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Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, a disease that

causes enormous economic losses, most markedly in South America. P. pachyrhizi is

a biotrophic pathogen that utilizes specialized feeding structures called haustoria to

colonize its hosts. In rusts and other filamentous plant pathogens, haustoria have been

shown to secrete effector proteins into their hosts to permit successful completion of

their life cycle. We have constructed a cDNA library from P. pachyrhizi haustoria using

paramagnetic bead-based methodology and have identified 35 P. pachyrhizi candidate

effector (CE) genes from this library which are described here. In addition, we quantified

the transcript expression pattern of six of these genes and show that two of these CEs

are able to greatly increase the susceptibility of Nicotiana benthamiana to Phytophthora

infestans. This strongly suggests that these genes play an important role in P. pachyrhizi

virulence on its hosts.

Keywords: Asian soybean rust, soybean, effectors, virulence

INTRODUCTION

Soybean rust is a devastating disease that threatens soybean crops worldwide. Its effect is most
pronounced in Brazil, where crop losses and extra fungicide expenses have been calculated to be
in the billions of dollars (Yorinori et al., 2005). While extensive effort has been made to discover
effective genetic resistance to this disease in soybean there are currently no known resistant
commercial cultivars and extensive germplasm screening has not identified soy varieties that are
resistant to all known rust isolates (Walker et al., 2014). These observations, plus the fact that
Phakopsora pachyrhizi has an unusually broad host range for an obligate biotroph (Keogh, 1976;
Slaminko et al., 2008), suggest that this pathogen is very adept at evading host defenses.

Many filamentous pathogens, including rusts, exert their virulence through effector proteins
that are transferred into plant cells from haustoria (Garnica et al., 2014); specialized feeding
structures that become embedded in host cells without breaching the plasma membrane. Fungal
effectors translocate from haustoria into plant cells through a poorly-understood mechanism
and then act to modulate the physiology of their host (Petre et al., 2014). Effectors were
first identified as avirulence genes that triggered strong host defense responses known as
ETI (effector-triggered immunity), but many effectors have since been shown to play an
important virulence function for the pathogen expressing them (Kamoun, 2007). While some
effectors are thought to play a role in nutrient uptake, most characterized effectors that have a
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demonstrated virulence activity act by suppressing host defenses
(Göhre and Robatzek, 2008). There are many examples of
effectors from filamentous pathogens that have been shown to
suppress plant defenses. In oomycetes, Avr3a and Avrblb2 from
Phytophthora infestans were shown to suppress plant defense
responses (Bos et al., 2010; Bozkurt et al., 2011) as were a
large number of predicted effectors from Hyaloperonospora
arabidopsidis (Fabro et al., 2011). In fungi, the rice blast
(Magnaporthe oryzae) effector AvrPiz-t suppresses immunity
in rice by targeting a RING E3 ubiquitin ligase (Park et al.,
2012), while corn smut (Ustilago maydis) Pep1 can subdue corn
defense responses via the suppression of peroxidase activity
(Hemetsberger et al., 2012).

Like other filamentous pathogens, rust proteins have been
identified that trigger ETI in plant cells (Dodds et al., 2004;
Catanzariti et al., 2006), and a number of intriguing studies have
demonstrated biochemical activities attributable to secreted rust
proteins (Kemen et al., 2013; Pretsch et al., 2013; Petre et al.,
2015a,b) but to date no rust effectors have been clearly shown to
block plant defenses or enhance pathogen virulence. In this study,
we have developed an improved method to generate a cDNA
library from P. pachyrhizi haustoria and have bioinformatically
identified 35 candidate effectors. Gene expression analysis of six
of these CEs showed expression patterns consistent with these
genes having a role in virulence. Additionally, we were able to
show that when expressed in planta, two of these candidate
effectors were able to dramatically enhance P. infestans virulence
on Nicotiana benthamiana, suggesting that these effectors are
important for P. pachyrhizi virulence on hosts.

