accumulation in the cell wall and cytosol in Al-sensitive cv Sima. Our results
provide evidence that the increase of pectin content and PME activity under Al toxicity
cooperates to determine Al sensitivity in root transition zone that confers Al resistance
in cultivars of pea (Pisum sativum).

Keywords: pea, aluminum sensitivity, transition zone, cell wall pectin, degree of pectin methyl-esterification,
pectin methylesterase activity

INTRODUCTION

It has been estimated that approximately 50% of the potentially arable lands of the world are acidic
soils (Kochian, 1995), where crop productivity is limited by a range of growth-limiting factors
related to soil acidity. Aluminum (Al) toxicity is a major limiting factor for plant growth and
development in acid soils. The first symptom of Al toxicity is the inhibition of root elongation,
which can be measured within hours or less after the roots are exposed to excess Al supply (Llugany
et al., 1995; Blamey et al., 2004, 2005). The inhibition of root elongation is usually used for screening
Al resistance in plant species and cultivars, which is positively correlated with Al accumulation. The
amount of Al accumulation in roots is determined by both the binding sites of plant cells as well
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as the capacity of rhizo-detoxification by the exudation of organic
acids (Jorge and Arruda, 1997; Stass et al., 2008). The release
of organic acids induced by Al stress confers to Al-resistance of
cultivars in quite a few of plant species, such as maize (Jorge and
Arruda, 1997), common bean (Shen et al., 2002), wheat (Stass
et al., 2008) and rice (Shi et al., 2007). However, pea (Pisum
sativum L.) cultivars are not included. There is little difference
in the release of organic acids in cultivars with different Al
sensitivity (Kobayashi et al., 2004). We guess that Al sensitivity
of pea might relate to the other mechanisms, such as the action of
Al adsorption on the cell wall.

When the roots are exposed to Al, cell wall is the first target
of Al accumulation (Blamey et al., 1993; Kobayashi et al., 2004;
Sivaguru et al., 2006; Horst et al., 2007). Studies have shown
that about 85–90% of Al is accumulated in the cell wall of
barley root apices (Clarkson, 1967), and about 99.9% in Chara
coralline (Rengel and Reid, 1997). Pectin, a major component
of cell wall, has large numbers of negatively charged carboxylic
groups which are considered to be the primarily binding sites
of Al (Blamey et al., 1990; Chang et al., 1999; Taylor et al.,
2000; Wang et al., 2004), even though evidences have been found
recently that hemicellulose is an alternative binding site of Al
in rice (Yang et al., 2011a). Differences of Al resistance are
negatively related to the increased content of pectin in cultivars
of rice (Yang et al., 2008) and maize (Eticha et al., 2005a).
It is very interesting to know whether it can be applied for
cultivars of pea (Pisum sativum L.) (Kobayashi et al., 2004) and
common beans (Phaseolus vulgaris L.) (Rangel et al., 2007), which
has a relatively higher content of pectin in the primary cell
wall and is very sensitive to Al toxicity in comparison to rice
and maize. Actually, majority of the binding sites of pectin is
contributed by the action of pectin methylesterases (PME). It
is widely accepted that pectin is synthesized in the Golgi and
then secreted into the wall as highly methylesterified forms. The
highly methylesterified pectin is demethylesterificated by PME
with the release of carboxyl groups (Micheli, 2001). Carboxyl
groups in the pectin is generally considered to be the main sites
for binding Al, and thus its content determines Al sensitivity /
resistance in several plant species, e.g., rice (Yang et al., 2008),
maize (Eticha et al., 2005a), Solanum tuberosum L. (Schmohl
et al., 2000). It is intriguing how pectin and PME cooperate
to determine Al sensitivity in cultivars of pea with different Al
resistance.

