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The common powdery mildew plant diseases are caused by ascomycete fungi of the
order Erysiphales. Their characteristic life style as obligate biotrophs renders functional
analyses in these species challenging, mainly because of experimental constraints to
genetic manipulation. Global large-scale (“-omics”) approaches are thus particularly
valuable and insightful for the characterisation of the life and evolution of powdery
mildews. Here we review the knowledge obtained so far from genomic, transcriptomic
and proteomic studies in these fungi. We consider current limitations and challenges
regarding these surveys and provide an outlook on desired future investigations on the
basis of the various –omics technologies.
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INTRODUCTION

Infections with fungi that cause powderymildew disease result in a characteristic white fuzzy patina
on the surface of aerial plant organs (primarily leaves and stems).Many plant species can be affected
by these pathogenic fungi, displaying characteristic and easily recognizable disease symptoms
(Glawe, 2008). All powdery mildews belong to the Erysiphales, an ascomycete order that represents
an ancient monophyletic lineage that evolved over 100 million years ago (Takamatsu, 2004; Braun
and Cook, 2012). Over this time, they diversified intomore than 400 species that are able to colonize
nearly 10,000 plant species (Takamatsu, 2004). They are all obligate biotrophic pathogens that
establish highly integrated relationships with their hosts. In agriculture, they represent an ever-
present threat with a significant impact on the quality and quantity of food plants, forage crops,
and ornamentals (Dean et al., 2012).

Large-scale “-omics” techniques such as genomics, transcriptomics, proteomics and
metabolomics are known to generate massive and complex data sets (“big data”). In combination,
these approaches have the potential to comprehensively dissect a biological system and define how
all its components interact dynamically (“systems biology”). Potential integrative insights include
the reconstruction of metabolic networks (Droste et al., 2011) and complex signaling pathways
(Tieri et al., 2011). Consequently, these methods have been used, individually or in combination,
in numerous species and conditions, including different types of fungal phytopathogens (Tan et al.,
2009). The handling, integration and interpretation of data from various –omics platforms remains
nevertheless a challenging task (Gomez-Cabrero et al., 2014).

In this article, we review the contribution of large-scale –omics studies over the past 15 years to
improve our understanding of the fundamental biology of powdery mildew fungi, their evolution,
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and the relationship with their hosts. In particular, we survey
the findings from the first sets of genomic, transcriptomic
and proteomic studies and discuss the insights obtained, their
significance and inter-relationships.

POWDERY MILDEW GENOMES

The genomes of several powdery mildew species, formae
speciales, and isolates have been sequenced, partially assembled,
annotated and analyzed (Table 1). The best studied to date
are those of Blumeria graminis f.sp. hordei, B. graminis f.sp.
tritici and Erysiphe necator, which cause mildews on barley
(Hordeum vulgare), wheat (Triticum aestivum) and grapevine
(Vitis vinifera), respectively (Spanu et al., 2010; Spanu and
Panstruga, 2012; Hacquard et al., 2013; Wicker et al., 2013;
Jones et al., 2014; Panstruga and Spanu, 2014). Some limited
information on the pea powdery mildew (E. pisi) and one
Arabidopsis thaliana-infecting powdery mildew (Golovinomyces
orontii) is also available (Spanu et al., 2010). A new significant
set of analyses is currently underway in the context of the
JGI CSP Project “Comparative Genomics of Powdery Mildews
and Associated Plants” (JGI1) to expand the taxonomic and

1http://jgi.doe.gov/comparative-genomics-of-powdery-mildews/

pathogenic spectrum: this effort will include the fungi that cause
powdery mildews on grapevine (E. necator), hops (Podosphaera
macularis), brassicas (E. cruciferarum, G. orontii), tomato
[Pseudooidium (neo-)lycopersici], lettuce (G. cichoracearum ),
pepper (Leveillula taurica), cucumber (P. xanthii) and strawberry
(P. aphanis).

The initial sequencing efforts yielded some striking and
unexpected results. The first surprise was that the genome
sizes are much larger than expected. At the time, two sets of
ideas influenced the expectation: the average size of genomes
from filamentous ascomycetes that had been fully sequenced
and assembled was around 40 Mb (e.g., Neurospora crassa
and Magnaporthe oryzae; Galagan et al., 2003; Dean et al.,
2005); moreover, the obligate parasitic life-style of the powdery
mildew predicated a reduction in genome size and complexity,
in line with the trend toward generalized simplification of
body, development and genomes seen in many parasites
(Poulin and Randhawa, 2015). This forecast turned out to be
spectacularly wrong: the genomes of B. graminis and E. necator
species are in fact ∼120–180 Mb, i.e., several times larger
than closely related ascomycetes. Comparable findings were
observed in some taxonomically unrelated fungi that have
similar biotrophic lifestyles, such as the fungi causing rusts
(Duplessis et al., 2011) and the mycorrhizal truffles (Martin et al.,
2010).

TABLE 1 | Compilation of powdery mildew omics studies.

