
fpls-07-00153 February 13, 2016 Time: 16:3 # 1

MINI REVIEW
published: 16 February 2016

doi: 10.3389/fpls.2016.00153

Edited by:
Eugenio Benvenuto,

Italian National Agency for New
Technologies, Energy and Sustainable

Economic Development, Italy

Reviewed by:
Laura Jaakola,

UiT The Arctic University of Norway,
Norway

Massimiliano Tattini,
The National Research Council

of Italy, Italy

*Correspondence:
Francesca M. Quattrocchio

f.quattrocchio@uva.nl

Specialty section:
This article was submitted to

Plant Biotechnology,
a section of the journal

Frontiers in Plant Science

Received: 09 December 2015
Accepted: 29 January 2016

Published: 16 February 2016

Citation:
Passeri V, Koes R

and Quattrocchio FM (2016) New
Challenges for the Design of High
Value Plant Products: Stabilization
of Anthocyanins in Plant Vacuoles.

Front. Plant Sci. 7:153.
doi: 10.3389/fpls.2016.00153
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Plant Development and (Epi)Genetics, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam,
Netherlands

In the last decade plant biotechnologists and breeders have made several attempt
to improve the antioxidant content of plant-derived food. Most efforts concentrated
on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing
the transcription of genes encoding the synthesizing enzymes. We present here an
overview of economically interesting plant species, both food crops and ornamentals,
in which anthocyanin content was improved by traditional breeding or transgenesis.
Old genetic studies in petunia and more recent biochemical work in brunfelsia, have
shown that after synthesis and compartmentalization in the vacuole, anthocyanins need
to be stabilized to preserve the color of the plant tissue over time. The final yield of
antioxidant molecules is the result of the balance between synthesis and degradation.
Therefore the understanding of the mechanism that determine molecule stabilization
in the vacuolar lumen is the next step that needs to be taken to further improve the
anthocyanin content in food. In several species a phenomenon known as fading is
responsible for the disappearance of pigmentation which in some case can be nearly
complete. We discuss the present knowledge about the genetic and biochemical factors
involved in pigment preservation/destabilization in plant cells. The improvement of our
understanding of the fading process will supply new tools for both biotechnological
approaches and marker-assisted breeding.
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INTRODUCTION

Anthocyanins are flavonoid pigments conferring red, blue and purple colors to plant tissues.
Because they are visible to the naked eye, these pigments are a model for genetics, molecular
biology and cell biology. Consequently, both structural and regulatory genes of the biosynthetic
pathway are identified in a plethora of species (Figure 1A). A complex of highly conserved
WD40, bHLH and MYB proteins (MBW complex) activates the transcription of structural genes
encoding enzymes of the anthocyanin pathway (Koes et al., 2005; Jaakola, 2013). In all species
analyzed, the WD40 is expressed ubiquitously, whereas expression of bHLH and MYB factors
is confined to pigmented tissues. The bHLH regulators hook up with the WD40 partner to
activate downstream genes involved in multiple pathways like anthocyanin and tannin production,
vacuolar acidification and cell shape, through interactions with different MYB proteins, which are
main determinants of the specificity of the complex (Koes et al., 2005; Ramsay and Glover, 2005).
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The MYB component of the MBW complex that activate the
(pro)anthocyanin pathway is able to activate transcription of its
bHLH partner and is therefore consider a “master regulator” as
it can, alone, induce activation of the pathway (Spelt et al., 2000;
Nesi et al., 2001; Kiferle et al., 2015).After synthesis, anthocyanins
are transported to the vacuolar lumen where they are stored.
This process is studied by several groups (Francisco et al., 2013;
Chanoca et al., 2015; Hu et al., 2016) but it is still not fully
understood in spite of the substantial role it might play in the
final anthocyanin content in plant tissues.

