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The development of microalgae sustainable applications needs better understanding of

microalgae biology. Moreover, how cells coordinate their metabolism toward biomass

accumulation is not fully understood. In this present study, flux balance analysis (FBA)

was performed to identify sensitive metabolic pathways of Chlamydomonas reinhardtii

under varied CO2 inputs. The metabolic network model of Chlamydomonas was

updated based on the genome annotation data and sensitivity analysis revealed CO2

sensitive reactions. Biological experiments were performed with cells cultivated at

0.04% (air), 2.5, 5, 8, and 10% CO2 concentration under controlled conditions and

cell growth profiles and biomass content were measured. Pigments, lipids, proteins,

and starch were further quantified for the reference low (0.04%) and high (10%)

CO2 conditions. The expression level of candidate genes of sensitive reactions was

measured and validated by quantitative real time PCR. The sensitive analysis revealed

mitochondrial compartment as themajor affected by changes on the CO2 concentrations

and glycolysis/gluconeogenesis, glyoxylate, and dicarboxylate metabolism among the

affectedmetabolic pathways. Genes coding for glycerate kinase (GLYK), glycine cleavage

system, H-protein (GCSH), NAD-dependent malate dehydrogenase (MDH3), low-CO2

inducible protein A (LCIA), carbonic anhydrase 5 (CAH5), E1 component, alpha subunit

(PDC3), dual function alcohol dehydrogenase/acetaldehyde dehydrogenase (ADH1), and

phosphoglucomutase (GPM2), were defined, among other genes, as sensitive nodes in

the metabolic network simulations. These genes were experimentally responsive to the

changes in the carbon fluxes in the system. We performed metabolomics analysis using

mass spectrometry validating the modulation of carbon dioxide responsive pathways and

metabolites. The changes on CO2 levels mostly affected the metabolism of amino acids

found in the photorespiration pathway. Our updatedmetabolic network was compared to
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previous model and it showedmore consistent results once considering the experimental

data. Possible roles of the sensitive pathways in the biomass metabolism are discussed.

Keywords: flux balance analysis, chlamydomonas, biomass, carbon uptake, biotechnology, microalgae,

bioenergy, systems biology

INTRODUCTION

The increase of air emissions originated from the burning of
fossil fuels and the continuous rising of the demands and
prices of energy have been an issue of world impact and socio-
economic importance (O’Neill and Oppenheimer, 2002; Hoegh-
Guldberg and Bruno, 2010). Microalgae-based technologies
focused in the bioremediation of air emissions coupled to
biomass production represents a potential alternative way for
reducing levels of air contaminants, creating new sources of
renewable biomass that can be used for bioenergy production,
or even for the accumulation of other bioproducts (Li et al.,
2010; Packer et al., 2011; Scranton et al., 2015). Microalgae can,
through photosynthesis, capture CO2 and accumulate biomass,
reducing the net emission of CO2 during the biofuel production,
contributing to protect the environment through sustainable
applications, including the development of third generation
biofuels (Singh and Olsen, 2011; Singh et al., 2011; Behera et al.,
2014). Therefore, microalgae have attracted more attention as
suitable organisms with potential to be a sustainable source
of biocompounds important for a number of areas such as
nutrition, aquaculture, pharmaceuticals, and biofuels. Thanks
to the advances in microalgae biology, bioengineering, and
molecular biology, a better understanding of metabolic routes,
gene expression regulation, and cellular mechanisms is being
achieved, which may contribute to further improve microalgae
capabilities toward sustainable applications (Rosenberg et al.,
2008).

Since the efficiency to derive biofuels from microalgae seems
to be comparable to those derived from crops plants (such as
soy and canola), there is a great interest to develop research in
biofuel production through maximizing biomass accumulation
and improving derivatization processes (Savage, 2011). Biomass
can be transformed into fuels by conversion of carbohydrates to
ethanol, transesterification of lipids into biodiesel, gasification of
biomass to syngas, cracking of hydrocarbons, and isoprenoids
to gasoline (Matsumoto et al., 2003) and the direct synthesis of
hydrogen gas (Carvalho et al., 2006).

Among the many species of microalgae, Chlamydomonas
reinhardtii has been extensively considered as a model organism
to the study of different cellular mechanisms under distinct
environmental conditions (Harris, 2001). This knowledge may
be applied to improve specific features and could be in some
cases extrapolated to close evolutionary relative species. For
example, it has been found that, although Chlamydomonas is
not considered a good lipid-storing species, under N-starvation
this capability is favored (Scranton et al., 2015). Additionally,
several reports have indicated that by changing the cultivation
conditions, such as carbon source, light intensity, nitrogen,
sulfur, and microelements availability, the biomass production

could have significant improvement in microalgae cultivation
(Rosenberg et al., 2008).

However, it is important to generate strategies that improve
our capacity to predict the cellular behavior or to precisely
identify the biological pathways that have an important
role on determining biomass accumulation. Uncovering these
pathways may allow us to perform permanent optimization of
the capabilities of microalgae to accumulate biomass. An in
silico method useful to analyze cell behavior under different
growth conditions or disturbances and simulate metabolic
changes occurring in microalgae cells consists of Flux Balance
Analysis (FBA). This approach takes in consideration a linear
programming strategy to solve and describe the fluxes in a
systems at steady state (Orth et al., 2010).

