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Analysis of the Prefoldin Gene Family
in 14 Plant Species
Jun Cao*

Institute of Life Science, Jiangsu University, Zhenjiang, China

Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and
archaea. The evolution of this gene family in plants is unknown. Here, I identified 140
prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine
groups through phylogenetic analysis. Highly conserved gene organization and motif
distribution exist in each prefoldin group, implying their functional conservation. I also
observed the segmental duplication of maize prefoldin gene family. Moreover, a few
functional divergence sites were identified within each group pairs. Functional network
analyses identified 78 co-expressed genes, and most of them were involved in carrying,
binding and kinase activity. Divergent expression profiles of the maize prefoldin genes
were further investigated in different tissues and development periods and under auxin
and some abiotic stresses. I also found a few cis-elements responding to abiotic stress
and phytohormone in the upstream sequences of the maize prefoldin genes. The results
provided a foundation for exploring the characterization of the prefoldin genes in plants
and will offer insights for additional functional studies.
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INTRODUCTION

Molecular chaperones can stabilize, interact with, or assist other proteins to acquire functionally
active conformations, without being present in their final structures (Hartl, 1996). Chaperonins
play a role in protein assembly, folding, trafficking and degradation, and are crucial for cellular
development (Hartl et al., 2011). Group I chaperonins are found in eubacteria and endosymbiotic
organelles, whereas group II ones are present in archaea and eukaryotes. They share a common
structure with different functions (Yébenes et al., 2011).

Prefoldin is a group II chaperonin. Archaea prefoldin possesses two subunits (prefoldin α and β)
and polymerizes to an α2β4 hexamer (Leroux et al., 1999). Eukaryotic prefoldin consists of six
subunits; two α subunits (PFD3 and PFD5) and four β subunits (PFD1, PFD2, PFD4, and PFD6)
(Siegert et al., 2000). The structure confers selective substrate specificity for target proteins. They
form a jellyfish-like heterohexameric complex to deliver newly synthesized unfolded proteins to
cytosolic chaperonins containing TCP-1 (CCT) for protein folding. In addition, prefoldin also
protects unfolded proteins during CCT capturing and releasing proteins (Siegert et al., 2000;
Möckli et al., 2007).

Previous studies have indicated that prefoldin plays a central role in cellular development.
Through binding to tubulin and actin, yeast prefoldin facilitated productive folding and binding
inside the chaperonin cavity. Deleting of single or multiple subunits of prefoldin in yeast usually
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results in disruption of cytoskeletal structures (Vainberg et al.,
1998). Similarly, studies on prefoldin function have revealed
that down regulation of prefoldin can decreased the level of
endogenous α-tubulin by 95%, and that of actin by 30% (Lundin
et al., 2008). Deletion of prefoldin genes results in cytoskeletal
defects, slow growth and cold sensitivity in yeast (Geissler
et al., 1998; Siegers et al., 1999). In Caenorhabditis elegans,
reduction of functional prefoldins caused embryonic lethality,
and silencing of prefoldin subunits 1, 2, 3, and 6 exhibited
reduced microtubule growth (Lundin et al., 2008). Mutation of
prefoldin 5 or prefoldin 1 leads to a variety of neurodegenerative
effects through a reduction of microfilaments and microtubules,
such as mucus clearance defects, hydrocephaly, and loss of
nerve bundles, in mice (Cao et al., 2008; Lee et al., 2011).
In Arabidopsis, lesions in prefoldin 6 resulted in impaired
microtubule organization and dynamics, which was associated
with reduced plant size, defects in cell division, and so on
(Gu et al., 2008). In addition, prefoldin 3 and prefoldin 5 mutants
also displayed important changes in microtubule organization
and developmental patterns. Furthermore, both mutants were
sensitive to salt, implying important role of cytoskeleton in
plant tolerance to salt stress (Rodríguez-Milla and Salinas, 2009).
DELLA proteins directly interact with the prefoldin complex in
a gibberellin (GA)-dependent manner. When GA is present, the
complex is localized to the cytoplasm. When GA is absent, it stays
in the nucleus, and then affects microtubule orientation (Locascio
et al., 2013). A recent study has shown that prefoldin can bind
chromatin and plays an important role in gene transcription
(Millán-Zambrano et al., 2013). Bud27, an ATP-independent
prefoldin-like molecular chaperone, can also regulate the gene
expression transcribed by the RNA pol II in yeast (Mirón-García
et al., 2014).