Plant products rich in anthocyanin like berries, eggplant,
grape, and red cabbage, are part of the human diet. Several
studies reported that anthocyanin-intake prevents the onset and
development of degenerative diseases. Some example of the
health promoting effects of anthocyanins are stimulation of
visual acuity and reduction of retinal damage (Kalt et al., 2014;
Giampieri et al., 2015; Wang et al., 2015), decreased expression of
inflammatory biomarkers (Samadi et al., 2015), diminished risk
of type-2 diabetes mellitus (Guo and Ling, 2015), reduced weight
gain (Titta et al., 2010) and anti-cancerogenic activity (Butelli
et al., 2008; Forbes-Hernandez et al., 2015; Vlachojannis et al.,
2015). By in vitro simulation of the gastrointestinal system and
animal and human tests, anthocyanins were shown to remain
bio-accessible during digestion (Kalt et al., 2014; Oliveira and
Pintado, 2015; Olejnik et al., 2016).

The presence of anthocyanin in plant tissues positively affects
their market value in addition by increasing the aesthetical
appeal and by reducing softening, shriveling, rotting and fungal
infection (Zhang et al., 2015c). Furthermore color novelty is a
major driving force in the ornamentals and cut flower industry.

Increased anthocyanin content is, for all mentioned reasons,
an obvious goal for crop breeding and biotechnology. Therefore
combinations of classical and molecular methods, have been used
to generate new varieties with enhanced anthocyanin content as
well as different colors and pigmentation patterns.

Till now, research in ornamental and food crops aimed to alter
genes controlling anthocyanin synthesis, since it was taken for
granted that the end products are stable once they are deposited
in the vacuole. However, for fruits, flowers and leaves of several
species it is known that anthocyanin may disappear again during
development in a regulated manner that depends, for example on
environmental conditions (Oren-Shamir, 2009).

Here we review the state of the art in improving anthocyanin
production in plant tissues and report recent insights into
the (in)stability of anthocyanins in vacuoles, suggesting that
the understanding of the mechanism behind anthocyanin
stabilization in planta is required for breeding and biotechnology
to take the next step toward plant varieties with increased
economical and nutraceutical value.

STUDYING FLOWER PIGMENTATION
TAUGHT US HOW TO COLOR OUR FOOD

Much of the current knowledge on anthocyanin chemistry and
genetics originates from studies on flower pigmentation in model
species. Some of the results have been applied to generate new

varieties of cut flowers and ornamental flowering plants with
novel colors and pigmentation patterns.

The substrate specificity of the enzymes of the anthocyanin
pathway determines the final pattern of chemical decorations
and thereby the pigment color (Provenzano et al., 2014; Rinaldo
et al., 2015). Together with the understanding of the biosynthetic
pathway regulation (Koes et al., 2005; Jaakola, 2013), this
knowledge was applied to enhance the nutraceutical value and
the appeal of several economically relevant plant products.

Traditional breeding has produced an array of colors
in different species but the top-selling cut flowers rose,
chrysanthemum, carnation and lily do not have blue in their
pallet, while petunia lacks red/orange (Holton and Tanaka, 1994;
Forkmann and Heller, 1999). New colors were obtained changing
the decoration pattern on the basic skeleton of anthocyanins
(Figure 1A) in roses, chrysanthemum and carnations. The
expression of an exogenous flavonol 3′,5′ hydroxylase (F3′5′H)
combined with an heterologous dihydroflavonol 4-reductase
(DFR) accepting a three-hydroxylated substrate, leads to
accumulation of delphinidin (Katsumoto et al., 2007; Tanaka
et al., 2008) and to lilac and purple flowers in rose and carnation
(Figure 1B). Orange and red colors from pelargonidin-based
anthocyanins were obtained in petunia by suppressing the
flavonoid hydroxylases F3′H and F3′5′H, and expressing a DFR
with specificity for mono-hydroxylated substrates (Meyer et al.,
1987). New colors are also obtained by changing the anthocyanin
pattern of methylation, glycosylation, and acylation (Provenzano
et al., 2014; Du et al., 2015; Morita et al., 2015).