MATERIALS AND METHODS

Plant Growth and Infection Conditions
Glycine max was grown in a growth chamber at 22◦C with a
16 h photoperiod until the primary (unifoliate) leaves had fully
expanded. All experiments with P. pachyrhizi were performed
in an USDA/APHIS-approved biocontainment facility. All
inoculation experiments were conducted with a GA-05, an
internal P. pachyrhizi field isolate collected from a soybean field
in Georgia in 2005.

Before inoculation, spores were suspended in an aqueous
solution of 0.01% Tween 20, heat-shocked at 40◦C for 5min and
mixed thoroughly; the spore concentration was then adjusted
to 1 × 105 with a hemocytometer. Plants were spray-inoculated
with the urediniospore suspension, incubated at 100% relative
humidity in the dark for 24–36 h and then transferred to a growth
chamber set at 22◦C, 70% RH, 16 h photoperiod.

P. pachyrhizi cDNA Library Construction
Fifty-four infected leaves were detached 8 days following
inoculation, briefly rinsed with H2O and transferred to a
chilled blender, where they were homogenized in 100ml of
homogenization buffer (0.3M Sorbitol, 20mM MOPS, 0.2%
PVP, 1mM DTT, 0.1% BSA, pH 7.2) with 0.2% RNA protect
solution (Qiagen). The homogenate was filtered first through
Nytex 100 mesh and then through Nytex 25. The filtrate was then
concentrated by centrifugation and resuspended in suspension
buffer: 0.3M Sorbitol, 10mM MOPS, 0.2% BSA, 1mM CaCl2,

1mM MnCl2, and kept on ice. The resuspension was divided
into six aliquots of 1ml each and mixed with Con-A-biotin
paramagnetic beads which were prepared by mixing 150µl of
1mg/ml Con-A-biothin, 150µl of streptavidin paramagnetic
beads and suspension buffer in a total volume of 900µl. Con-
A-streptavidin bead complex (200µl) was added to each 1ml
aliquot of the resuspended homogenate and mixed at 4◦C for
30min. The mixture was then washed by placing tubes in
magnetic stands and exchanging suspension buffer three times
after beads have aggregated proximal to the stand. After the last
wash was removed, the beads were suspended in 250µl of Trizol
and transferred to a glass dounce, where the collected tissue was
homogenized. Trizol solution was transferred to amicrofuge tube
with 200µl of chloroform, mixed and centrifuged. The aqueous
phase was then transferred to a new tube and the RNA was
precipitated with NaCl and isopropanol. Precipitated RNA was
pelleted and resuspended in 20µl H2O. This total RNA was used
to make a cDNA library using the Clontech SMART directional
cDNA kit according to the manufacturer’s recommendations.

Gene Expression Profiling
Soybean (Glycine max, var. Jack) plants were grown to the
VC stage and then spray-inoculated with a suspension of
P. pachyrhizi spores (GA05-1; 100 k spores/ml 0.01% Tween
20). Unifoliate leaves were collected from three replicate plants
and flash frozen in liquid nitrogen at 0, 12, 24, 36, 48, 72, 96,
and 168 h post-infection (hpi). Total RNA was prepared from
either uninfected or infected leaf tissue using Trizol Reagent
(Life Technologies #15596-026). Isolated total RNA was DNAse-
treated and cDNA synthesized using the QuantiTect Reverse
Transcription Kit (Qiagen #205311). Absolute quantification of
transcript levels was determined by TaqMan qPCR (TaqMan
Gene Expression Master Mix; Applied Biosystems #4309849).
Each sample was run in triplicate on a QuantStudioTM 6
Flex Real-Time PCR System (Applied Biosystems) using cDNA
generated from 200 ng of total RNA and the primers (200 nM
each) and probes (100 nM) indicated in Supplementary Table 1.
QuantStudio 6 and 7 Flex Software was employed for analysis.
Effector transcript levels in infected plants are expressed relative
to those of a P. pachyrhizi α-tubulin gene DN739993.1, (van
de Mortel et al., 2007) that was used as an internal control for
expression studies.