FBA has emerged as a mathematical tool to study metabolic
networks and has been successfully tested in prokaryotes
including genus Escherichia (Edwards et al., 2002), Lactobacillus
(Dishisha et al., 2014), Nitrosomonas (Perez-Garcia et al., 2014),
to mention a few examples. In many of these studies, FBA
was applied to detect main metabolic pathways, growth rates
at specific genetic and environmental conditions, and revealed
possible candidate genes for improvement of specific strains
(Edwards et al., 2002). In Chlamydomonas, the FBA approach
was previously employed to predict metabolic fluxes based on
primary metabolism (Boyle and Morgan, 2009). Furthermore,
FBA was used to estimate the cell growth rate at different photon
flux inputs in an improved metabolic network (Chang et al.,
2011).

From the perspective of the CO2 uptake by microalgae
and biomass production, the strategies of cell survival at
low CO2 have been well described with the characterization
of the Carbon Concentrating Mechanism (CCM) (Badger
et al., 1980). Through the understanding of the CCM, it
is possible to explain, at least partially, the mechanisms
by which microalgae are able to keep their photosynthesis
performance and mitigate the stress caused by low CO2 supply.
Basically, cell machinery elevates the CO2 concentration at the
site of RubisCO (ribulose-bisphosphate carboxylase/oxygenase)
enzyme by increasing the cellular inorganic carbon (Ci) pools
favoring the carboxylase activity of RubisCO; thus, carbon
fixation through photosynthesis. Moreover, some Ci transporters
located in the plasma membranes and chloroplast have been
suggested as main proteins on the carbon uptake process (Wang
et al., 2011).

Since CCM is not fully activated at high CO2 concentration
and considering the fact that increasing the Ci concentration
inside the cell alone does not guarantee full and effective
carbon fixation due to reaction saturation problems, a deeper
investigation of this process through in silico analysis is still
needed.Moreover, the knowledge about themetabolic limitations
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of microalgae to accumulate and fixate CO2 even under high
CO2 concentrations is still incomplete. It has been previously
suggested that some microalgae species are not able to fixate all
carbon that is supplied to its growth and a possible saturation
on the carbon fixation may occur (Melo et al., 2014). The
identification of the pathways and biochemical routes that
contribute to this saturation on the carbon fixation will continue
to improve our understanding of the molecular control of the
biomass accumulation.

Therefore, in the present study we investigated the effects
of high CO2 concentration in a metabolic perspective. We
disclosed novel routes and genes related to CO2 uptake and
fixation through genomic scale metabolic network modeling.
Our modeling strategy took in consideration the metabolic
reconstruction reported by Chang et al. (2011) which was
further updated and extended through homology-based
sequence analysis on the annotated genome of the microalgae
C. reinhardtii. Biomass production in this species was selected
as the optimization function and evaluated under different CO2

concentrations, ranging from 0.04 to 10%, using experimental
data of biomass content as model constrains. The results from
both models were compared, sensitive genes were selected,
and their relative expression experimentally validated by
quantitative real-time PCR. In addition, metabolome analysis
was performed for the relative quantification of primary
metabolites. Together, the detection and validation of sensitive
genes and pathways under high CO2 conditions through FBA,
gene expression analysis and metabolomics, indicated that
CCM, photorespiration and mitochondrial related processes
have important roles in the control of biomass accumulation in
C. reinhardtii. Our work revealed potential candidate pathways
and genes for future maximization of microalgae biomass
production.

MATERIALS AND METHODS

Metabolic Network Reconstruction
The iRC1080 model from Chang et al. (2011) was supplemented
by genomic information and gap filling using metabolic
databases. All the annotated protein sequences for C. reinhardtii
(14,414 sequences) were retrieved from NCBI database (Sayers
et al., 2009) and served as input for previous scripts developed
in our research group that identify enzymes based on homology
analysis by using BLASTp from NCBI. This analysis identified a
total of 1632 enzymes (Supplemental Table 1). The recognized
proteins were then used to extract all the metabolic reactions
associated according to the KEGG database (Kanehisa and Goto,
2000) (Supplemental Table 2). An improvedmanual curation was
performed due to the appearance of new reactions, substrates,
and products that required new connections. Manual inspection
was also needed to avoid generic metabolites and repeated
reactions. The directionality of the new reactions was defined
by the criteria of the free Gibb’s energy at 27◦C and pH 7 and
calculated by the group contribution method as described in
Mavrovouniotis (1990). Compartmentalization was needed to
guarantee the placement and viability of the reaction according

to Chang et al. (2011), literature and databases based on
signal peptide (Petersen et al., 2011). Exchange reactions were
included in order to connect the new metabolites in the cellular
compartments ensuring origin and consumption of reagents.
Special attention was required for lipids and carbohydrates
because generic or general names were found in KEGG database
hindering the integration of new reactions.