Type of –omics study Powdery mildew species Impact/key insights Reference

Genomics

Blumeria graminis f.sp. hordei;
Golovinomyces oontii, Erysiphe
pisi

First powdery mildew genomes; genome size; gene number and content;
effectors

Spanu et al., 2010

Blumeria graminis f.sp. tritici Evolution of grass powdery mildews Wicker et al., 2013

Blumeria graminis f.sp. hordei Mosaic haplotype pattern of the barley powdery mildew genome Hacquard et al., 2013

Erysiphe necator Copy number variation of EnCYP51 and its impact on fungicide resistance Jones et al., 2014

Transcriptomics

Blumeria graminis f.sp. hordei First powdery mildew ESTs Thomas et al., 2001

Blumeria graminis f.sp. hordei First time-resolved transcript analysis Thomas et al., 2002

Blumeria graminis f.sp. hordei First microarray analysis Both et al., 2005b

Blumeria graminis f.sp. hordei Expression of metabolic pathway genes Both et al., 2005a

Blumeria graminis f.sp. hordei Haustorial transcriptome (epidermal peels); discovery of the N-terminal
effector motif Y/F/WxC

Godfrey et al., 2010

Erysiphe necator Gene expression during conidiation Wakefield et al., 2011

Erysiphe necator Development of microsatellite markers Frenkel et al., 2012

Golovinomyces orontii Haustorial transcriptome (isolated haustoria) Weßling et al., 2012

Podosphaera plantaginis Single nucleotide polymorphism (SNP) design for metapopulation studies Tollenaere et al., 2012

Blumeria graminis f.sp. hordei Transcript profile of compatible versus incompatible interaction Hacquard et al., 2013

Erysiphe necator Transcriptionally active transposable elements Jones et al., 2014

Proteomics

Blumeria graminis f.sp. hordei Asexual spore proteome Noir et al., 2009

Blumeria graminis f.sp. hordei First comparative proteomic analysis (spores, epiphytic sporulating hyphae
and haustoria)

Bindschedler et al., 2009

Blumeria graminis f.sp. hordei Haustorial proteome (isolated haustoria) Godfrey et al., 2009

Blumeria graminis f.sp. hordei Large-scale proteogenomics; proteome of haustoria and sporulating
hyphae

Bindschedler et al., 2011

Blumeria graminis f.sp. hordei Identification of EKA proteins Amselem et al., 2015b
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In all these cases, the extraordinary expansion in genome
size is caused by a massive accumulation of repetitive DNA
that is the result of retro-transposon activity throughout the
evolution of these fungi (Spanu et al., 2010; Wicker et al., 2013;
Jones et al., 2014; Amselem et al., 2015a). There is evidence that
these retro-transposons are still active, because several transcripts
and proteins encoded by these elements have been identified
in powdery mildew transcriptomes and proteomes, respectively
(Jones et al., 2014; Amselem et al., 2015b; see also below).

The increase in powdery mildew genome size is accompanied
by a reduction in the number of protein-coding genes. Around
6,500 protein-coding genes have been identified in B. graminis
and E. necator (Spanu et al., 2010; Wicker et al., 2013; Jones
et al., 2014), a number that is considerably lower than in most
other fungal phytopathogens (Schmidt and Panstruga, 2011).

Overall, these opposing trends result in a marked decrease in
gene density compared to taxonomically related fungi (Figure 1).
This reduction is the result of smaller size of gene families,
the near-absence of paralogs, and the elimination of some
conserved ascomycete core genes, including the loss of a few
metabolic pathways (Spanu et al., 2010; Wicker et al., 2013;
Jones et al., 2014). However, genes for most canonical signaling
pathways are still present and intact in the B. graminis f.sp.
hordei genome (Kusch et al., 2014). The loss of genes that
are otherwise conserved may be attributed to disruption of
the loci caused by retro-transposition (Spanu et al., 2010). The
absence of a similar set of metabolic pathways in very distantly
related plant parasites such as powdery mildews, rust fungi
and downy mildew oomycetes (Spanu et al., 2010) is likely
to be an indicator of convergent evolution of these obligate

FIGURE 1 | Low gene density in the genomes of powdery mildew fungi. The protein-coding gene densities of hemiascomycete and ascomycete genomes
were calculated based on published genome sizes and the gene counts of the annotated genomes. The values are plotted as a bar diagram that shows relative
taxonomic positions (in a similar way as was used to display relative genome size in a previous study; Spanu et al., 2010). The average gene density of
hemiascomycetes (black line) and ascomycetes (green line) are indicated. The gene density in the annotated Blumeria graminis genomes (red bars) and of the
mycorrhizal truffle fungus (Tuber melanosporum) are remarkably lower than those of other ascomycetes. This is the result of both increased genome size and loss of
some protein–coding genes, as discussed in the text.
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pathogens to inhabit a common ecological niche – the live
plant cell.