The dynamics of metabolic flows affects channeling of
precursors toward anthocyanin production (Zvi et al., 2012;
Sheehan et al., 2015; Zhang et al., 2015b) and this should be
considered when designing strategies to generate genotypes with
new colors or enhanced anthocyanin content.

Flower pigmentation patterns originate from differential
expression of the structural genes in different cells. While
irregular patterns are mostly due to transposon insertions in
structural and/or regulatory genes (Figure 1C; Lister et al.,
1993; Spelt et al., 2000; Itoh et al., 2002), flecks, sector veins
and coloration of different flower parts are due to differential
expression of genes encoding for MYB proteins of the MBW
transcription complex regulating the anthocyanin pathway.

In the genus Antirrhinum variation in activity of the MYB
genes Rosea and Venosa regulates pigmentation in different
flower parts (Stracke et al., 2001) and in petunia, different
members of the same clade of MYB regulators independently
pigment petals, anthers and tube (Tornielli et al., 2009). Similarly,
in Phalaenopsis orchids three MYBs control spotting and
venation patterns by activation of structural genes expression
in the sepals/petals (Hsu et al., 2015). Ectopic expression of the
Arabidopsis anthocyanin MYB regulator PAP1 in roses results in
enhanced pigmentation in leaves and flowers (Zvi et al., 2012).

From the observation of how pigmentation patterns diverged
during evolution we learned that MYB regulators of anthocyanin
biosynthesis are the best tool to alter anthocyanin production
without affecting other processes. This is because their bHLH
and WDR partners are involved in several other processes and
changes in their activity would either be insufficient or have
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FIGURE 1 | Anthocyanin accumulation in different plant products. (A) Scheme of the biosynthetic pathway for different flavonoid pigments among which
anthocyanins. The main enzymes catalyzing the reactions in the pathway are reported in blue. PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hydroxylase;
4CL, 4-coumarate-CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase; FLS, flavonol synthase; F3H, flavonoid 3 hydroxylase; F3′H, flavonol 3′

hydroxylase; F3′5′H, flavonol 3′,5′ hydroxylase; DFR, dihydroflavonol 4-reductase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase; ANS,
anthocyanidin synthase; 3UFGT, UDP glucose:flavonoid 3-O-glucosyltransferase; RT, rhamnosylation at three; 5UFGT: glucose:flavonoid 5-O-glucosyltransferase;
AAT, anthocyanin acyltransferase; MT, methyltransferase; GST, glutathione S-transferase. PAs, proanthocyanidins. In (B) Moondust (up) and Moonshadow (down)
transgenic carnations produced by Florigene/Suntory; (C) Petunia ph6 unstable mutant (transposon insertion) in the hybrid W138xR153 background. The red spots
and sectors are due to PH6 reversion. In (D) transgenic tomato fruits from plants expressing the 35S:SlANT1 construct. Immature green and red ripe fruits with
anthocyanin-rich sectors in the peel; (E) green tomatoes from the same plants as in (D) showing purple flesh, locular cavities and seeds. (F) Orange and purple
carrots. In (G), (H), and (I) ancient varieties of Rosaceae species with anthocyanin-rich flesh. These fruits are locally known as: (G) “mela rossa dentro incarnato”
(apple variety), (H) “pera cocomerina” (pear variety) and (I) “pesca sanguinella” (peach variety).

pleiotropic effects. Factors affecting pigment production more
indirectly, like hormones, sugar concentration (Loreti et al., 2008;
Zhou et al., 2009) or high light and cold (Lotkowska et al., 2015;
Zhang et al., 2015a), usually have dramatic side effects on the
plant physiology.

The picture of anthocyanin synthesis and regulation gained
from studies in flowers was confirmed in several crops where
homolog MBW complexes regulate pigment accumulation in
different plant parts.