Root can be longitudinally divided into zones with different
structure and function: root cap, meristem, transition zone,
elongation zone, and mature zone (Baluška et al., 1996; Verbelen
et al., 2006). Root transition zone is defined recently the root
zone betweenmeristem and elongation zone (Baluška et al., 1996,
2001; Verbelen et al., 2006). A number of data suggest that
the transition zone is some kind of sensory zone, enabling the
growing of root apex (Baluška et al., 1994, 1996). Several studies
have shown that the transition zone is the most Al-sensitive zone
in the root apex (Sivaguru and Horst, 1998; Kollmeier et al., 2000;
Illéš et al., 2006). Baluška et al. (1996) comments that the cells in
the transition zone are in a critical preparatory phase based on the
synthesis of materials for new tonoplast and plasma membranes,
cell wall components, new enzymatic complexes, and cytoplasmic

structures. Cell wall pectin, the primary target of Al, is processed
by PME after its production and release to apoplast, it is thus
hypothesized that cell wall pectin and PME may be responsible
for Al sensitivity in root transition zone and Al resistance in
cultivars of pea.

In our previous studies about the root zones of pea, 0–1 mm
is the cap and meristematic zone, 1.0–2.5 mm is the transition
zone, 2.5–5.0 mm is the elongation zone and 5.0–10.0 mm is
the maturation (Supplementary Table S1). A detailed research
focusing on pectin and Al accumulation is compared in the four
root segments in Al-sensitive and Al-resistant cultivars of pea.
The objective is to disclose the significance of pectin content and
its degree of methyl esterification in determining Al resistance in
different cultivars.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The procedure for pea germination wasmodified according to Yu
et al. (2006). Seeds were immersed in 5.25% sodium hypochlorite
for 30min, and rinsed six times with de-ionized water. Seedswere
soaked in 2 mM CaCl2 solutions for 8 h and then evenly spread
on the mesh screen of the mist culture device with 60 s mist
produced every 8 min for 48 h at 24◦C. Uniform seedlings, with
root lengths ranging from 2 to 3 cm, were selected and transferred
to 1/4th Hoagland solution for 4 days under growth chamber at a
16 h (26◦C) / 8 h (24◦C) day/night regime. Then the seedlings
were treated with 30 µM AlCl3 (containing 0.5 mM CaCl2,
25 µM H3BO3, pH 4.5) solution for 24 h after pre-adaptation in
pH 4.5 (containing 0.5 mM CaCl2, 25 µMH3BO3) circumstance
for 8 h. The lateral roots at about 1–2 cm length were used in
the study. The lateral roots were neatly placed on a plastic plate
with scale, and segments were obtained by hand with sharp razor
blades.

Effect of Al on Root Growth
The entire roots (20 plants for each treatment) were scanned
using a root scanner (Epson Expression 11000XL) after rinsing
in deionized water. Lateral root length was analyzed with
WinRHIZO Pro software before and after Al treatment. The
relative root elongation (RRE) was calculated using the following
formula: the root elongation under Al treatment/the root
elongation in Al-free control × 100.

Cell Wall Preparation
Cell wall materials were extracted according to the procedure
of Heim et al. (1991) and Hoson et al. (2003) with minor
modifications. Roots (100 root segments for one replicate)
were collected and homogenized, then the homogenates were
centrifuged at 15,000 × g for 10 min. The precipitate was washed
three times with 10 volumes of 80% ethanol and once with 10
volumes of methanol: chloroform mixture (1:1 [v/v]), followed
by 10 volumes of acetone. The supernatant of each extracts was
discarded and the final pellet freeze-dried. The dried powder was
considered as crude cell wall and stored at 4◦C for further use.
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Measurement of Al Content
Content of Al in roots (0–10.0 mm, 30 root tips for one replicate),
root segments (0–1.0, 1.0–2.5, 2.5–5.0, 5.0–10.0 mm, 50 root
segments for one replicate) and cell wall (100 root segments
for one replicate) was extracted by 2 M HCl for 48 h with
occasional shaking. Content of Al in the extracts was determined
by inductively coupled plasma-atomic emission spectrometry
(ICP-AES, IRIS-Advantage, Thermo Elemental, Waltham, MA,
USA).