Effector Virulence Assays
N. benthamiana plants were grown in a controlled environment
green house at 22◦C with 55% humidity at 16 h light.
Agrobacteria were incubated in induction buffer (1 l MMA: 5 g
MS salts, 1.95 g MES, 20 g sucrose, 200µM acetosyringone, pH
5.6) for at least 1 h prior to infiltration into leaves as described
(Bos et al., 2006).

P. infestans (wild-type isolated from an infested tomato field in
New Castle County, Delaware) was grown on pea agar at 18◦C in
the dark. Two leaves of 4- to 5-week old N. benthamiana plants
were agro-infiltrated at an OD600 of 0.3 with the binary vector
pMAXY226 (tagged with 3x FLAG toward the C-terminus) on
one half of the mid-vein and an effector cloned into pMAXY226
(tagged with 3x FLAG toward the C-terminus) into the other
half of the same leaf. P. infestans sporangia were harvested and
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diluted to ∼100,000 spores/ml (Kamoun et al., 1998; Schornack
et al., 2010). Droplets (10µl) of zoospores were applied onto
the abaxial side of detached leaves 24 h post agro-infiltration and
incubated for several days on wet paper towels in 100% relative
humidity (King et al., 2014). To determine lesion size, leaves were
placed on a light box and photographed. On the resulting image,
the border of the lesion that was visible (dark brown region)
was marked manually on digital images of standardized size. An
example of amarked image is shown in Supplementary Figure 1.
Lesion area within this border was then calculated with Image-
Pro Analyzer (v7.0) software from these images.

Effectors CSEP-07, CSEP-08, CSEP-09, and CSEP-35 were
synthesized (Genscript, Piscataway, NJ) without signal peptide
and cloned into an expression vector fused with 3x FLAG tag at
the 3′ end of the gene. Mature effector PexRD2 was amplified
from the genomic DNA of P. infestans using KOD DNA high
fidelity polymerase (Novagen) and was also sub-cloned into
the expression vector with a 3x FLAG tag. The sequence of
PexRD2 was confirmed by sequencing. All three cloned vectors
were sequence-verified and transformed into Agrobacterium
tumefaciens (AGL1 competent cells).

Agro-infiltrated N. benthamiana leaves were harvested at
5 days post-infiltration (dpi). Total protein extracts were
prepared by grinding five leaf discs (6.0mm each) in 1ml
radioimmunoprecipitation assay (RIPA) lysis and extraction
buffer (Pierce R© RIPA buffer product no. 89900; Thermo
Scientific, Rockford, IL, USA) in the presence of 0.1mM protease
inhibitor HALT Protease and Phosphatase inhibitor cocktail
(Thermo Scientific, no. 78442).

Accession Numbers
Sequence data from this article can be found in the GenBank data
library under accession numbers KU695151–KU695185.

RESULTS

In order to understand P. pachyrhizi virulence, we sought to
identify genes that encode effector proteins. Rust effectors are
synthesized in and translocated into host cells from specialized
structures called haustoria, so we generated and screened a
cDNA library from isolated haustoria, an approach that has been
successful in identifying effectors from other rust fungi (Hahn
and Mendgen, 1992; Catanzariti et al., 2006).