Modern crops are the result of a domestication process that,
for most species, went on for the last 10.000 years. Selection
resulted sometimes in the loss of pigmentation in some plant
parts. Pigmentation in tomato fruits, for example, was probably

a trait indirectly counter-selected by breeding as the fruits
of several closely related wild Solanum species are colored.
The introgression in domesticated tomato of two loci, Aft
(Anthocyanin fruit) and atv (atroviolacea) from wild Solanum,
results in the accumulation of anthocyanins in the epidermis
and the pericarp of the fruit (Povero et al., 2011), indicating
that it is possible to restore fruit pigmentation by adding few
genes. In fact, ectopic expression of any of the R2R3-MYB genes
SlAN2 and SlANT1 (Kiferle et al., 2015) is sufficient to get
purple tomatoes (Figures 1D,E). As SlAN2 and SlANT1 proteins
activate the whole biosynthetic pathway and stress can activate
SlAN2 transcription, lack of pigmentation in cultivated tomato
fruits is not due to mutations in enzyme encoding genes or to
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loss of function of one of the two MYBs. Rather, changes in the
regulation of the MYBs, resulted in inactivity in fruits. Expression
of DELILA and ROSEA1 (respectively a bHLH and a MYB) from
snapdragon result in intensely purple tomatoes fruits which have
health-promoting effects in a mouse model (Butelli et al., 2008).
High expression of a different type of MYB (MYB12) in tomato
stimulates the production of complex mixtures of flavonoids, by
reprogramming primary metabolism toward the production of
substrates for the phenylpropanoid pathway. The combination
of MYB12 and transcription factors specific for the anthocyanin
pathway further boosts anthocyanin production (Zhang et al.,
2015c).

MYB genes are also responsible for pigmentation also in grape
berries (Kobayashi et al., 2002; Walker et al., 2007), blood oranges
(Butelli et al., 2012), apples and pears (Takos et al., 2006; Ban et al.,
2007; Yuan et al., 2014). Some apple genotypes show red flesh
and share a single ancestor, the Malus sieversii f. niedzwetzkyana
wild apple native of Central Asia (Harris et al., 2002). The
expression pattern of MdMYB10 in red flesh apples correlates
with anthocyanin gene expression (Espley et al., 2007), and a
minisatellite-like structure in its promoter increases MdMYB10
transcription and the accumulation of anthocyanin in leaves,
flowers, and fruit cortex (Espley et al., 2009). Max Red Bartlett,
a red-skinned European pear variety, gives occasionally green-
skinned fruits in which PcMYB10 expression is silenced due to the
methylation of two regions in its promoter (Wang et al., 2013).

The purple cauliflower (Brassica oleracea var. botrytis)
originates from a spontaneous mutant found in a cauliflower field
over 20 years ago (Chiu et al., 2010). This mutation results in up-
regulation of transcription of the Pr gene encoding for a MYB.
Purple varieties are also known for carrots (Figure 1F), onions
and potato (De Jong et al., 2004). Several more examples could
be added to this list, showing that MYBs are indeed “master
regulators” of anthocyanin biosynthesis and their expression
pattern determines pigmentation patterns in plants.

The market request of high anthocyanin content food, led
to the rediscovery of pigment-rich varieties, which were nearly
forgotten. These ancient varieties of apples, pears and peaches
(Figures 1G–I) are still poorly studied, but are a priceless source
of interesting alleles to be introduced into market varieties.

Selection in agriculture probably favors mutations in MYB
genes, over mutations in their bHLH and WD40 partners or
in structural genes, because they are the least pleiotropic and
because gain of function mutations are more likely to activate
anthocyanin synthesis in new tissues. Strategies for improving
anthocyanin production in crops by both breeding and genetic
engineering mimics natural selection, acting on MYBs to tune the
expression of anthocyanin structural genes.

HIGHER PRODUCTION NOT ALWAYS
MEANS HIGHER YIELD, AT LEAST FOR
ANTHOCYANINS

There are now sufficient tools to improve pigment production
and color displayed by fruits and flowers. However, we have little

understanding of the role played by degradation of anthocyanins
on the total yield in fruits and on color in flowers.