Pectin Determination
Pectin was extracted in crude cell wall powder by 50mMNa2CO3
containing 20 mM CDTA (1,2-Diaminocyclohexane-N,N,N′ ,N′-
tetraacetic acid monohydrate). The extracts were centrifuged
(15,000 × g, 15 min) and the supernatant was the pectin extracts.
Galacturonic acid (GalA) content in each pectin extracts was
assayed according to the method of Blumenkrantz and Asboe-
Hansen (1973). GalA was used as a calibration standard. thus, the
pectin content was expressed as GalA equivalents.

The degree of pectin methyl-esterification was measured by
colorimetric method (Louvet et al., 2011). Hundred micro liter
pectin extracts were saponified by 50 µL 1.5 M NaOH solution
for 30 min and surplus alkaline was neutralized by 55 µL
0.75 M H2SO4. The methanol produced from saponification
reaction was determined by colorimetric method, modified from
Anthon and Barrett (2004) and Yang et al. (2008). The degree of
pectin methyl-esterification was calculated as moles of methanol
produced from per mol of galacturonic acid.

PME Activity Assay
For extraction of PME, different root segments (50 root segments
for one replicate) were homogenized in ice-bath and suspended
in an extraction buffer containing 100 mM Tris and 1 M NaCl
(pH 7.5, pre-cold at 4◦C), the suspension was vortexed repeated
(20 s for 20 min each) for 1 h. Extracts were centrifuged
(15,000× g, 10min, 4◦C) and PME activity was determined in the
supernatant following the method of Anthon and Barrett (2004)
with minor modification. The incubation contained: 100 µL of
100 mM Tris-HCl (pH 7.5), 0.4 mg/mL of pectin or 100 µL
of 100 mM Tris-HCl (pH 7.5) as blank, 100 µL enzyme crude,
40 µL of MBTH (3 mg/mL), 10 µL of alcohol oxidase (AO,
0.01 units/µL). After the addition of AO, the samples were
incubated for 20 min at 30◦C and then 200 µL of a solution
containing 5 mg/mL of ferric ammonium sulfate and sulfamic
acid were added to terminate the reaction. After 20 min at room
temperature, 550 µL of water was added and A620 determined.

Morin Staining
Roots were stained in 0.01% morin for 30 min (Zhu et al., 2013)
after Al treatment, and then rinsed with de-ionized water. Free-
hand sections were made with sharp razor blades. The whole root
tips and the cross-sections of the different regions were examined
and photographed immediately. The green fluorescence signal
was observed respectively using an Olympus IX71 fluorescence
microscope and a Laser-Scanning Confocal Microscope (LSCM,
FV1000, Olympus). At least 5 roots and 10 sections were images

for each treatments, and fluorescence intensity was measured
with the open source software Image-J.

Statistics
Random sampling was arranged and each experiment was
repeated at least three times. Duncan’s multiple-range test was
applied to test differences among the treatments at p < 0.05 using
Statistical Analysis Systems (SAS 9.13) software.

RESULTS

Different Al Resistance in Cultivars of
Pea
Root elongation and Al content was adopted to compare Al
resistance in different cultivars of pea. Root elongation was
inhibited by Al toxicity in both cv Onward and cv Sima, but
RRE in cv Onward was higher than that in cv Sima (Figure 1A).
Root elongation of cv Onward was inhibited by 47% after
24 h exposures to 30 µM AlCl3, whereas it was 87% for cv
Sima (Figure 1A). Meanwhile there was significantly less Al
accumulation in cv Onward comparing to cv Sima (Figure 1B).
These results confirm that cv Onward is an Al-resistant cultivar
while cv Sima is an Al-sensitive cultivar.