The first comparative analyses of different isolates of both
the barley and the wheat powdery mildews demonstrated that
extant genomes are essentially mosaics generated over tens of
thousands of years by rare sexual recombination events that date
back to prior to the domestication of the respective host cereals
(Hacquard et al., 2013; Wicker et al., 2013). The maintenance of
isolate diversity at the genomic level suggests that there is still
much potential for adaptation.

The generation and maintenance of large genomes, full of
repetitive DNA, is presumably costly in metabolic terms, and
risky in genetic terms, because it can lead to gene disruption
by mobile genetic elements. There is evidence that this “cost” is
balanced by the advantages posed by active retro-transposition.
But what are the terms of this trade-off? The key to explaining
this is the existence of an extraordinarily expanded super-
family of species- or mildew-specific Candidate Secreted Effector
Proteins (CSEPs), on the one hand. Several hundred CSEPs
have been identified in the barley and wheat powdery mildew
genomes (Pedersen et al., 2012; Wicker et al., 2013; Kusch et al.,
2014; Figure 2). On the other hand, genes encoding CSEPs are
associated with DNA derived from retro-transposons (Pedersen
et al., 2012), as are some of the atypical avirulence genes identified
in B. graminis, which encode non-CSEP proteins (Ridout et al.,
2006; Bourras et al., 2015; Amselem et al., 2015b). The concept

FIGURE 2 | Candidate effector genes in B. graminis. Several terms are
used to name B. graminis candidate effectors in the published literature:
candidate secreted effector proteins (CSEPs), candidate effector proteins
(CEPs), and Blumeria effector candidates (BECs). Some of these sets overlap,
as shown here for B. graminis f.sp. hordei in the Euler diagram. CSEPs were
originally defined as proteins encoded by bioinformatically annotated genes
whose products are predicted to be secreted and that do not have orthologs
in non-powdery mildew fungi (found by BLAST searches; Spanu et al., 2010).
BECs were defined as proteins identified by protein mass spectrometry that
are specifically associated with haustoria and that are predicted to be
secreted (Pliego et al., 2013). The five BECs that are not CSEPs include
virulence proteins such as BEC1005 and BEC1019, which resemble an
endoglycosidase and a metalloprotease, respectively (Pliego et al., 2013;
Whigham et al., 2015). Note the high degree of overlap between CSEPs and
BECs illustrated by the Euler diagram. Numbers given for these two
categories are updated figures from Pedersen et al. (2012) and Bindschedler
et al. (2011). CEPs refers to proteins encoded by genes in B. graminis f.sp.
tritici that were identified on the basis of evidence of positive selection (Wicker
et al., 2013). While the latter type of analysis has not been carried out for the
barley pathogen, it can be assumed that similar numbers exist there because
the majority of protein-coding genes has orthologs in both formae speciales.
The size of the sets as shown in the diagram is proportional to the number of
effector candidates identified.

that effector proteins in filamentous plant pathogens are located
in particularly plastic regions of the genomes was first observed
in the oomycetes (Raffaele et al., 2010). In the barley powdery
mildew fungus, closely related CSEP paralogs are physically
linked to similar repetitive DNA, suggesting that the increase
in CSEP numbers in the genome may have been caused by
recombination events leading to gene duplications (Pedersen
et al., 2012). In fact, genome analysis of E. necator revealed
that copy number variation is a frequent phenomenon in this
powdery mildew species, with ca. 1–5% of the assemblies of
five different isolates being subject to this structural genomic
adaptation. A striking instance of copy number variation in
the E. necator genome relates to the EnCYP51 gene. This
gene encodes a cytochrome P450 lanosterol C-14α-demethylase,
which is a key enzyme involved in fungal sterol biosynthesis.
The respective protein is the target of a class of fungicides
termedDMIs (sterol demethylase inhibitors). A single amino acid
exchange in CYP51 (Y136F) renders this protein insensitive to
DMI fungicides. DNA sequence analysis of 89 E. necator isolates
showed extensive copy number variation of EnCYP51, ranging
from one to fourteen copies, which generally correlated with
the occurrence of the Y136F mutation. Isolates collected from
fungicide-treated vineyards typically were fungicide-resistant and
had multiple CYP51 copies encoding the Y136F variant (Jones
et al., 2014). Taken together, the large and highly repetitive
powdery mildew genomes may represent ideal substrates for
extensive genome plasticity.