Six prefoldin members [PFD1 (At2g07340). PFD2
(At3g22480), PFD3 (At5g49510), PFD4 (At1g08780), PFD5
(At5g23290), and PFD6 (At1g29990)] have been identified
in the Arabidopsis genome (Hill and Hemmingsen, 2001).
Phylogenetic analysis showed that these six genes were divided
into different evolutionary branches, suggesting the functional
divergence among them (Hill and Hemmingsen, 2001).
Moreover, only several of them have been functionally identified
(Gu et al., 2008; Rodríguez-Milla and Salinas, 2009). Although
prefoldin can form jellyfish-shaped hexameric complexes
consisting of two α-type and four β-type subunits (Siegert
et al., 2000; Martín-Benito et al., 2002), smaller individual
motifs and more divergent patterns are not recognized
among each prefoldin proteins. The recent availability of
genome sequences of some models plant species provides
an opportunity to study the evolution of prefoldin gene
family. In this study, I have identified the prefoldin gene
family from 14 plant species, and each species comprises
6–24 genes. Considering their significant developmental and
physiological role, it is of considerable interest to us to study
the evolution of plant prefoldin genes. Here, I performed
integrated analyses to unravel the evolutionary mechanisms of
the plant prefoldin protein family especially for maize. It will
provide a useful basis for further functional studies of this gene
family.

MATERIALS AND METHODS

Prefoldin Sequence Retrieval and
Identification in 14 Plant Species
To identify potential prefoldin gene in 14 completely sequenced
plant genomes, I first used six Arabidopsis prefoldin sequences
previous identified (Hill and Hemmingsen, 2001) as queries to
perform BLAST searches against the phytozome database1 with
−1 expect (E) threshold. In addition, a keyword “prefoldin”
was also used to perform searching in this study. The Pfam
database (Punta et al., 2012) was used to confirm the encoded
prefoldin based on the presence or not of the prefoldin subunit
domain. Next, the ProtParam tool2 and the CELLO v2.5 server3

(Yu et al., 2004) were used to determine the physicochemical
parameters and subcellular localization of the prefoldin proteins,
respectively.

Phylogenetic Analyses of the Prefoldin
Gene Family
To further explore the evolutionary relationship of plant
prefoldins, multiple sequence alignments and phylogenetic
analysis of the prefoldin proteins were performed with MUSCLE
3.52 (Edgar, 2004) and MEGA v5 (Tamura et al., 2011),
respectively. And neighbor-joining (NJ) method was used to
perform phylogenetic analyses of the prefoldin proteins with
bootstrap analysis of 1,000 replicates (Cao, 2012). Furthermore,
maximum likelihood and PhyML methods were also used to
construct additional trees for validating the result from NJ tree.

Chromosomal Location, Genomic
Duplication and Inference of Duplication
Time
I used the annotation data of the prefoldin genes on
MaizeSequence4 for chromosomal location. Paralogous regions
of the genomes were first predicted with SyMAP v3.4 (Soderlund
et al., 2011). If two genes coming from the paraloguous regions
were also located at the terminal evolutionary branch in the
phylogenetic tree, they were thought to be derived from common
ancestral duplication. To calculate the duplication time of the
prefoldin paralogs, pairwise alignment of the maize prefoldin
gene pairs was performed using an embedded program ClustalW
(codons) in MEGA v5 (Tamura et al., 2011). Next, the Ka and Ks
values of paralogous genes were estimated using K-Estimator 6.0
program (Comeron, 1999). The Ks value was used to calculate
the duplication date (T = Ks/2λ), assuming clock-like rates (λ)
of 6.5× 10−9 for maize (Gaut et al., 1996).

Exon-Intron Structure and Conserved
Motifs Analysis
The organizations of prefoldin genes were analyzed in these
plant lineages by comparing their coding and genomic sequence

1http://www.phytozome.net
2http://web.expasy.org/protparam
3http://cello.life.nctu.edu.tw
4http://www.maizesequence.org
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information in the Phytozome5 and NCBI databases. In
addition, MEME program6 (Bailey et al., 2006) was used
to identify finer motifs in the candidate plant prefoldin
protein sequences. Parameter of maximum number of
motifs is 15.

Functional Divergence and Gene
Co-expression Analyses
In the process of protein evolution, some residues are highly
conserved, while others are highly variable. To further investigate
the divergence between different groups of prefoldin proteins,
DIVERGE (version 2.0) (Gu, 1999, 2001) was used to analyze
the type-I functional divergence. The functional divergence
between two groups was measured as the coefficient of
functional divergence (θ). When the coefficient equals 0; it
means that the evolutionary rate of the duplicate genes at
each site is entirely consistent. Vice versa, when the coefficient
is greater than 0, the evolutionary rate of the duplicate
genes at some critical amino-acid residues is different. The
software will predict these sites responding for the functional
divergence.

To further analysis the relation between maize prefoldin
and other genes, I also used the Co-expression Browser
(COB)7 (Schaefer et al., 2014) to explore their networks. The
domestication maize genotype was selected for co-expression
analysis of the prefoldin genes. The network was built using
expression profiles from 8-day seedlings. Expression matrices
were used to generate profile correlations for the functional
networks by calculating the Pearson correlation coefficient
between each pair of gene expression profiles in each instance
(Schaefer et al., 2014).

5http://www.phytozome.net
6http://meme.sdsc.edu
7http://csbio.cs.umn.edu/cob

Microarray-Based Expression Analysis
Maize microarray data (GSE27004) (Sekhon et al., 2011) were
used for the expression analysis of the prefoldin genes. Expression
data were normalized and viewed in the Genesis (v 1.7.6)
program (Sturn et al., 2002).