Al Content in Roots
The content of Al in root segments or cell wall was measured
in order to find the potential differences of Al accumulation
in Al-resistant and Al-sensitive cultivars (Figure 2). Content
of Al tended to decrease from root apex to root base both in
root segment and cell wall. The Al accumulated in the cell wall
accounted for about 70% of the total Al in the root, and there was
a positive correlation between Al content in root and cell wall.
Content of Al was higher in cv Sima than that in cv Onward at 0–
1.0 mm and 1.0–2.5 mm root segment, and there was a significant
differences in the cell wall. It indicates that Al accumulates mainly
in root apex (0–1.0 mm and 1.0–2.5 mm segments), wherein
more Al accumulates in cv Sima than in cv Onward in both the
root cells and root cell wall.

Morin Staining
Morin is an appropriate dye to study qualitatively the radial
Al distribution along the root tip axis (Klug et al., 2011).
Some recent study indicates that morin can detect Al in the
cytosol but not cell wall-bound Al or vacuole-compartmentalized
Al (Eticha et al., 2005b; Huang et al., 2012), and strong Al-
dependent green fluorescence represents Al present in the cytosol
and nucleus. To gain further evidence for possible distribution
of Al, we localized Al with morin staining. After exposure to
30 µM Al for 24 h, roots showed stronger fluorescence at
0–3 mm root tips (Figures 3A,D) than the other root segments
(Figures 3B,C,E,F) in both cv Onward and cv Sima. There was
brighter fluorescence at 1.0–2.5 mm root of cv Sima than that
of cv Onward (Figures 3A,D). Through the semi-quantitative
calculation of fluorescence intensity, the data showed that the
fluorescence intensity of cv Sima was significantly higher than

Frontiers in Plant Science | www.frontiersin.org 3 February 2016 | Volume 7 | Article 39

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Li et al. Pectin in Transition Zone Determines Al-Resistance

FIGURE 1 | Effect of Al application on root elongation (A) and Al
content (B) in different cultivars of pea. Six-day-old seedlings were
exposed to 0 or 30 µM AlCl3 solution (pH 4.5, containing 0.5 mM CaCl2 and
25 µM H3BO3) for 24 h. The root length was measured before and after Al
treatment. Then, 0–10.0 mm root tips were collected to determine Al content.
Bars represent means ± SD, n = 4. Different letters indicate significant
difference at p < 5%.

that of cv Onward at 1.0–2.5 mm root segments (Figure 3G).
Then morin stain was applied in root transverse section at 600,
1500, 3000, and 6000µm from the apex. The Al-sensitive cv Sima
displayed stronger Al-dependent green fluorescence than the Al-
resistant cv Onward at 600, 1500, and 3000 µm (Figures 3H–P).
There was significant difference in the fluorescent intensity
counted at 1500 µm of cv Sima than that of cv Onward. In
the meantime we found the green fluorescence mainly appeared
in the epidermis and outer cortical cell layers in both cultivars.
However, the green fluorescence of morin could be seen in
more cell layers to the root axis at 1500 and 3000 µm of cv
Sima than that of cv Onward. These results show that cv Sima
accumulates more Al in the cytosol at the transition zone than cv
Onward.

Effect of Al Treatment on Pectin
Pectin is the major component of cell wall that binds Al (Horst,
1995; Chang et al., 1999), which may define the Al sensitivity
of cultivars (Yang et al., 2011b). In our results, the pectin
distribution trend in roots was almost same in both cv Sima

FIGURE 2 | Effect of Al application on Al content in root segments
(A) or cell wall (B) in different cultivars of pea. Six-day-old seedlings were
exposed to 0 or 30 µM AlCl3 solution (pH 4.5, containing 0.5 mM CaCl2 and
25 µM H3BO3) for 24 h. Root segments were cut with sharp razor blades and
Al content was determined by ICP-AES. Bars represent means ± SD, n = 4.
Different letters indicate significant difference at p < 5%.

and cv Onward (Figure 4A). The pectin content was increased
in mostly root segments after Al treatment, and the increase
was mainly in 0–1.0 mm and 1.0–2.5 mm segments, it was
50% (from 3.0 µg/g to 4.5 µg/g) and 39 % (from 4.2 µg/g
to 5.9 µg/g) in cv Onward, 90% (from 3.5 µg/g to 6.7 µg/g)
and 219% (from 3.1 µg/g to 9.8 µg/g) in cv Sima, respectively.
The increase of pectin in cv Sima was extraordinarily higher
than that in cv Onward, especially in 1.0–2.5 mm segments.
It indicates that the pectin metabolism is more responsive to
Al toxicity in cv Sima. Therefore, Al exposure stimulates the
increase of pectin in both cultivars and it is more prominent
in Al-sensitive cultivar, especially in the transition zone
(1.0–2.5 mm).