Sensitivity Analysis
The two metabolic networks, the iRC1080 model given by
Chang et al. (2011) and our complemented model, were
reconstructed into the stoichiometric matrix and the fluxes of
the transport reactions adjusted to represent autotrophic growth
conditions. Light condition was fixed at cool-white fluorescent
(57.54mE/gDW.h, equivalent to 400 µE·m−2·s−1) and the CO2

fluxes modified to evaluate the effects of different conditions of
CO2 supply at the steady state of the cell metabolism and other
parameters were established as previously described (Melo et al.,
2014). In both cases, the Biomass function was not modified and
was implemented as proposed by Chang et al. (2011). The lower
and upper bounds of the new reactions were fixed according to
standard values. The optimization problem was resolved using
Xpress IVE R© by setting constraints as follows:

maxzc
Tv(1)

subject to Sv = 0

LB ≤ v ≤ UB

cT ∈ Rn
∣

∣

∣

cT = [0 0 0 . . . 1 . . . 0 0 0]
∣

∣

∣

pos(1) = Biomass reaction

v ∈ Rn

S ∈ Rm×n

LB ∈ Rn

Where S is the stoichiometric matrix, v is the flux vector, LB:
lower bound, UB: Upper bound, c is a vector of zeros that sets
the objective function, m is the number of metabolites, n is the
number of reactions, pos(1) is the objective function (biomass).

The definition of candidate metabolic pathways and genes
that could play an important role in CO2 level response was
performed through the identification of reactions affected under
different CO2 fluxes through FBA simulations. FBA was resolved
at five different CO2 conditions (0, 2.5, 8, 5, and 10% CO2) and
the resulting magnitudes defined the CO2-sensitive reactions by
the flux variation coefficient ρ [set to be significant when ρ ≥ 0.01
(Melo et al., 2014)]. Experimental data of total biomass content
were considered as model constrains for calculating the CO2

fluxes, as previously described (Melo et al., 2014). The results
from both models were compared to analyze the effects of the
metabolic networks on the sensitivity of FBA.

Results from metabolomics analysis were used to further
verify our sensitive reactions and support the FBA analysis.
Thus, metabolites relatively quantified by metabolomics were
compared to check compatibility between overexpression and
knock-down according to our FBA results. For this, all the FBA-
sensitive reactions for one specific metabolite were grouped with
their calculated fluxes at low and high CO2 concentrations. A
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net flux was then calculated by adding production reactions,
subtracting consumer reactions, and a rate between the net flux
at low CO2 over the net flux at high CO2 was finally considered.

Cell Strain and Culture Conditions
The C. reinhardtii strain CC503 cw92mt+ (Chlamydomonas
Resource Center University ofMinnesota, USA) was cultivated in
HSM medium at 27◦C in autotrophic growth conditions, under
different CO2 concentrations [0.04 (air), 2.5, 5, 8, and 10% CO2]
in a R’ALF Plus solo 6.7 L bioreactor (Bioengineering, Inc., USA)
in constant and continuous illumination with cool-white LED
(average 400µE·m−2·s−1). The cultures remained in a batch
mode with starting culture volume of 4 L, in open system with
automatic controlled CO2 gas flow in air, no pH control and
continuous stir at 60 rpm. Cell inoculation was carried out with
a 10mL pre-inoculum taken from a sample at steady state. Cells
were harvested by centrifugation at the late exponential phase of
cell growth (O.D.750 nm ≈ 0.9) for biomass characterization.

Cell growth monitoring was performed daily with
measurements of O.D. at 750 nm and cell counting using
Neubauer chamber. Growth rates were calculated as previously
described (Sorokin and Krauss, 1958).

Total Biomass Measurement
Cell pellets from 50-mL cell culture aliquots at the late
exponential phase were washed three times with 2mL of de-
mineralized water to remove inorganic salts and the final cell
suspension was transferred to previously weigh empty Petri
dishes. Plates containing the biomass were kept overnight at
90◦C, and the dry weight was measured. Three (0.04 and 10%
CO2 conditions) or two biological replicates (2.5, 5, and 8%
CO2 conditions), each one with three technical replicates, were
considered for statistical analysis.

Protein, Lipid, Pigment, and Starch
Measurements
Cells at low (0.04%) and high CO2 (10%) were harvested in
50-mL aliquots (three biological replicates and three technical
replicates per sample) and centrifuged at 3000 × g in a swing
rotor bench centrifuge for 5min at 4◦C. Cell pellets were kept
at −80◦C until further processing. Frozen cell pellets were
macerated until conversion into a light green powder. Protein
extraction was performed using a buffer containing 100mM Tris
pH 7.5, 4mM EDTA, 5mM 2-mercaptoethanol, 10% glycerol,
and 0.05% Triton X-100. Protein content was determined by
Bradford assay (Bradford, 1976). Pigments were extracted using
ethanol and quantified using Kaczmar equations (Henriques
et al., 2007). Lipids and carbohydrates were extracted using
chloroform:methanol:water (1:2:0.8) mixture, and the resulting
chloroform layer, which contains the lipids, was evaporated
in a vacuum oven at 30◦C for 24 h. The total lipid content
was calculated by dry weight. Starch content was determined
in the insoluble fraction after the chloroform:methanol:water
extraction and solubilized in 0.1M NaOH for 30min at 95◦C.
After neutralization, starch was digested to glucose by the
addition of amyloglucosidase and α-amylase at 37◦C overnight.
Determination of the glucose released by the enzymatic digestion

of starch was assayed enzymatically by coupling to reduction of
NADP+ to NADPH in a microplate reader (Stitt et al., 1989).

Gene Expression Analysis by Quantitative
RT-PCR
Based on our results on the sensitivity analysis using FBA
approach on the model described by Chang et al. (2011)
and literature review, 40 sensitive genes related to CO2

changes [low CO2 (0.04%; air) and high CO2 (10% CO2)]
were selected to further gene expression analysis through the
relative quantification by qRT-PCR. These candidate genes were
previously annotated to the following routes and mechanisms:
CCM, Calvin cycle, Glycolysis/Gluconeogenesis metabolism, and
Glyoxylate/dicarboxylated.