We developed a new method for isolating haustorial RNA as
we were initially unsuccessful in isolating RNA from haustoria
using concanavalin A-conjugated beads, the method that has
been successfully used to generate cDNA libraries from other
rust species (Hahn and Mendgen, 1997; Catanzariti et al.,
2006). Link et al. (2014) also noted difficulty in identifying
high-quality RNA from P. pachyrhizi haustoria using Con-A
sepharose beads, but were ultimately successful in generating
a haustorial transcriptome using next-generation sequencing.
We homogenized soybean leaves infected with P. pachyrhizi
field isolate GA-05 8 days prior and filtered the extract
through Nytex membranes. Instead of a Sepharose A column,
we used streptavidin-conjugated paramagnetic beads that were
then coated with biotin-concanavalin A (Figure 1A). These

concanavalin A beads were then added to filtered extract of
leaves that had been inoculated with P. pachyrhizi 8 days prior.
The bound fraction of the extract was washed twice, greatly
reducing chloroplast abundance (Figures 1B–D), and then RNA
was extracted. We extracted 2.7µg of high quality RNA from 54
infected leaves, and this RNA was used to construct a directional
cDNA library (Figure 1E). We obtained quality sequence from
6481 clones using Sanger sequencing, which provided us with
500–900 bp of 5′ sequence for each clone. This collection
of sequences was then assembled into 1944 contigs, 1633 of
which were singletons. We identified 995 ORFs predicted to
encode proteins of fifty amino acids or more in these 1944
contigs and these ORFs. A BLAST search identified 187 of these
sequences that had a closest homolog from the plant kingdom
and these were disregarded. The remaining 808 sequences were
then analyzed with the SignalP algorithm to identify sequences
with predicted secretory signal peptides (Emanuelsson et al.,
2007). If the sequence did not encode any signal peptides, or
if an ORF encoding a signal peptide was not the longest ORF
for that sequence, the clone was disregarded. In addition the
sequence was discarded if there was not a stop codon seen 5′

to the start codon of the largest ORF, which eliminates partial
transcripts with incomplete ORFs. This left us with a collection
of clones with sequences of predicted haustorially-expressed
secreted proteins (HESPs). Within this collection of HESPs we
found homologs of a number of previously characterized HESPs,
such as hexose transporter 1, AAT1, and RTP1 (Hahn and
Mendgen, 1997; Mendgen et al., 2000; Voegele et al., 2001).

While only six rust effectors have been validated to date (Petre
et al., 2014), the most striking similarity of these effectors is that
they do not have homology to any proteins from species outside
of Pucciniales (Saunders et al., 2012; Petre et al., 2014). We thus
used this as the primary criterion to identify the strongest effector
candidates from P. pachyrhizi. We searched the HESP collection
against Genbank and fully sequenced a representative clone from
each contig that did not have clear homologs from any non-
Pucciniales species. The predicted proteins from fully-sequenced
clones were again searched against the Genbank protein database
to rule out non-rust orthologs and the remaining sequences
comprise our collection of P. pachyrhizi candidate effectors.
These coding sequences are predicted to encode P. pachyrhizi
candidate secreted effector proteins and they were thus named
Pp-CSEP-01 to Pp-CSEP-35 (Supplementary Files 1, 2).

Within our collection of CEs, twenty-four are unique to
P. pachyrhizi, while twelve have orthologs in at least one other
rust species (Table 1). We also found that 31/35 of our CEs were
identified in the P. pachyrhizi Thai1 transcriptome described by
Link et al. (2014), although only fifteen of these were identified
as secreted proteins in that study (Table 1). Nine of the CEs
identified here were not annotated as secreted proteins in Link
et al. (2014) because the assembled transcript was not full length
and presumably would not have been identified as an ORF.
While effectors from filamentous pathogens have been shown
to evolve rapidly (Allen et al., 2004; Dodds et al., 2006; Win
et al., 2007), we found that most of the P. pachyrhizi Thai1
homologs were highly conserved with the CEs we identified
from GA-05. Only CSEP-01, CSEP-14, and CSEP-22 have clear
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Thai1 homologs with <90% amino acid identity. Interestingly,
CEs that have homologs in other rust species are only relatively
distantly related to these proteins, with no orthologs having
more than 50% amino acid identity. A public EST collection
generated from germinating urediniospores (Posada-Buitrago
and Frederick, 2005) was searched for these sequences and only
six CEs were found (Table 1). This EST collection contains
over 34,000 sequences while our haustorial collection consists of
<6500 clones, suggesting that the transcripts of 29/35 of these
CEs are more abundant in haustoria than urediniospores. While
true effectors are often strongly induced while the pathogen is in
planta, it is not always the case (Dodds et al., 2004; Catanzariti
et al., 2006), so we cannot exclude the transcripts that are
expressed in urediniospores from our CE collection.