The primary binding sites of Al3+ in pectic matrix relies
on its carboxylic groups, which have large numbers negatively
charged and a particularly high affinity for Al3+ (Blamey et al.,
1990; Chang et al., 1999). The number of binding sites are
essentially determined by pectin content and degree of methyl-
esterification. The content of demethylesterified pectin was
computed by the formula that content of demethylesterified
pectin = pectin content × (1–DM/100), DM was expressed in
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FIGURE 3 | The distribution of Al indicated by morin (green fluorescence) stain. Roots were exposed to 30 µM AlCl3 (pH 4.5, containing 0.5 mM CaCl2 and
25 µM H3BO3) for 24 h. Roots of cv Onward (A–C,H–K) and cv Sima (D–F,L–O) was observed using an fluorescence microscope (whole root, A–F) and LSCM (root
transverse section, H–O), respectively. Roots were transversely sectioned at 600 µm (H,L), 1500 µm (I,M), 3000 µm (J,N) and 6000 µm (K,O) from the apex for
morin staining and fluorescence observation. Relative fluorescence intensity of cv Onward was used as reference 100% value (G,P). Scale bars = 1 mm (A–F) or
100 µm (H–O). Asterisks above columns indicate statistically significant differences at the same segment between cv Onward and cv Sima (p < 5%).

percentage (%) and was calculated as the moles of methanol per
mol of galacturonic acid. The overall trend of demethylesterified
pectin content remained the same as pectin content in both
cultivars (Figure 4B). It indicates that Al induces significantly
more demethylesterified pectin in root transition zone (and
meristem and root caps) of Al sensitive cv Sima than that in Al
resistant cv Onward.

Effect of Al Treatment on the Degree of
Pectin Methyl-esterification
Many evidences indicate that not only pectin content contributes
to Al accumulation in plants but also the degree of pectin methyl-
esterification (DM) which determines the ratios of negatively
charged carboxylic groups to bind Al (Eticha et al., 2005a;
Rangel et al., 2009; Yang et al., 2011b). Degree of pectin methyl-
esterification in root apex ranged from 25 to 5% in different
segments and tended to decrease from root apex to root base
(Figure 5), it was higher in Al-resistant cultivar than that in
Al-sensitive cultivar. After Al treatment for 24 h, the degree
of pectin methyl-esterification increased significantly in both
cultivars, while it was still higher in cv Onward than cv Sima. The

degree of pectin methyl-esterification in 1.0–2.5 mm roots was
highest in cv Onward, which was 1.76 folds to that of cv Sima. The
degree of pectin methyl-esterification was highest in 0–1.0 mm
root segments of cv Sima instead of 1.0–2.5 mm root segments
in cv Onward. These results indicate that Al promote the degree
of pectin methyl-esterification increase in both Al-resistant cv
Onward and cv Al-sensitive cv Sima.