Cells for RNA extraction were harvested in 2-mL aliquots by
centrifugation for 2min, 3000 × g, at 4◦C, and the cell pellets
were immediately frozen and kept at −80◦C until further use.
Total RNA extraction was performed using the RNeasy Plant
Mini Kit (Qiagen, Hilden, Germany) as previously described
(Winck et al., 2013). Total RNA samples were treated with
TURBO DNAse (Ambion, Darmstadt, Germany) as indicated
by the manufacturer. Absence of genomic DNA contamination
was accessed by qRT-PCR using primers annealing to an
intergenic region of chromosome 16 (IGR1, IGR2). Primers were
designed using QuantPrime tool (www.quantprime.de) following
the criteria as follows: Tm = 60 ± 1◦C, length 18–25 bases,
preferentially on exon-exon junctions. When possible, primers
were designed to have a GC content of 45–55%, generating a
single PCR product sizing between 60 and 150 bp. Primers were
synthesized by Macrogen (Macrogen, Korea).

Three micrograms of total RNAwere used for cDNA synthesis
employing the SuperScript III First Strand System (Invitrogen,
Darmstadt, Germany) according to the manufacturer’s
instructions, using oligo-(dT20) as primer for the synthesis
of the first complementary DNA strand. Two genes [Actin
(ACT) and Ubiquitin protein ligase (UBQ)] were selected
as reference genes. All the cDNA samples were amplified in
96-well plates in an Applied BioSystems ABI7500 FAST system.
The qPCR reaction was carried out in 10µL containing 1µM
primers and SYBR Green qPCRMaster Mix (Roche). The primer
sequences used in this study are presented in Supplemental Table
3. Real-time PCR reaction parameter settings were as follow:
2min at 50◦C, 10min at 95◦C, followed by 40 cycles of 15 s at
95◦C and 1min at 60◦C. Amplicons which dissociation curve
resulted in double melting temperatures or doubled products in
a 4% gel electrophoresis were discarded from further analysis.
The relative expression ratio for each gene was calculated as
previously described (Pfaffl, 2001). The PCR efficiency for each
reaction was calculated based on the profile of the emitted
fluorescence in the exponential phase (Rutledge and Stewart,
2008; Rutledge, 2011). Three biological replicates, each one with
one technical replicate for the two conditions analyzed (0.04 and
10% CO2) were performed.

Metabolomics Analysis
Aliquots of 50-mg pellet from cell culture were taken in the
stationary phase (OD750 ≈ 0.9) at low (0.04%) and high CO2

Frontiers in Plant Science | www.frontiersin.org 4 February 2016 | Volume 7 | Article 43

http://www.quantprime.de
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Winck et al. Carbon Accumulation Sensitive Genes

concentration (10%). Metabolites were extracted with methanol-
chloroform-water HPLC grade (2.5:1:1.4) mixture and three
biological replicates for low CO2 (0.04%) and two biological
replicates for high CO2 (10%) were considered. Samples were
immediately frozen in liquid nitrogen and lyophilized for storage.
Extraction and derivatization of metabolites were performed
as outlined previously (Lisec et al., 2006). GC-TOF-MS data
were obtained using a PAL-Combi XT autosampler (PAL
System http://www.palsystem.com/), coupled to an Agilent 7890
A gas chromatograph—Leco Pegasus HT time-of-flight mass
spectrometer (LECO, St. Joseph, MI, USA; http://www.leco.
com/). Identical chromatogram acquisition parameters were
used as those previously described (Weckwerth et al., 2004).
Chromatograms were exported from Leco ChromaTOF software
(version 4.51.6.0) to R software. Peak detection, retention
time alignment, and library matching were obtained using the
TargetSearch package from bioconductor (Cuadros-Inostroza
et al., 2009). Data obtained from GC-TOF-MS analysis were
normalized by cell number, followed by sample total ion content
(TIC) as described previously (Giavalisco et al., 2011).

RESULTS

Metabolic Reconstruction Revealed Novel
Reactions
Inspections through differentmetabolic databases [GoFORSYS—
ChlamyCyc (http://chlamycyc.mpimp-golm.mpg.de/) or PMN
(http://pmn.plantcyc.org/CHLAMY/) that report proteins and
curated metabolic data, showed that only a small group
of enzymes of Chlamydomonas has been discovered and
functionally characterized. Considering this, our homology
analysis was performed comparing all annotated proteins in

KEGG database to identify the EC numbers and the associated
reactions. In order to simplify the reconstruction, only the
reactions with reported reactants in Chang et al. (2011) were
considered.

A total of 1632 enzymes were found by BLASTp analysis
using our script and a total of 2599 reactions (without
compartmentalization) were associated. After removing the
reactions that already exist in the work of Chang et al. (2011),
1803 new reactions were identified. By following the proposed
criteria, considering only the reactions with identified reactants
described by Chang et al. (2011), we detected 1380 new
compartmentalized reactions based on the homology analysis
with KEGG database (Supplemental Table 2). Some products
had to be connected by gap filling with manual inspection in
KEGG database taking the shortest pathway for FBA purposes.
The reactions were compartmentalized ensuring availability
of substrate within the 10 compartments and a total of 87
reactions were defined as reversible based on Gibbs energy
evaluation and previously reported studies. Figure 1 depicts
the percentage contribution of the main reaction categories,
including substrates, and products for the updated of the
metabolic network.