It is often taken for granted that anthocyanins, once
accumulated in the vacuole, are stable. However, few studies
describe anthocyanin turn over and addressed whether this is due
to enzymatic activity, spontaneous reactions or a combination of
both (Oren-Shamir, 2009).

Color fading is reported for several species and here we briefly
summarize illustrative examples reported in literature and/or
known from everyday life.

In some plants, anthocyanins protect the photosynthetic
apparatus from light damage in young leaves, and are lost
later in development, enabling more light to enter the tissues
(Steyn et al., 2002, 2004; Nissim-Levi et al., 2003). Instead, apple
and pear peels show changes in pigmentation in response to
temperature and/or light (Figures 2D–F; Steyn et al., 2004, 2009).
In blood oranges, on the other end, anthocyanin content reaches
a maximum in the fully ripe fruit, to decreases at latter stages
when β-D-Glucosidase activity increases giving the formation
of aglycons which are possible substrates for degradation by
polyphenol oxidase, abundant in these fruits (Barbagallo et al.,
2007). Polyphenol oxidases are also suspected to induce fading
together with peroxidases in litchi fruits (Reichel et al., 2011)
where an anthocyanin degradation enzyme (ADE) was identified
as vacuolar laccase secreted to the extracellular space at pericarp
browning (Fang et al., 2015).

Flowers turned out to be an excellent model to study color
fading, which is observed for instance, in peony (Figure 2A),
Hibiscus, orchids (Burg and Dijkman, 1967; Zhao et al., 2012;
Shimokawa et al., 2015), dahlias (Figure 2B) and several Solanum
species (Figure 2C). In commercial varieties of flowers, fading
strongly affects the market value. One of these is aster, where
the inhibition of color fading by magnesium is suggested to
come from the formation of pigment-metal complexes (Shaked-
Sachray et al., 2002). Although similar results were reported for
grape cell suspensions (Sinilal et al., 2011), there is no direct
evidence for the presence of metalloanthocyanin in these species.

Also the petals of Brunfelsia calycina, a Solanaceae shrub, fade
from blue to complete white within few days after flower opening
(Vaknin et al., 2005). Protein and mRNA synthesis inhibitors
prevent anthocyanin degradation in these petals suggesting that
fading is an active process. Interestingly, cytokinin treatment
delays petal senescence but not anthocyanin degradation,
suggesting that fading is independent from petal senescence
and the accompanying increase in pH. Peroxidase activity
correlates in time with anthocyanin degradation and recently,
Zipor et al. (2015) characterized a candidate vacuolar peroxidase,
BcPrx01, which transcript and protein level increase during
fading. Furthermore, total protein extracts from brunfelsia petals
induce in vitro fading of anthocyanins with different decorations
extracted from petunia petals after addition of H2O2, suggesting
a not substrate-specific mechanism. However, direct evidence
that this in vivo reaction mimics the degradation seen in vivo is
currently lacking.