We wished to determine if the expression of these CEs were
induced in planta. To determine the expression patterns of these
CEs we analyzed the transcript levels of a random subset of
six effectors during an infection time course using qRT-PCR
(Figure 2). We measured CE transcript abundance as a fraction
of the abundance of P. pachyrhizi α-tubulin, a gene shown to be
constitutively expressed in rust species (Hacquard et al., 2011).
We found that in 5/6 cases the CEs were strongly induced in
planta, with two primary expression patterns observed: CSEP-
03 and CSEP-07 transcript levels were undetectable in early
infection and induced after day 3; in contrast, CSEP-06, CSEP-08,
and CSEP-09 are maximally induced by 24 h and then continue
to express throughout infection. CSEP-32 is the only CE strongly
expressed at 12 h post-inoculation and is maximally induced at
24 h after which expression decreases. This also is consistent with
the library data, as CSEP-32 is the only of these six CEs that
could be found in the Posada-Buitrago EST collection (Posada-
Buitrago and Frederick, 2005).

True effectors facilitate pathogen infection and we used a
N. benthamiana/P. infestans pathosystem to detect virulence
phenotypes of our CEs. This pathosystem was previously used
to demonstrate the increased pathogen growth in N. benthamia
transiently expressing P. infestans effector PexRD2 (King et al.,
2014). We chose this system to assay P. pachyrhizi effectors
because, like P. pachyrhizi, P. infestans is a hyphal pathogen
and may be susceptible to the same plant defense responses.
In addition, N. benthamiana is well-known for its high level of
foreign protein expression (Goodin et al., 2008) and P. infestans
only grows modestly on this host which allows for increased
virulence to be more readily measured than a better-adapted
plant-pathogen interaction.

We expressed P. pachyrhizi CEs via agrobacterium-mediated
transient expression. CEs were cloned into a T-DNA vector that
expresses the mature (signal peptide-truncated), epitope-tagged
effector under the regulation of the strong double-Mirabilis
Mosaic Virus promoter (Dey and Maiti, 1999). Each leaf was
infiltrated with an effector and empty-vector control side-by-side.
Twenty-four hours after infiltration N. benthamiana leaves were
detached and both halves of the leaf were drop-inoculated with
P. infestans zoospores and then incubated at room temperature
as described by King et al. (2014). Four CEs, CSEP-07, CSEP-
08, CSEP-09, and CSEP-35, were chosen to test. Expression of
two of these CEs, CSEP-07, and CSEP-09 showed a dramatic

FIGURE 1 | RNA purification from isolated P. pachyrhizi haustoria. (A)

Schematic of haustorial RNA purification. (B) Micrograph of

ConA-FITC-stained haustoria after homogenization and filtration through Nytex

membrane. Red objects are chloroplasts. Bar = 10µm (C) ConA-FITC stained

haustoria after paramagnetic bead purification. Bar = 10µm (D) Close up of

ConA-FITC stained haustoria after purification showing association with

paramagnetic beads. Bar = 10µm (E) 1% Agarose gel separation of 1µg

haustorial RNA (left) and 0.5µg cDNA prep (right).