We found that some reactions and metabolites have generic
names in KEGG database, especially those associated to lipid
and starch metabolism. This inconsistent information provides
new reactions and metabolites that cannot be interconnected
affecting viable results from the FBA analysis. Gaps within
the different pathways were observed when looking at the
rows of the stoichiometric matrix and manual interconnection
had to be assumed to consume products based on metabolic
maps. Furthermore, unlikely reactions were found associated
to homology parameters, reactions belonging to penicillin, and
cephalosporin biosynthesis were rejected because no information

FIGURE 1 | Percentage contribution of the additional reactions included in the complemented metabolic network based on annotation of genes and

substrates. The whole annotated genome was considered to identify enzymes by homology analysis. Only reactions with identified reactants in Chang et al. (2011)

were considered.
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was confronted with Chlamydomonas. These results indicated
that manual curation is still necessary and mandatory to
guarantee feasible models.

Curation Level of the Network Affects FBA
Sensitivity Analysis
In a previous work, we have identified a total of 87 sensitive
reactions solving the biomass function (Melo et al., 2014).
A comparison of these sensitive reactions was performed
against the previous model proposed by Chang et al. (2011),
and 155 sensitive reactions were identified in our current
complemented network (Supplemental Table 4). The percentage
distribution of the annotation of the metabolic pathways
corresponding to the sensitive reactions is shown (Figure 2).
Data tendency is highly conserved between both models:
reactions associated to mitochondrial transport, chloroplast
transport, glycolysis/gluconeogenesis, and TCA cycle are both
subjected to regulation under different CO2 input fluxes.
However, in our complemented reconstruction, more, and
novel sensitive reactions appeared related to the amino acid
metabolism of alanine, threonine, tryptophan, and propionate
metabolism (resulting in production of valine and alanine)
(Supplemental Table 5). Other reactions belonging to starch,
sucrose, and methane metabolism were also glimpsed. Over
25 genes remained sensitive in both reconstructions and new
ones were identified (Table 1). Our results showed that larger
networks may lead to different results on the sensitive analysis

FIGURE 2 | Distribution of the metabolic pathways affected on

sensitive analysis from the both metabolic models evaluated. FBA

analysis was performed for the different CO2 inputs in the system at

autotrophic conditions. The same biomass function was established in both

models and sensitive reactions were identified based on the flux variation

coefficient. Metabolic pathways affected on sensitive analysis were annotated

and the number of sensitive reactions is indicated.

and may contribute to disclosing new candidate sensitive
reactions.

Our sensitive analysis revealed that mitochondria is the
most sensitive cellular compartment and showed the highest
number of reactions affected by varying CO2 concentrations,
mainly related to amino acid transporters, carriers (phosphate,
dicarboxylate), and transport of compounds such as ethanol,
ammonia, and O2. The mitochondria is important to the
maintenance of intracellular redox gradients, impacting the rates
of photorespiration, and efficiency of photosynthesis (Araújo
et al., 2014). Therefore, our results of the sensitive analysis
pointed to a possible role of mitochondria in modulating the
biomass production in microalgae. In order to validate our
results from the FBA analysis, the biomass objective function was
compared with the experimental data on biomass production. As
we have previously shown (Melo et al., 2014), the magnitudes of
the growth rates in our simulations were similar to experimental
values. However, in silico data showed a linear increment of
biomass production that does not represent the saturation
trends observed in our experimental conditions. High CO2

concentration enhances biomass production through non-linear
trend.

Cell growth was measured daily (Figure 3A) and a significant
increase in the total dry weight biomass was evident at high
CO2 concentrations (above 0.04% CO2), reaching the highest
content when evaluated at 10% (Figure 3B). Therefore, there
was a biomass increment of at least 300% in the cell culture in
high CO2 concentrations compared to cells cultured under low
CO2 concentration (air); this information corroborate previous
results (Chang et al., 2011). The amount of proteins (Figure 4A),
pigments (Figure 4B), lipids (Figure 4C), and dry weight (DW)
(Figure 4D), quantified per cell and compared between the low
CO2 (0.04%) and high (10%) CO2 conditions, showed a positive
increase at high CO2 concentration. However, no significant
changes were found for starch (about 17µmol/g or mg/dDW ±

2.5 at low CO2 and 16µmol/dDW ± 4.0 at high CO2, p > 0.05).
Moreover, we observed that cell culture at 5% CO2 produced
similar amounts of total biomass than cells cultured at 10% CO2,
suggesting the existence of a saturation trend in the biomass
production once cells are cultivated in CO2 concentration higher
than 5%.

Furthermore, the cell growth curves observed on high CO2

conditions (2.5, 5, 8, and 10% CO2) showed similar profiles but
cellular density was higher and statistically different from those
cell cultures under low CO2 (0.04%). Thus, the exposure to high
CO2 lead to an increased number of cells per culture volume
and enhanced cellular capability to accumulate biomass, likely
affecting mitosis-related cell cycle and energy metabolism.

Gene Expression Analysis Revealed
Candidate Sensitive Genes
The experimental validation of our results on the identification
of CO2 sensitive metabolic reactions included gene expression
analysis of selected genes and a metabolomics approach focused
in the identification and relative quantification of the main
metabolites of primary metabolism.
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TABLE 1 | Sensitive genes from FBA analysis of the complemented network.