The color of anthocyanins is affected by the pH of the
vacuolar lumen where they accumulate. A strongly acidic lumen
results in red, and a less acidic one in blue. In Petunia,
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FIGURE 2 | Anthocyanin degradation in plants. (A) The same peony flower photographed different days (between the first and the last picture are 6 days) after
opening. In (B) the same dahlia flower photographed at different days (between the first and the last pictures are about 2 weeks). (C) Solamun wrightii flowers
photographed on the plant. The young buds and just open flowers are intensely pigmented, while older flowers are totally white indicating strong fading of the
anthocyanin pigments. (D) Color change in red (upper row) and green (bottom row) ‘Cripps Pink’ apples exposed to moderate light at 10, 20, and 30◦C for 6 days.
The green apples accumulated anthocyanin at 20◦C while the red apples loose anthocyanin at 30◦C (Steyn et al., 2004). (E) Bleaching of red color (upper row) at the
sun-exposed side of Rosemarie fruits compared to fruits receiving less intense light (bottom row) which maintain more intense pigmentation. (F) Rosemarie pears:
one fruit has lost its red color and turned yellow on the tree. This phenomenon is reported for Rosemarie pears fruits that bent over during development resulting in
pinching of the peduncle. (G) Petunia flower photographed at different moments after opening and showing strong color fading. This is a ph4 mutant line in a
FADING background accumulating malvidin. (H) Scheme summarizing our present understanding of color fading in plant cells. Similar transcription factor complexes
consisting of MYB, bHLH, WD40 and WRKY factors control anthocyanin biosynthesis (through the transcription of the structural genes encoding for the enzymes of
the pathway) and vacuolar acidification (through the transcription of the two pumps PH1 and PH5). Anthocyanin are sequestered to the vacuolar lumen. When the
anthocyanin molecules are highly decorated and a dominant allele of the FADING (FA) gene is present, color fading takes place as consequence of anthocyanin
degradation, probably in the vacuolar lumen. This mechanism is blocked by the activity of the MBW complex indicating that target genes of these transcription
factors might protect anthocyanins from the effect of FA.

blue flowering mutants define the loci PH1 to PH7 (Koes
et al., 2005) which control vacuolar acidification in petals. PH1
and PH5 encode a heteromeric proton pump, transcriptionally
controlled by the AN1-PH4-AN11-PH3 complex (a bHLH, a
MYB, a WDR and a WRKY transcription factors) sharing
components with the MBW complex regulating anthocyanin

biosynthesis. Thus, pigment synthesis and vacuolar acidification
are controlled by the same regulatory network (Verweij et al.,
2008; Faraco et al., 2014). In petunia ph3, ph4 and ph6 mutants
that contain the dominant allele of the FADING (FA) locus
(de Vlaming et al., 1982, 1983), nearly complete degradation
of anthocyanin occurs after flower opening (Figure 2G). This
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process is restricted to the flower limb, while flower tube and
pollen maintain their full color. Color fading is in petunia
much stronger for highly substituted anthocyanins, such as
3-rutinosido(p-coumaroyl)-5glucoside anthocyanins, whereas 3-
glucosides and 3-rutinosides only weakly fade and anthocyanin
methylation has no effect (de Vlaming et al., 1982). As reported
above, in vitro, brunfelsia protein extracts equally destabilize
differently substituted anthocyanins from petunia (Zipor et al.,
2015). This discrepancy might have different explanations: (i)
the FA gene product has specificity for highly substituted
anthocyanin molecules and the in vitro reaction does not reflect
the one in vivo, (ii) the specificity of the fading mechanism
in brunfelsia is different from the one in petunia, or (iii)
FA activity is dependent on genes that genetically linked with
genes determining the anthocyanin sunstituion patter, such as
Rhamnosyl Transferase (RT) and Glucosylation at Five (GF;
Quattrocchio et al., 2006).

Our limited understanding of the mechanism of anthocyanin
fading, coming from experiments in brunfelsia and genetic
analysis in petunia, is summarized in Figure 2H. Decorated
anthocyanin molecules are synthesized under the control of the
MBW transcription complex and transported to the vacuolar
lumen where their color is affected by the pH of the environment.
This is determined by the PH1/PH5 pump which expression is
also regulated by the MBW complex. In the vacuole, peroxidases
modulate the concentration of free radicals and water peroxide,
which can affect anthocyanin stability. Under these conditions
anthocyanins are relatively stable (also in the presence of the FA
allele), as compared to mutants for the MBW complex which are
depleted in expression of all its target genes.

On the contrary of what suggested elsewhere (Oren-Shamir,
2009), fading in petunia is not merely a change in color due
to high vacuolar pH in mutants. Mutations in PH1 and PH5
increase vacuolar pH in the same extent than mutations in the
MBW complex, but are not accompanied by color loss (Verweij
et al., 2008; Faraco et al., 2014). Fading in ph4, ph3, and ph6 must
therefore be due to down-regulation of other target genes of the
MBW complex (Quattrocchio et al., 2006) in combination with
the presence of a dominant FADING allele (de Vlaming et al.,
1982).