Many B. graminis CSEPs show significant evidence of
positive evolutionary selection pressure, which caused sequence
diversification of the encoded proteins (Pedersen et al.,
2012; Wicker et al., 2013). Indeed, a novel set of genes
encoding candidate effector proteins (CEPs) were identified
because of unusually high ratios of non-synonymous to
synonymous substitutions that result from positive selection
pressure (Figure 2). Notably, the CEPs do not have evident
canonical secretion signals (signal peptides) and are thus distinct
from the CSEPs (Wicker et al., 2013). It remains to be seen
whether and how these proteins are actually translocated into the
hosts, as is expected of bona fide effectors. Poorly characterized
non-conventional secretory pathways may need to be invoked
here (Ding et al., 2012). Currently, few instances of such non-
canonical secretion of phytopathogen-derived proteins have
been reported (Ospina-Giraldo et al., 2010; Lowe et al., 2015).
Interestingly, the genome of the grapevine powdery mildew
pathogen E. necator seems to harbor considerably fewer CSEPs
than the B. graminis genomes (approximately 150 vs. 430–550
CSEPs). Additionally, the 150 E. necator effector candidates
lack any signs of positive evolutionary selection, which may
indicate the current absence of an extensive evolutionary arm’s
race between E. necator and its plant host, Vitis vinifera. This
is in accordance with the fact that most cultivated grapevine
varieties lack effective powdery mildew resistance genes and are
thus susceptible to the disease (Jones et al., 2014). The current
challenges in powdery mildew genomics are: broadening the
spectrum of species sequenced in this monophyletic group, a
deeper analysis of genome variation (including copy number
variation) in existing populations, an understanding of the
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short-term micro-evolutionary potential of these fungi and the
establishment of a fully assembled and “finished” reference
genome. The first of these challenges (extending the coverage
across the order of the Erysiphales) will be met in the next few
years through the efforts of a broad international consortium led
by Shauna Somerville, Mary Wildermuth and colleagues2; one
hope is that this information may lead to discoveries and new
hypotheses explaining the diversification and host adaptation of
these ubiquitous plant pathogenic fungi over their long-term
evolution.

Analysis of population genome diversity, particularly in the
cereal mildews, could deliver invaluable information about how
strains move, distribute across the agronomic spectrum, and
change in response to deployment of hosts with new or new
combinations of resistance genes. Such a field pathogenomic
approach has been highly successful in revealing dynamic
changes in wheat yellow rust population structure (Hubbard
et al., 2015). Understanding the genetic and genomic responses to
fungicide use and comprehending the evolution of resistance to
essential pesticides has a great potential to increase our ability to
mitigate risk to crop and food security. This challenge is at present
unmet in the powdery mildews.

Related to the above, we have very little understanding of
the potential for generation of variation through rapid, short-
term genetic and/or epigenetic changes in the powdery mildews.
A systematic analysis of genome changes in isolated, controlled
environments, possibly under diverse selection pressures, will be
needed to address this issue.

All these challenges would be greatly facilitated by the
availability of fully assembled and finished reference sequences
(Thomma et al., 2015). All the powdery mildew genome
sequences published to date are highly fragmented. This is
due, in large part, to the extremely repetitive character of the
genomic DNA, which has made complete assembly impossible
with the available technologies. The obligate nature of the
organisms themselves also makes it difficult to obtain high
amounts of large, intact and pure DNA uncontaminated by
host or other associated microorganisms. The availability of
new “third generation” sequencing technologies, in particular
the direct long-read methodologies (Faino and Thomma, 2014),
coupled with very deep “second generation” sequencing and
advances in computing and software promise to improve the
existing assemblies significantly. It remains to be seen if these
enhancements will deliver the full assembly and the complete
coverage achieved with other filamentous ascomycetes (Goodwin
et al., 2011; Faino et al., 2015). This may be particularly critical
because, although the existing genomes have high coverage, the
current assemblies are especially poor in the repeat-rich areas.
Perversely, these are precisely the areas which appear to harbor
a large proportion of the highly interesting genes encoding
candidate effectors (CSEPs and CEPs) and EKA family proteins
(see below), which are of great relevance to understanding the
establishment of the relationship with the host, in particular those
modulating host recognition (Bourras et al., 2015). We can thus
assume that the effector repertoire of the powdery mildews is

2http://jgi.doe.gov/comparative-genomics-of-powdery-mildews/

even larger than currently known. True completion of finished
sequences is therefore of high importance in this respect.

POWDERY MILDEW TRANSCRIPTOMES

A first attempt to study the transcriptome of a powdery mildew
pathogen at a larger scale was performed in the pre-genomic era
in B. graminis f.sp. hordei on the basis of expressed sequence
tags (ESTs). Using RNA from either ungerminated conidia or
conidia germinated on glass plates, two cDNA libraries were
generated and used to sequence a random selection of 2,676
clones. This resulted in 4,908 ESTs that represent a total of 1,669
individual sequences. Proteins encoded by these cDNAs were
predicted to cover a broad range of different functions (Thomas
et al., 2001). Thereafter, serial analysis of gene expression (SAGE)
was employed to obtain first insights into the dynamics of gene
expression during fungal pathogenesis. SAGE is a method that
categorizes cDNAs based on the presence of short oligonucleotide
sequences. These sequence tags can then be used to quantify the
number of transcripts in a given sample. Thomas et al. (2002)
used SAGE to measure the abundance of B. graminis f.sp. hordei
cDNAs in samples from ungerminated conidia, conidia with
incipient germ tubes, and germinated conidia with a fully formed
appressorium. The authors ended up with 6,336 different tags that
were believed to represent unique transcripts. Of these, the 916
tags that occurred at least six times in one of the three samples
were used for quantification of cDNA abundance, which revealed
different patterns of cDNA accumulation during the early stages
of B. graminis f.sp. hordei pathogenesis. Approximately 20% of
the 6,336 tags could be mapped to one of the 1,669 EST-based
unigenes previously identified by the same authors (Thomas
et al., 2001; see also above), thereby tagging ca. 80% of these
unigenes (Thomas et al., 2002).