Biological processes Sensitive genes*

Transport, mitochondria MITC14/MITC18/PTB8/PTB7/PTB1/PTB12/PTB4/PTB2/CRv4_Au5.213.g4507.t1

Phenylalanine tyrosine and tryptophan AST4/HIS5

TCA cycle/CO2 fixation ACH1/IDH3/SDH1/SDH2/OGD1

Valine, leucine, and isoleucine degradation CRv4_Au5.s4.g11844.t1/Crv4_Au5.s12.g3863.t1/CRv4_Au5.s6.g13618.t1/CRv4_Au5.s12.

g3863.t1/g1910.t1

Pyruvate metabolism; Glyoxylate metabolism HYDA1/MFDX/HYDA2/PFL1/ACK2/AACK1/ACK1/PAT1/PAT2/CRv4_Au5.s6.g13230.t1/CRv4_

Au5.s2.g9723.t1

Alanine and aspartate metabolism; glycerine, serine, and

threonine

AST3/AST1

Carbon fixation AAT1/AAT2/MME3/MME6/MDH5/MME2

Glycolisis, Gluconeogenesis, Valine, Leucine, and isoleucine

degradation

DLDH1/PDC2/PDH2/ALSS1/ALSL1/PYK1/PYK5/PHG1/GAP3/GAP1/PGM2/PGM5/PGM1B/

PGK1/TPIC/FBA1/FBA2/PGI1/GPM2

Transport, extracellular NAR1.6/NAR1.3/NAR1.4

Pentose phosphate pathway TAL1/TRK1/RPE1/RPI1

Glycine, serine, and threonine metabolism Crv4_Au5.s10.g124.t2/THD1/SHMT3

Transport, chloroplast AOC6/AOC5/AOT7/DAT1/OMT1/AOT5/FBB13/NAR1.5/NAR1.2/NAR1.1/AAA3/AAA1/CRv4_

Au5.s14.g5515.t1/CRv4_Au5.s15.g5921.t1/CRv4_Au5.g14736.t1/MOT20/MIP1/MIP2

Butanoate metabolism CRv4_Au5.s7.g14479.t1/CRv4_Au5.s16.g6952.t1

Oxidative phosphorylation NDA3/NUO11/NUO10/NUO13/NUO21/NUO3/NUO5/NUO6/NUO8/NUO9/IPY1/IPY3

Propanoate metabolism PFL1

Nitrogen metabolism CGL77/IBA57/GCST

*Bold type names represent common sensitive genes present in both metabolic reconstructions of Chang et al. (2011) and our present complemented reconstructed network.

FIGURE 3 | Cell growth and biomass profiles at different CO2 inputs in autotrophic conditions. (A) Cells were grown in a controlled bioreactor and

autotrophic conditions (in HSM medium). Absorbance at 750 nm was daily measured. (B) Dry weight biomass (gDW/L). The data show the average of two biological

replicates and three technical replicas for each sample. Error bars indicate standard deviation.

In Figure 5A, the relative expression levels of genes encoding
carbonic anhydrases (CAHs) are shown. Carbonic anhydrases
can catalyze the reversible interconversion of carbon dioxide
to carbonic acid in order to increase the carbon uptake and
availability in the site of photosynthesis at the chloroplast. The
analysis of these genes was included because there were previous
evidences that CO2 related mechanisms may be determinant
to biomass accumulation and CAHs play an important role on
cellular carbon uptake (Fang et al., 2012; Winck et al., 2013).
Our results showed that gene transcripts for CAH1, CAH4,
CAH5, and LCI1 were found to be more abundant in low CO2

concentration (0.04%). Similar results were shown by previous
studies on the Carbon Concentrating Mechanism (Brueggeman
et al., 2012). Moreover, our updated FBA sensitivity analysis

revealed that metabolic pathways of glycolysis/gluconeogenesis,
glyoxylate, and dicarboxylate metabolism are affected by the
changes in CO2 concentration. Genes coding for glycerate
kinase (GLYK), glycine cleavage system, H-protein (GCSH),
NAD-dependent malate dehydrogenase (MDH3), low-CO2

inducible protein A (LCIA), low-CO2-inducible protein 23
(LCI23), mitochondrial pyruvate dehydrogenase complex, E1
component, alpha subunit (PDC3), fructose-1,6-bisphosphate
aldolase (FBA2), glyceraldehyde-3-phosphate dehydrogenase
(GAP1), dual function alcohol dehydrogenase/acetaldehyde
dehydrogenase (ADH1), and phosphoglucomutase (GPM2),
were defined as sensitive nodes in the metabolic network
simulations and found to be responsive to the changes in the
carbon fluxes in the system.
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FIGURE 4 | Protein, lipid, and pigment content at 0.04 and 10% CO2

concentrations. (A) Protein content; (B) Total pigments; (C) Total lipid

content; (D) Dry weight biomass per cell. Three biological replicates with three

technical replicates were computed. Error bars indicate standard deviation.

As discussed previously, the sensitivity analysis may generate
different outputs depending on the completeness of themetabolic
network used as input for simulation. Genes coding for GLN1,
CIS1, ATP2, PRK1, and FBP1, which were found to be sensitive in
Chang et al. (2011), showed low variation in the gene expression
levels in our network model (Figure 5B). These genes are
involved in different metabolic processes such as carbon fixation,
glutamate metabolism, and fructose metabolism, as previously
shown (Melo et al., 2014). Moreover, genes coding for glycerate
kinase (GLYK), phosphoglucomutase (GPM2), fructose-1,6-
bisphosphate aldolase (FBA2), and glyceraldehyde-3-phosphate
dehydrogenase (GAP1), sensitive in both metabolic network
models compared, showed variations at the gene expression
levels. This may suggest that our proposed network model could
give complementary and valuable insights considering the results
of transcriptional changes.