Effect of Al Treatment on PME
Pectin is mainly demethylesterificated by PME and the degree
of pectin methyl-esterification are mainly determined by PME
(Micheli, 2001). The activity of PME in 0–1.0 mm root was the
highest and decreased basipetally from the root apex in both
cultivars (Figure 6), which is consistent with the process of pectin
maturation along root axis. The activity of PME was significantly
higher in cv Sima than in cv Onward no matter with or without
Al. However, Al treatment induced a significant increase of PME
activity and the increase was more prominent in Al-sensitive
cultivar, especially at the 1.0–2.5 mm root segments. The activity
of PME in 1.0–2.5 mm root segments of Al-sensitive cv Sima was
2.2 folds to that of Al-resistant cv Onward.
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FIGURE 4 | Pectin content in different root segments of different cultivars of pea (Pisum sativum). Six-day-old seedlings were exposed to 0 or 30 µM
AlCl3 solution (pH 4.5, containing 0.5 mM CaCl2 and 25 µM H3BO3) for 24 h. (A) The pectin content of cell wall. (B) The demethylesterified pectin content. The
demethylesterified pectin content was calculated by the formula of content of demethylesterified pectin = pectin content × (1-DM/100). Bars represent
means ± SD, n = 4. Different letters indicate significant difference at p < 5%.

DISCUSSION

The initial symptoms of Al toxicity in plants are the rapid
inhibition of root elongation. The extent of root growth

inhibition has been used extensively as a criterion for Al toxicity
and Al resistance (Foy, 1988). In the present study, Al-induced
inhibition of root elongation and the accumulation of Al was
adopted to distinguish cultivars of pea into Al-resistant cv
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FIGURE 5 | Effect of Al stress on the degree of pectin methyl-esterification in root segments of different cultivars of pea (Pisum sativum). Six-day-old
seedlings were exposed to 0 or 30 µM AlCl3 solution (pH 4.5, containing 0.5 mM CaCl2 and 25 µM H3BO3) for 24 h. Different root segments were collected to
determine the degree of pectin methyl-esterification based on the concentration of uronic acid and methanol. The degree of methyl-esterification (DM, %) was
calculated as moles of methanol per mol of galacturonic acid. Bars represent means ± SD, n = 4. Different letters indicate significant difference at p < 5%.

Onward and Al-sensitive cv Sima (Figure 1). Cultivar Onward
displays higher RRE due to lower Al accumulation in comparison
with cv Sima (Figure 2).

Morin staining interestingly shows that root transition
zone (1.0–2.5 mm roots) displays stronger Al-dependent green
fluorescence than the other segments, which is stronger in cv
Sima than in cv Onward (Figure 3). The transverse distribution
of Al-dependent green fluorescence in transverse root section also
indicates that more Al enters into cytosol of root transition zone
than the other zones, especially for cv Sima. Aluminum in the
cytosol is more toxic than in the cell wall (Delhaize and Ryan,
1995). It may contribute to the sensitivity of the root transition
zone to Al toxicity and Al resistance of the cultivars of pea (Pisum
sativum L.).

Our work disclosed how the transition zone determined the
sensitivity/resistance of the cultivars focusing on the properties
of cell wall which was the main target of Al binding.

The Pectin of Transition Zone is most
Prominent to Al-induced Increase
The analysis of Al content indicates that Al accumulates
predominately in 0–1.0 mm and 1.0–2.5 mm root segments
of pea (Figure 2A), and cell wall is the major target of
Al accumulation (Figure 2B). Al accumulates primarily and
predominantly in the root apoplast because the pectin matrix
has negative charges to bind Al (Schmohl and Horst, 2000;
Horst et al., 2010; Yang et al., 2011b). The Al binding to the

cell wall pectin-matrix modulates Al sensitivity (Schmohl and
Horst, 2000). The results show that, at the absence of Al,
there is no essential difference in pectin content between cv
Sima and cv Onward. After 24 h Al treatment, pectin content
increases significantly in the two cultivars, however, the increase
of pectin content is more prominent in the Al-sensitive cv
Sima than in the Al-resistant cv Onward. As a result, after Al
treatment, the content of pectin is significantly higher in cv
Sima than in cv Onward, especially the transition zone. This
is consistent with the result in maize (Eticha et al., 2005a)
that cell wall pectin contributes to genotypic differences in Al
resistance.