increase of P. infestans growth at s7 days post-inoculation, and
these two effectors were chosen to study in greater detail. In
further experiments, P. infestans growth was quantified 7 days
after inoculation by photographing leaves and analyzing them
with ImagePro Analyzer v7.0. Figure 3A shows representative
infected leaves expressing CSEP-07, CSEP-09, and P. infestans
PexRD2 as a positive control. The area infected in each lesion
was calculated and plotted in Figure 3B. A clearly statistically
significant increase in P. infestans growth was seen in tissue
expressing these three effectors compared to controls; a paired
student’s t-test calculated the p-value to be <0.001 in each case.
To confirm that the effectors being tested were expressed in
the plant tissue, protein was extracted from plants infiltrated at
the same time and immunoblotted using the α-FLAG antibody
(Figure 3C). No macroscopic cell death phenotype was seen at
the time of protein harvest (5-dpi).
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TABLE 1 | Candidate Phakopsora pachyrhizi effectors.

Pp CSEP Public ESTa Orf size (AA) Cysteines Unique to Ppb Ortholog accession number (Organism)c Link et al. contigd

Pp-CSEP-01 N 76 2 x 5608

Pp-CSEP-02 N 55 5 x 4757

Pp-CSEP-03 N 208 8 49 XP_003322944 (Pgt)

Pp-CSEP-04 N 204 2 x 5072

Pp-CSEP-05 N 291 1 x 3430

Pp-CSEP-06 N 218 3 35 XP_003324954 (Pgt) 4760

Pp-CSEP-07 N 105 5 x 6714

Pp-CSEP-08 N 198 12 34 XP_007408015 (Mlp) 3139

Pp-CSEP-09 N 182 12 37 XP_007408015 (Mlp) 8880

Pp-CSEP-10 N 103 3 x 5608

Pp-CSEP-11 N 147 1 x 7075

Pp-CSEP-12 N 192 3 28 XP_007404648 (Mlp) 3185

Pp-CSEP-13 N 142 4 x 1885

Pp-CSEP-14 N 126 2 x 7139

Pp-CSEP-15 N 311 4 x 1327†

Pp-CSEP-16 N 270 2 46 KNF03382 (Pst) 3900

Pp-CSEP-17 N 240 4 x 2907†

Pp-CSEP-18 N 195 6 x 864†

Pp-CSEP-19 N 183 2 x 324

Pp-CSEP-20 N 327 5 x 3176†

Pp-CSEP-21 N 131 0 x 3969

Pp-CSEP-22 N 294 1 x 1454†

Pp-CSEP-23 N 134 0 x 6204

Pp-CSEP-24 N 312 2 x 2715†

Pp-CSEP-25 N 357 4 x 1326†

Pp-CSEP-26 N 196 7 32 XP_003332659 (Pgt)

Pp-CSEP-27 Y 348 11 30 XP_003328542 (Pgt) 8815†

Pp-CSEP-28 N 321 3 x 7972†

Pp-CSEP-29 N 301 4 30 KNF03382 (Pst) 1256

Pp-CSEP-30 N 119 0 x

Pp-CSEP-31 Y 213 9 x 1525

Pp-CSEP-32 Y 142 0 42 XP_003326807 (Pgt) 3471

Pp-CSEP-33 Y 161 8 34 XP_007403891 (Mlp)

Pp-CSEP-34 Y 200 1 x 1607

Pp-CSEP-35 Y 291 20 44 KNZ58433 (Ps) 4224

apresence of CSEP in public urediospore EST collection.
bx represents a CE for which orthologs could not be identified. Numbers are the percent amino acid identity of closest ortholog; numbers in bold are annotated as secreted proteins in

Link et al. (2014).
caccession number of closest identified ortholog, source organism in parenthesis. Pgt, Puccinia graminis f. sp tritici, Mlp, Melampsora larici-populina; Pst, Puccinia striiformis f. sp. Tritici;

Ps, Puccinia sorghi.
dcontigs in bold are annotated as secreted proteins in Link et al. (2014).
†assembled transcript in Link et al. (2014) is not full-length.