Metabolites are Affected by Changes on
CO2 Concentration Levels
The identification of sensitive reactions through FBA guided us
to perform a quantitative analysis of the metabolites of cells

cultured in low (0.04%) and high (10%) CO2 concentrations. The
metabolomics analysis performed using GC-TOF-MS permitted
the quantification of 67 metabolites in the two compared CO2

concentrations (Supplemental Table 6).
We further explored the CO2 sensitive reactions of 13 out

of the 67 metabolites identified. Our model was able to predict
the behavior of these 13 metabolites at high and low CO2

concentrations regarding the amount and presence within the
cells, being consistent with experimental results at the two growth
conditions, except for the measurements of glycine, isocitrate,
and sucrose, which were not good represented by the FBA.

Other 50 metabolites quantified did not show significant
differences between the two growth conditions (0.04 and 10%
CO2) and 50% of these did not show any alteration through FBA.
From this perspective, it is shown that the model assumptions
in general terms seem to be consistent with real behavior
of maximizing biomass. However, others mechanisms may be
activated resulting in saturation trends for CO2 processing and
constraints.

We observed that the amino acids glycine, proline, b-alanine,
phenylalanine, asparagine, and lysine are the ones that suffered
the most prominent alterations in abundance in response to
high CO2 concentration (Figure 6) (Supplemental Table 7).
Relative levels of sucrose have been significantly reduced and the
amount of xylose increased in the cells cultivated at 10% CO2

concentration. This is an important indication of the cellular
metabolic shift at low and high CO2 concentrations. We also
observed that glycerate was more abundant in cells at 10%
CO2. Moreover, xylose, a potential inhibitor of photosynthesis,
was more than five-fold more abundant in cells at 10% CO2

(Figure 7). These results suggest that photorespiration or an
alternative pathway with similar substrates and products may be
modulated in cells at high CO2 concentration, possibly leading
to the saturation trend in the biomass accumulation observed in
cells under this condition.

FBA analysis indicated that at low and high CO2

concentrations the metabolic routes related to photorespiration
may remain at least partially activated (it was not completely
off) in order to satisfy the model constraints. The magnitude
of the fluxes are >0 and are contributing to maximize the
biomass function. Special attention to those magnitudes were
taken into account for glycine transport from chloroplast
to mitochondria, serine transport from mitochondria to
chloroplast, hydroxypyruvate production, glycerate, and
3-phospoglycerate production in the chloroplast. All these
processes may be related to photorespiration and showed
positive fluxes in both Chang et al. and our complemented
metabolic network models. Although genomic-scale restriction
was not considered in the FBA, it is shown that these routes
contribute to maximize biomass production.

DISCUSSION

In the present work, we compared the effects of varying CO2

concentrations in the biomass composition of C. reinhardtii
cells. Moreover, we identified candidate genes sensitive to
the variations on the CO2 concentrations through the use

Frontiers in Plant Science | www.frontiersin.org 8 February 2016 | Volume 7 | Article 43

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Winck et al. Carbon Accumulation Sensitive Genes

FIGURE 5 | Gene expression analysis through real-time qPCR. (A) Relative expression levels of genes related to carbon concentrating mechanism were

compared at low (0.04%) and high CO2 concentrations (10%); (B) Expression levels of genes related to glycolysis/gluconeogenesis and Calvin cycle were compared

between low (0.04%) and high CO2 concentrations (10%). Data normalization was performed using the expression level of gene coding for Actin (housekeeping gene)

as reference for relative gene expression calculations. Three biological replicates were analyzed with two technical replicates. Error bars indicate standard deviation.

FIGURE 6 | Relative quantification of amino acids in low and high CO2 concentrations. Metabolomics analysis was performed for the cells cultivated under

low (0.04%) and high (10%) CO2 concentrations. Amino acid content was measured by mass spectrometry analysis. Data is presented in Log2 scale. Three biological

replicates for low CO2 (0.04%) and two biological replicates for high CO2 (10%) were considered and three technical replicates were considered for each sample.

Error bars indicate standard error.
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FIGURE 7 | Sucrose and xylose relative content in cells at low and high

CO2 concentrations. The relative content of sucrose and xylose was

determined by metabolomics analysis through mass spectrometry. Data is

presented in Log2 scale. Three biological replicates for low CO2 (0.04%) and

two biological replicates for high CO2 (10%) were considered and three

technical replicates were considered for each sample. Error bars indicate

standard error.

of FBA in an extended metabolic network model presented
here. Further experimental validation through gene expression
analysis and metabolomics was performed. Our experimental
results suggested that cells at high CO2 have increased capability
toward biomass production. However, it also indicated that cells
cultivated at CO2 concentrations higher than 5% achieved a
saturation trend on total biomass accumulation. Although our
FBA model was unable to describe this saturation trend, the
magnitudes of the growth rate values were consistent between the
different CO2 concentrations compared. This may be explained
by the fact that the model was resolved using linear optimization
and a change in input values, such as any external metabolite,
represents a proportional increase in the objective function.