The next phase in the analysis of powdery mildew
transcriptomes was the deployment of cDNA microarrays.
Both and co-workers developed a custom-made microarray that
harbored 3,327 B. graminis f.sp. hordei cDNAs representing
2,077 unigenes (Both et al., 2005a,b). These corresponded
to cDNAs from conidia, germinating conidia and hyphae
(before the onset of conidiation) and included the previously
reported EST set (Thomas et al., 2001). The authors utilized the
microarray to analyze the transcript profile of B. graminis f.sp.
hordei in the course of barley infection. Eight different RNA
samples, derived from heavily inoculated barley plants, were
used to synthesize labeled cDNA and probe the microarray.
The experiment included four time points prior to host cell
penetration (ungerminated conidia; 4, 8 and 15 hpi) and two
time points after host cell penetration (3 and 5 dpi) as well as
two samples (3 and 5 dpi) from the barley epidermal cell layer
after the removal of epiphytic structures, essentially representing
haustoria as the main fungal structure. Results of this analysis
revealed a global switch in the gene expression pattern between
fungal pre- and post-penetration stages, mainly caused by the
accumulation of transcripts related to protein biosynthesis (e.g.,
encoding ribosomal proteins) at later stages of plant colonization.
In addition, 51 genes were identified for which the expression
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profile over time correlated well with the expression of cap20,
a gene with a well-known virulence function in Colletotrichum
gloeosporioides (Both et al., 2005b). The same experimental
setup further uncovered the coordinated expression of genes
that encode enzymes within the same pathways of primary
metabolism. Striking examples of this include glycolysis (high
transcript levels of the respective genes in mature appressoria
and infected epidermis) and lipid metabolism (high transcript
levels during fungal germination). These data provided first
insights in the type and order of metabolic processes in the
course of fungal development and infection (Both et al.,
2005a).

To investigate the transcript profile of the grapevine powdery
mildew pathogen E. necator during development,Wakefield et al.
(2011) used the cDNA amplified fragment length polymorphism
(cDNA-AFLP) technology, which is a method to fingerprint
restriction fragments derived from cDNAs. In this study, the
authors put emphasis on later stages of fungal pathogenesis [RNA
samples for cDNA synthesis collected prior to conidiation (3 dpi),
at conidiophore formation (5 dpi) and during full sporulation
(8 dpi)] and also included a sample that represents the formation
of sexual ascospores following mating of two opposing mating
types (4 weeks post inoculation). The analysis identified 620
cDNA-AFLP fragments that showed differential expression
between the four developmental phases under investigation
(Wakefield et al., 2011).

A stage-specific transcriptome analysis was conducted on the
basis of epidermal peels of heavily B. graminis f.sp. hordei-
infected barley plants from which fungal surface structures were
eliminated prior to removal of the epidermal cell layer, as
described above. This sample material, which was highly enriched
for mature fungal haustoria, was used for cDNA library synthesis
and sequencing, which yielded 3,200 unigenes. Among these, 107
candidates for secreted effector protein were identified, which
ultimately resulted in the identification of a conserved amino-
terminal sequence motif (Y/F/W-x-C) present in the majority of
these effector candidates (Godfrey et al., 2010). This sequence
motif, whose functional relevance is currently unknown, was
later found to be present in many B. graminis f.sp. hordei CSEPs
identified by genome-wide analysis (307 of 491 predicted and
analyzed effector proteins; Pedersen et al., 2012).

The advent of next generation sequencing technologies
enabled entirely new possibilities for transcriptomic analyses
of powdery mildew fungi. For example, the cDNA sequencing
of enriched haustorial complexes from G. orontii-infected
A. thaliana plants provided unprecedented insights into the
haustorial transcriptome of this powdery mildew pathogen.
Sequence analysis of G. orontii haustorial cDNAs on the basis of
the 454 GS FLX pyrosequencing platform led to the assembly of
7,077 contigs with >5-fold average coverage. Highly represented
transcripts encoded proteins involved in protein turnover,
detoxification of reactive oxygen species and fungal pathogenesis,
including secreted effector candidates. By contrast, transcripts
coding for transporter proteins for nutrient uptake were less
abundant than expected (Weßling et al., 2012). Transcriptome
analysis on the basis of either SOLiD or Illumina short read
platforms also assisted annotation of the B. graminis and

E. necator genomes (Spanu et al., 2010; Wicker et al., 2013; Jones
et al., 2014) and revealed a multitude of transcripts derived from
transposable elements, indicating that these are transcriptionally
active (Jones et al., 2014).