DISCUSSION

A biotrophic pathogen’s ability to infect and colonize a host is
at least partially a function of the collection of the effectors that
it expresses during its life cycle. Identifying and characterizing
the effectors of P. pachyrhizi is an important step toward
understanding how this pathogen infects important crops like
soybean and causes devastating economic consequences. We
identified 35 P. pachyrhizi coding sequences that meet our strict
criteria for effector candidates; a secretory signal peptide and the
absence of any clear homologs outside of Pucciniales. Over half

of predicted effectors are smaller than 200 amino acids, and over
80% are <300. In addition, most transcripts encoding these CEs
were not found in a germinating urediniospore EST collection,
suggesting haustorial enrichment.

Three rust genomes have been sequenced to date, Puccinia
graminis f. sp. tritici, Puccinia stiiformis f. sp. tritici, Melampspora
larici-populina (Duplessis et al., 2011; Cantu et al., 2013), and
each has been shown to have a large number of families
of short, secreted proteins that are presumed to be effectors
important for pathogenesis. In addition, there have been
thorough transcriptomic analyses of coffee rust, bean rust, and
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FIGURE 2 | Expression profiles of selected P. pachyrhizi candidate effectors. RNA was harvested from soybean leaves at 12, 24, 36, 48, 72, 96, and 168 h

after spray inoculation and transcript levels were quantified using qRT-PCR. RNA was also harvested from uninoculated tissue as a negative control (UN12). Error bars

are standard error of the mean of three biological repeats.

soybean rust haustoria (Fernandez et al., 2012; Link et al.,
2014). Each of these studies has identified many more candidate
effectors than we present here. This is partly because our criteria
for what qualifies as a candidate effector (CE) is stricter than in
these reports, and partly because the next-generation sequencing
methods used in these studies provides a much deeper sampling
of transcript diversity.

When we initially tried to purify haustoria from infected
leaves using a column of concanavalin A-conjugated sepharose
B we found that the resulting RNA was too degraded to
make cDNA libraries of the desired quality. We consequently
modified our haustorial purification methodology to utilize

streptavidin-conjugated paramagnetic beads that were pre-
bound to biotin-concanavalin A and then used to bind P.
pachyrhizi haustoria. Paramagnetic bead capture resulted in a
greatly shortened window of time between homogenization of
the infected leaves and extraction of RNA because of very
short washing steps and because it was not required to liberate
the haustoria from the beads before they were used for RNA
extraction.

Two of our effector candidates, Pp CSEP-07 and Pp CSEP-
09, are able to increase the virulence of P. infestans on N.
benthamiana expressing them. Since these two effectors have
such dramatic phenotypes, counteracting their biochemical
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FIGURE 3 | Virulence phenotypes of P. pachyrhizi candidate effectors CSEP-07 and CSEP-09 (A) Representative leaves infiltrated agro-infiltrated with

empty vector (left half of leaf) or indicated gene (right half of leaf), followed by inoculation with P. infestans zoospores. Images were taken at 7 days after

zoospore inoculation. (B) Quantification of P. infestans lesion area 7 days after inoculation. P-value is from a two-tailed paired Student’s t-test. Results are an average

of at least 10 inoculated leaves. (C) Immunoblot showing expression of indicated proteins from three plants that were agro-infiltrated but not inoculated with P.

infestans. For each CE, protein was extracted from three independently infiltrated plants and immunoblotted with α-FLAG antibody. Directly below, protein from the

same extraction was also loaded on a second gel and stained to demonstrate equal loading. This experiment was repeated twice with similar results.

activity may significantly impair the virulence of P. pachyrhizi
and doing so may provide a method for controlling the disease.
The observation that a rust effector can enhance the virulence
of P. infestans also suggests that at least some plant defenses to
rust and P. infestans are shared, and it is likely that they are
counteracted by both fungal and oomycete pathogens despite
these pathogens being very distantly related to each other.
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