The MBW complex controls several genes encoding enzymes
of the anthocyanin pathway (Quattrocchio et al., 1998; Spelt et al.,
2000), PH1 and PH5 (Verweij et al., 2008; Faraco et al., 2014)
and at least 10 others of unknown function (Verweij et al., 2008).
Which of these genes protect anthocyanins from the action of
FADING can only be speculated. Their characterization via loss
and gain of function study will shed light on this point, and will
unravel which cellular mechanism protects anthocyanins from
massive degradation.

The occurrence of fading obviously affects the final yield of
anthocyanins diminishing the effect of synthesis improvement
achieved by breeding or transgenesis (e.g., by modulation
of the expression of MYB regulators). For this reason, the
identification of the factors controlling fading of pigments as
well as its inhibition, opens possibilities of further improvement
of the content of these compounds in the final plant
products.

CONCLUSION

Anthocyanin-rich plants produced by traditional breeding or
biotechnology, could contribute to human health reducing the
incidence of major diseases (Martin et al., 2011), while new
flower colors and patterns (Yoshida et al., 2009; Tanaka and
Brugliera, 2013; Zhao and Tao, 2015) are interesting for the
ornamental market. Success was booked in producing plants with
enhanced anthocyanin synthesis by increasing the expression of
MYB factors that activate transcription of structural anthocyanin
genes. However, degradation also contributes to the final
anthocyanin yield in plant products making the understanding
of this phenomenon important for future strategies of crop
improvement.

Studies in brunfelsia provide insight into the biochemistry of
anthocyanin degradation (Zipor et al., 2015).

It is unclear whether a certain degree of anthocyanin
degradation, is functional to the plant. So far only speculations
are possible. Anthocyanins protect tissues from free radicals
and in some species accumulate in seedlings where they shield
the photosynthetic machinery from light. Their degradation
later in development probably improves photosynthesis (Gould
et al., 2002b). In brunfelsia, anthocyanin degradation in
flowers is accompanied by release of fragrant volatiles and
both processes could be signals for pollinators (Zipor et al.,
2015). However, no evidence is available for correlations
between the two phenomena. Reactive oxygen species (ROS)
formed in aging flowers or maturing fruits from photo-
oxidation, photorespiration, and Mehler reaction, could induce
anthocyanin degradation and this might protect other cellular
components from damages (Hernández et al., 2009). Moreover
anthocyanins inhibit Fenton hydroxyl radical generation by
scavenging superoxide and hydrogen peroxide (Gould et al.,
2002a, 2010). A better characterization of the genes/factors
involved in color fading will answer to the many questions
we presented here and open the possibility to ‘design’ plant
cells with stable vacuolar content. Mutants makes it possible
to approach the characterization of the FADING locus and of
the MBW target genes involved in anthocyanin stabilization.
Considering that anthocyanins are not stable outside the
vacuole (Mueller et al., 2000), the MBW complex could
control vacuolar physiology and mutants might have vacuolar
defect resulting in anthocyanin leakage. Factors involved in
both fading and its prevention could function in totally
unrelated pathways. Their participation in massive anthocyanin
degradation might be a peculiarity of rare genotypes that amplify
a moderate pigment loss normally occurring after vacuolar
accumulation.

Genetic analyses in species, like petunia, where well-defined
mutants affecting this phenomenon are available (de Vlaming
et al., 1982, 1983; Quattrocchio et al., 2006) open the way
to identify the genes that determine anthocyanin trun-over
in vivo, to assess whether complete disappearance of color is
an “accident” originating from human selection during crop
domestication, and to gain tools to improve stabilization of
anthocyanin (and possibly also other products) in the vacuolar
lumen.
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