Further details of powdery mildew transcriptome dynamics
were uncovered in a study that investigated the interaction
between Arabidopsis and B. graminis f.sp. hordei by deep
Illumina-based RNA-sequencing (Hacquard et al., 2013). Usually,
Arabidopsis is not a host plant for B. graminis f.sp. hordei;
however, the grass powdery mildew pathogen is able to complete
its life cycle on the immuno-compromised Arabidopsis pen2
pad4 sag101 triple mutant (Lipka et al., 2005). Transcript
profiling of early pathogenesis of two B. graminis f.sp. hordei
isolates (a virulent and an avirulent one) on this Arabidopsis
mutant revealed DNA packaging, nucleosome organization
and regulation of chromatin structure as potentially relevant
processes around the time of conidium germination (at 6 hpi).
During host cell entry (at 12 hpi), the abundance of transcripts
related to pathogenesis increased. These also included transcripts
coding for CSEPs. In fact, accumulation of CSEP transcripts
occurred in two successive waves during plant colonization (at
12 and 18–24 hpi). Results of detailed qRT-PCR analyses of a
subset of the differentially expressed genes in barley suggest that
the B. graminis f.sp. hordei transcript pattern seen in the non-host
plant Arabidopsis largely reflects the pattern in the native host,
barley. Differences between the transcriptional program of the
virulent and avirulentB. graminis f.sp. hordei isolate concentrated
on the 24 h time-point and affected a surprisingly low number of
genes (just 76 genes). The majority of these genes (43 of the 76)
code for CSEPs, suggesting that the main difference in the fungal
expression profile between a compatible and an incompatible
interaction resides in the expression of genes encoding effectors
(Hacquard et al., 2013).

Finally, next generation-based transcript profiling has been
used as a tool to discover markers for population genetic studies.
Frenkel et al. (2012) employed 454 GS FLX sequencing of RNA
from conidia and mycelium of the grapevine powdery mildew
pathogen E. necator. This yielded approximately 32,000 sequence
contigs that were mined for the presence of microsatellite
markers. Of 116 potential markers identified, 31 were tested
and detailed, which resulted in 11 microsatellites polymorphic
among E. necator isolates. Eight of these were then used to
analyze the E. necator population structure in Europe and
North America, which revealed that genetic diversity in eastern
USA is much greater than in Europe (Frenkel et al., 2012).
A similar approach was applied to study population structure
of P. plantaginis, the powdery mildew pathogen of Plantago
lanceolata (plantain), on the archipelago Åland in Finland.
Sequencing of RNA extracted frommixed spore material (derived
from 16 different isolates) yielded 45,245 sequence contigs which
were then mined for single nucleotide polymorphisms (SNPs)
for sample genotyping. In the end, a panel of 27 SNP loci
was employed for genotyping, which revealed a mixed meta-
population of P. plantaginis. Additionally, the study disclosed
that infection with mixed genotypes on a single host leaf is a
common phenomenon within this meta-population (Tollenaere
et al., 2012).
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Taken together, various attempts have been made in the
past 15 years to examine the transcriptome of different
powdery mildew fungi (Table 1). These comprised studies that
either recorded transcript dynamics during fungal pathogenesis
(Thomas et al., 2002; Both et al., 2005a,b; Wakefield et al., 2011;
Hacquard et al., 2013; Jones et al., 2014) or that focused on
a single (pooled) sample (Thomas et al., 2001; Frenkel et al.,
2012; Tollenaere et al., 2012) or an enriched infection structure
(i.e., haustoria; Godfrey et al., 2010; Weßling et al., 2012).
Overall, the studies suffer from a lack of comparability since
different host (barley, Arabidopsis, P. lanceolata, grapevine) and
powdery mildew species (B. graminis f.sp. hordei, G. orontii,
P. plantaginis, and E. necator), different experimental techniques
(ESTs, SAGE, microarrays, cDNA-AFLP and various next
generation sequencing platforms) and in the time-course studies
different time-points were used. Moreover, the results have
only been partially integrated with the genome (see above) and
proteome (see below) data that are now available. Thus, there
is still a need for a comprehensive time-resolved transcriptome
analysis of a single plant-powdery mildew interaction by deep
next generation sequencing that covers the full asexual life
cycle from ungerminated conidia to conidiophore formation and
sporulation. It would be particularly auspicious if these analyses
could be carried out in the context of completely assembled and
finished genome sequences. Integration of the data sets would
be extremely beneficial in terms of full validation of the gene
models in the genome annotation, whilst greatly facilitating the
interpretation of global trends in gene expression. In this regard,
the above-mentioned JGI CSP Project “Comparative Genomics
of Powdery Mildews and Associated Plants” seems especially
promising, as it will produce comparative transcriptome data
using RNASeq for each sequenced powdery mildew species
and its associated host plant at germination, penetration, and
proliferation phases of infection.