Our results on the FBA sensitivity analysis of the two
metabolic reconstructions showed a significant increase
of flux in metabolic routes occurring in the chloroplast
and mitochondria transport systems, including TCA cycle,
glycolysis/gluconeogenesis, and amino acids biosynthesis in
cells under high CO2 concentrations. For the new sensitive
routes and genes identified by our FBA, it was noted that
many reactions were associated with energy metabolism. These
sensitive routes have a number of genes which expression
may be affected. Therefore, these genes may be interesting
candidates on further biotechnological applications focused in
the enhancement of biomass production. Reactions associated to
the transport of amino acids, pyruvate, and carboxylate species
into the mitochondria and chloroplast were shown to be the
most sensitive ones. Moreover, mitochondria resulted as the
most sensitive compartment as most reactions detected in our
sensitive analysis may occur inside this organelle. Mitochondria
presents a fundamental role in growth and biomass production,
through its role on energy metabolism.

TABLE 2 | Candidate CO2 sensitive genes which were identified as

differentially expressed in a transcriptome dataset previously published

comparing cells at high vs. low CO2 concentrations using RNA-seq*.

Metabolic pathway or

biological process

Candidate CO2 sensitive genes

Description Complemented

network (present work)

Chang et al., 2011

Mitochondrial transport MIT28

PTB12

PTB4

PTB2

Phenylalanine, tyrosine, and

tryptophan biosynthesis

AST4

Carbon fixation MDH5 RBCS1

Pentose phosphate pathway TAL1 RPE1

RPE1

RPI1

Transport, chloroplast DAT1

NAR1.2

Oxidative phosphorylation NDA3

IPY1

IPY3

Glycolysis, gluconeogenesis,

valine, leucine, and isoleucine

degradation

PGK1 PGK1

Extracellular transport PTA3

PTA4

Glycine, serine, and threonine

metabolism

GCSP

THS1

Glyoxylate metabolism GLYK

Prphyrin and chlorophyll

metabolism

GSA

*Transcriptome dataset previously published (Fang et al., 2012).

Sensitivity analysis also revealed a high dependence on the
metabolic network quality and completeness on the identification
of key routes. These routes can vary in differing models making
it difficult to achieve consistent results; however, consensus in
some main nodes were found and validated by qRT-PCR. Thus,
our results revealed novel biochemical routes and candidate
genes that may be relate to biomass production, through the
modulation of the rate of biosynthetic processes.

The changes observed in the metabolite profiles of cells at
low (0.04%) and high CO2 (10%) concentrations suggest that
high CO2 concentration in microalgae cell culture may trigger
mechanisms that are able to control the carbon fixation by the
alternative synthesis of compounds that may have an inhibitory
effect on the photosynthesis, or may enhance energy losses
through photorespiration. These processes may have a role in
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the control of the cell biomass content and microalgae cell
population, even under non-limiting availability of CO2. Further
experiments are now necessary to provide more evidences of
these effects.

Experimental validation also confirmed variations in the
gene expression profiles of selected genes when cells are
cultivated at different CO2 concentrations. It was observed
that many CCM-related genes are overexpressed at low CO2,
indicating, as expected, that cells change their metabolism to
produce enzymes involved in enhanced carbon uptake and
carbonic acid conversion, instead of redirecting energy to
build biomass precursors. A previous transcriptomics analysis
compared Chlamydomonas cells at high (5%), low (0.05%), and
very low (0.02%) CO2 concentrations (Fang et al., 2012) and
revealed that the wild type strain cc125 vs. a cia5 mutant strain
cc2702 showed at least 345 genes differentially expressed from
low vs. high CO2 and 696 genes from very low vs. high CO2 in
wild type cells. Several of those genes were found in our list of
sensitive genes as it is summarized in Table 2.

Our results on the gene expression of carbonic anhydrases and
genes related to CCM were consistent with previous findings.
It was confirmed that the expression of CCM1 (or CIA5)
itself does not depend on the CO2 level (Fang et al., 2012).
Previous studies have shown that proteins CAH1, CAH3, CAH4,
CAH5, and CAH6 are responsive to variations on the CO2

concentration. Moreover, protein LCIA, reported as induced
at low CO2, encodes a format/nitrite transporter that increase
HCO3- transport in the stroma (CIA) was found highly expressed
at low CO2 concentration (Fang et al., 2012).

Besides the identification and validation of the expression
of the main CA’s under low and high CO2 conditions, we
further compared which metabolites were modulated in the two
CO2 concentrations (0.04 and 10%). Our metabolomics analysis
indicated that the concentration of metabolites possibly related
to photorespiration or other alternative route is modulated in
response to high CO2 concentration.

Our results on the experimental biomass characterization
showed that the pigment content per cell is the most sensitive
component and its amount is almost duplicated at high CO2

concentration, indicating possible enhanced needs for light
absorption and carbon fixation. However, starch content showed
no significant changes which imply that the continuous light
conditions may lead cells to control their carbohydrate stocks,
probably due to the absence of a dark period and reduced need
for starch accumulation or through the activation of alternative
processes of carbon usage.

Altogether, these findings suggest that biomass accumulation
does not enhances indefinitely with the enhanced availability
of CO2. The control of biomass accumulation may be closely
connected to the regulation of biochemical pathways occurring
in the mitochondria and the use of energy sources toward the
accumulation of proteins and pigments.
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