Therefore, responses of pectin to Al toxicity distinguish
the 1.0–2.5 mm root from the other segments to be most
sensitive to Al toxicity, which also distinguish Al-sensitive cv
Sima from the Al-resistant cv Onward (Figures 4 and 5). Al-
induced 3.2 folds and 1.4 folds increase of pectin in 1.0–2.5 mm
roots of cv Sima and cv Onward respectively. Therefore, pectin
content in 1.0–2.5 mm root segments of cv Sima is significantly
higher than that of cv Onward after Al exposure. The similar
trend of demethylesterified pectin content was found in root
segments.

Sivaguru and Horst (1998) demonstrate that the distal part
of the transition zone is the most Al-sensitive root zone
in maize and the transition zone could sense the presence
of Al and further regulate root elongation. The transition
zone, as the most sensitive zone, has the highest content of
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FIGURE 6 | Effect of Al stress on PME activity in root segments of different cultivars of pea (Pisum sativum). Six-day-old seedlings were exposed to 0 or
30 µM AlCl3 solution (pH 4.5, containing 0.5 mM CaCl2 and 25 µM H3BO3) for 24 h. Different root segments were collected to determine PME activity as described
in Section “Materials and Methods.” Bars represent means ± SD, n = 4. Different letters indicate significant difference at p < 5%.

pectin and demethylesterified pectin (Figure 4B). The large
number of negative charges on the demethylesterified pectin
is generally considered to be conducive to the accumulation
of Al3+ (Schmohl and Horst, 2000). However, 1.0–2.5 mm
segments have lower Al content compared with 0–1.0 mm root
segments (Figure 2). In the 2.5–5.0 mm segments, the green
fluorescence of cv Sima was higher than that of cv Onward,
but Al content in roots or cell wall show no differences.
This may be the result of the redistribution of aluminum.
We speculate that there may be other factors affecting the
distribution of Al in the apical cell wall, e.g., the structure
of pectin and the pH of root surface, which require further
study.

Pectin and PME in Root Transition Zone
Cooperate to Determine Al Resistance in
Cultivars of Pea
In recent years, some evidences suggest that Al toxicity induces
cellular damage via cell wall-plasma membrane-cytoskeleton
continuum and thus root cell wall plays an important role
in Al resistance (Horst et al., 1999, 2010; Sivaguru et al.,
1999). The Al-binding capacity of cell wall pectin depends
on both pectin content and the degree of pectin methyl-
esterification (Eticha et al., 2005a,b; Kyomugasho et al., 2015).
In order to expound the effect of pectin properties on Al
sensitivity, the degree of pectin methyl-esterification and PME

activity in different root zones were compared between Al-
sensitive and Al-resistant cultivars. The results show that Al
toxicity not only promotes the increase of pectin, but also
increase the degree of pectin methyl-esterification and the PME
activity (Figures 5 and 6). The increase of degree of pectin
methyl-esterification and the PME activity may be attributed
to the promotion of Al on synthesis of pectin. The newly
born pectin is highly esterified, therefore elevates the degree
of pectin methyl-esterification. The increase of pectin synthesis
also prompts the increase of the PME activity. Since PME
activity of cv Sima is always higher than cv Onward, the
degree of pectin methyl-esterification is higher in cv Onward
than in cv Sima, especially in 1.0–2.5 mm root segments.
We have reasons to believe that Al resistance in cv Onward
is related to the lower content of pectin and lower activity
of PME in root transition zone, especially in the presence
of Al.

CONCLUSION

Our results clearly demonstrate that Al promotes the pectin
synthesis in pea root tip, and accompanied with the increase
of PME activity and degree of esterification. The PME activity
of Al-sensitive cv Sima is higher than that of Al-resistant cv
Onward, especially for the transition zone. In the transition zone
of Al-sensitive cultivar, which is the most sensitive zone to Al,
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the most prominent to Al-induced pectin increase and the higher
PME activity results in higher content of demethylesterified
pectin and higher Al accumulation in cell wall and cytosol.
Therefore we have reasons to believe that the transition zone
contributes, at least in part, to the differential Al resistance among
cultivars. Further studies are required to reveal the details of Al
redistribution in root cells of root transition zone of Al-resistant
cultivars and Al-sensitive cultivars.
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