POWDERY MILDEW PROTEOMES

Large-scale proteome studies of B. graminis f.sp. hordei were
performed on conidia (Bindschedler et al., 2009; Noir et al., 2009),
secondary hyphae (Bindschedler et al., 2009, 2011), isolated
haustoria (Godfrey et al., 2009) and haustoria in barley epidermis
(Bindschedler et al., 2009, 2011; Table 1). The resulting peptide
information was used during annotation of the B. graminis f.sp.
hordei genome to aid the identification and manual curation of
open reading frames (ORFs) and gene models. Based on the ca.
1,500 proteins that had been identified by mass spectrometry
(Bindschedler et al., 2011), more than 20% of the 6,500 predicted
ORFs were experimentally validated as expressed proteins.

Two-dimensional gel electrophoresis of proteins extracted
from ungerminated conidia of B. graminis f.sp. hordei (Noir
et al., 2009) enabled the identification of 123 fungal polypeptides.
The main group of proteins belonged to primary metabolism,
such as carbohydrate, protein, amino acid, nucleic acid, and
lipid/fatty acid metabolism, suggesting that the pathogen is
armed for storing compounds, as well as for protein biosynthesis.
These findings corroborate those obtained from the survey

of transcriptomes based on microarrays (Both et al., 2005a).
Additionally, several proteins involved in redox processes and
detoxification were found.

The haustorial proteome of purified haustoria (Godfrey et al.,
2009), or of infected epidermis following removal of epiphytic
hyphae (see above; Bindschedler et al., 2009, 2011), was analyzed
by liquid chromatography coupled with nano-electrospray mass
spectrometry. In these samples there were many enzymes
from primary metabolism. Enzymes associated with alcoholic
fermentation, such as pyruvate decarboxylase, were not found,
although these proteins are known to be abundant in other
fungi (Godfrey et al., 2009). This finding is consistent with the
absence of genes encoding these enzymes, as noted when the
first B. graminis genome was annotated (Spanu et al., 2010). The
haustorial proteome is characterized by an overrepresentation
of proteins involved in monosaccharide metabolism and stress
responses, including heat-shock proteins (Bindschedler et al.,
2009, 2011; Godfrey et al., 2009).

Bioinformatic prediction of effectors from pathogenic fungi
has been facilitated by the availability of the respective genomes
(Schmidt and Panstruga, 2011). However, by definition, effector
sequences are diverse and species-specific. Identification often
relies on very broad criteria such as small size, predicted protein
secretion (i.e., presence of a signal peptide), species-specificity
and, possibly, a high cysteine content in the apoplastic effectors
(Stergiopoulos and de Wit, 2009).

Large-scale proteomics has contributed to effector discovery
through the identification of tissue- or cell-specific B. graminis
f.sp. hordei proteins (Godfrey et al., 2009; Bindschedler et al.,
2011). Comparison of the proteomes of haustoria and hyphae
revealed that identified haustoria-specific proteins are on average
smaller in size than proteins specific to hyphae. Overall,
a quarter of the proteins identified only in the haustorial
proteome within infected epidermis were not detected in the
proteome of sporulating hyphae (Bindschedler et al., 2011).
Of these seemingly haustoria-specific proteins, originally 61
and upon refined analysis 67 are predicted to be secreted, i.e.
they have a canonical amino-terminal secretion signal and no
transmembrane domain. Based on these features they were
regarded as B. graminis f.sp. hordei effector candidates (BECs)
expressed in haustoria (Figure 2). The large proportion of
BECs in the haustorial proteome suggests that they are highly
expressed, since proteins in higher abundance (on the basis
of more peptides) are usually more easily identified in non-
targeted proteome studies. Note that the vastmajority of BECs are
encoded by CSEP genes and are thus identical to matching CSEPs
(Pedersen et al., 2012). However, this does not apply to all BECs,
since the criterion of the exclusive presence of these proteins in
powdery mildews, which was deployed for the classification of
the CSEPs, was not used for the assignment of proteins to the
BEC category. Two of the BECs that are not CSEPs, are virulence
factors necessary for full pathogenic development (Pliego et al.,
2013). CSEPs and BECs therefore represent two overlapping
and thus in part redundant sets of Blumeria effector candidates.
(Figure 2).

Mining the proteome of purified haustoria led to the
identification of more than 200 B. graminis f.sp. hordei proteins
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(Godfrey et al., 2009). However, in this study secreted proteins
and putative effectors appear under-represented. Conversely, the
proteome of infected epidermis allowed the identification of ca.
300 Blumeria proteins, including the 67 defined as BECs that are
exclusively present in haustoria (Bindschedler et al., 2011). This
may be explained by considering that effectors efficiently secreted
from haustoria will not accumulate inside them, rendering their
detection as intrinsic haustorium peptides a challenging task.

The function in pathogenic development of 50 of the 67
BECs was tested on the basis of host-induced gene silencing
(Nowara et al., 2010). Results obtained in this study provided
experimental evidence for a virulence role of eight of the
effector candidates (Pliego et al., 2013). These included BEC1011
and BEC1054, two RNase-like proteins from CSEP family 21
(CSEP0264 and CSEP0064); BEC1005, a putative glucanase;
and BEC1019, a metalloprotease-like protein (Whigham et al.,
2015). Mass spectrometry-based proteomics data from a previous
study (Bindschedler et al., 2011) were recently re-analyzed to
search for the presence of translated products from the large
family of retro-transposons associated with the Avrk1 and Avra10
phenotype (EKA family, Ridout et al., 2006), using a novel
transposon sequence database that was not available at the
time of genome assembly (Spanu et al., 2010). Based on this
retrospective examination, several EKA proteins were identified
experimentally. Notably, some of the proteins from the retro-
transposons associated to Avra10 were found only in haustoria-
containing samples (Amselem et al., 2015b).

Taken together, these studies reinforce the notion that “in
planta” proteomics is an invaluable complement to genomic and
transcriptomic studies for the discovery of functional effectors,
in particular for biotrophic fungi such as powdery mildews.
However, the low biomass of the pathogen in the early stages of
infection remains a challenge for such proteomic investigations,
which was only partly resolved by the isolation of infected
epidermis from barley primary leaves.

An additional bottleneck for the experimental discovery
of proteins by mass spectrometry-based proteomics is the
dependence on a well-sequenced, well-assembled and ideally
also well-annotated genome, since large scale de novo peptide
sequencing still remains a major technical challenge, despite
continuous improvements at the instrument and software level
(Ma and Johnson, 2012). Consequently, the lack of ORFs in
genome or transcriptome databases conditions that the matching
proteins cannot be identified with database-dependent search
engines and prediction software. This limitation reinforces the
need for further improving genome coverage, assemblies and
annotations of powdery mildew fungi.

MISSING AND EMERGING
MILDEW-OMES

To our knowledge, there are currently no systematic studies of
the powdery mildew metabolome. This could be in part due to
the relatively less advanced status of this sub discipline and/or
the challenges related to the technologies involved in detection
of specific metabolomes of obligate parasites and pathogens

growing inside a host. It may also be due to the fact that given
the paucity of genes encoding secondary metabolism enzymes
in the powdery mildew genomes (Spanu et al., 2010), there has
been relatively little impetus to follow this line of investigation,
so far. Similarly, systematic large scale approaches to unravel
the interaction of powdery mildew proteins with their respective
host proteins (interactomics; Collura and Boissy, 2007) are
also missing. Up to now, studies mainly focused on individual
protein–protein interactions of secreted powdery mildew effector
candidates with their potential host targets (Zhang et al., 2012;
Schmidt et al., 2014; Ahmed et al., 2015; Pennington et al.,
in press). A first attempt to investigate such interactions at
larger scale resulted in the establishment of a protein–protein
interaction network from G. orontii haustorial effectors and
their respective Arabidopsis host proteins. This study revealed
convergence of multiple effector proteins on a limited set of host
targets (“hubs”) that themselves are highly interconnected with
further host proteins and likewise targeted by pathogen effectors
from other kingdoms of life (oomycetes and bacteria; Weßling
et al., 2014). This work also uncovered a set of host targets
that are seemingly specific for G. orontii effectors. These plant
interactors comprise different types of transcriptional regulators
plus a number of proteins with diverse functions (Weßling et al.,
2014).

OUTLOOK FOR MILDEW-OMICS

The past 15 years have seen the laying of effective foundations
for the large scale survey of genes, transcripts and proteins in the
powdery mildew fungi, in spite of the difficulties posed by their
obligate biotrophic nature. Advances in methods, technology and
analysis software are still required to fill the inevitable gaps that
exist. However, as these techniques become more cost-effective,
there is an expectation that the missing tesserae of the mosaic will
be found and placed in the right order, so that a “big picture” will
emerge with greater clarity. These building-blocks are essential
for the next challenge: moving the field into a true “systems
biology” approach, that is an integration of the information to
create realistic modeling of the systems themselves to provide
real heuristic value to our investigation. Moreover, because the
life style of powdery mildew fungi is inherently intertwined with
that of their host, the biggest prize of all will be unraveling the
complexity and dynamics of the interactome, for which a start has
been recently achieved (Weßling et al., 2014). The site-specific
nature of the interaction with the haustoria being in direct contact
with host cells poses particular challenges for transcriptomic,
proteomic and metabolic studies of these infection structures.
Laser microdissection-based enrichment of infection sites, as
recently performed in the context of the Arabidopsis-powdery
mildew interaction (Chandran et al., 2010), is a promising
technique to temper this problem.

For all mentioned –omics approaches, the functional
validation of identified components is essential. Despite some
recent progress in transient transformation protocols (Vela-
Corcía et al., 2015), the stable transformation of powdery
mildew fungi and thus the targeted generation of knock-out
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mutants remains elusive. An alternative method for functional
assays exploits the phenomenon of host-induced gene silencing
(Nowara et al., 2010), which has already been used successfully
for the identification of some Blumeria effector candidates (Pliego
et al., 2013; Whigham et al., 2015). If successful, the integration
of insights from –omics studies with the results from functional
investigations hold the promise to improve our ability to control
these ubiquitous diseases, and mitigating their effect on our food
and crop security.
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