Plant Treatment, RNA Isolation,
Quantitative Real-Time PCR (QRT-PCR),
and Promoter Sequence Analysis
Endosperm can provide the necessary nutrition for early
germination and growth when maize is grown in water. In this
study, 10-day-old maize seedlings after germination were used
to test the expression profiles of prefoldin genes under IAA,
low temperature, drought, and salt stresses. For low temperature
treatment, the maize seedlings were placed at 4◦C environment
for 3 h. And the seedlings were dried for 3 h between folds of
tissue paper at 23 ± 1◦C for drought treatment (Xia et al., 2012).
The maize seedlings were put into 10 µM IAA and 150 mM
NaCl solutions for 24 h for auxin and salt stress treatments,
respectively. Control (CK) seedlings were normally grown at
23 ± 1◦C with a photoperiod of 14 h light and 10 h dark. Three
biological replicates were performed for qRT-PCR analysis. Total
RNA was extracted with the TRIzol total RNA extraction kit
(Sangon). RNase free DNase-I was used to remove genomic DNA.
Next, I used M-MLV (TakaRa) to perform reverse transcription,
followed by quantitative assays of each diluted cDNA using an
ABI 7500 sequence detection system. All 13 maize prefoldin genes
were selected for qRT-PCR analysis, and their primers are listed
in Supplementary Table S2. Actin 1 (GRMZM2G126010) gene in
maize was used as the endogenous control. And 2−11CT method
(Livak and Schmittgen, 2001) was used to calculate their relative
expression level. t-Test was used to perform a significant analysis.

To define the transcription start site (TSS) of each prefoldin
gene in maize, I first collected their expressed sequence tag
information. The TSS positions of prefoldin genes were used

TABLE 1 | Prefoldin genes identified from 14 sequenced plant genomes.

Lineage Organism Genome size (Mb)∗ Number of predicted genes∗ Number of prefoldin genes

Algae Chlamydomonas reinhardtii 120.41 14488 8

Moss Physcomitrella patens 477.95 35936 9

Lycophytes Selaginella moellendorffii 212.5 34782 7

Dicots Solanum lycopersicum 781.51 27466 8

Vitis vinifera 486.26 28268 9

Arabidopsis thaliana 119.67 33583 9

Populus trichocarpa 485.67 42577 13

Cucumis sativus 244.82 21320 7

Medicago truncatula 314.48 45000 6

Glycine max 973.49 50202 24

Monocots Oryza sativa 382.78 30534 10

Brachypodium distachyon 272.06 26250 8

Zea mays 2065.7 39454 13

Sorghum bicolor 739.15 33081 9

Total 140

∗The data come from www.ncbi.nlm.nih.gov/genome/
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FIGURE 1 | Phylogenetic relationship, gene structure and motif composition of the prefoldin genes in plants. The phylogenetic tree is constructed and
classified into nine major groups (I–IX). The insertion positions of 0, 1, and 2 phase introns are marked with red, green, and blue lines, respectively. Different motifs of
the prefoldin proteins are displayed by different colored boxes.
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FIGURE 2 | Distribution of the prefoldin genes in different plant species and groups.

as references to determine their upstream promoter sequences.
In this study, 1,000-bp upstream promoter sequences were
acquired for further analyses. In addition, some abiotic stress-
and phytohormone-responsive elements were identified in the
promoter regions of the maize prefoldin genes using PLACE8

(Higo et al., 1999).

RESULTS AND DISCUSSION

Identification of Prefoldin Genes in 14
Plant Species
To identify the prefoldin genes in plants, I first used the amino-
acid sequences of Arabidopsis prefoldin (Hill and Hemmingsen,
2001) to perform BLAST searches in the phytozome database9.
In addition, a keyword “prefoldin” search was also performed.
All the putative prefoldin protein sequences were subjected to
the Pfam analysis (Punta et al., 2012) to verify the reliability of
the results based on the presence or not of the prefoldin subunit
domain. As a result, I identified 140 prefoldin genes from 14
plants. The number of prefoldin genes ranged from 6 to 24 in
each species (Table 1). There are 24 prefoldin genes existing
in the soybean genome, while the members in other species
range from about six in alfalfa, nine in Arabidopsis, sorghum,
grape and Physcomitrella patens, 10 in rice, and 13 in maize
and poplar. Previous study has identified 6 prefoldin genes in
Arabidopsis (Hill and Hemmingsen, 2001). In this study, other
three prefoldins (At1g03760,At1g26660, andAt1g49245) were also
found in this species. There are about 33,583, 39,454, and 42,577
genes in the Arabidopsis, maize and poplar genomes, respectively,
which are 9.9, 29.2, and 39.4% larger than that of rice (30,534),
respectively, implying a disproportion between the numbers of
prefoldin genes and the sizes of predicted genomes. The prefoldin

8http://www.dna.affrc.go.jp/PLACE/signalscan.html
9http://www.phytozome.net

genes in plants encode highly hydrophilous polypeptides (from
−0.003 to −0.988 in grand average hydrophobicities) with about
from 16 to 612 amino acids and predicted pIs (from 4.21
to 10.2) (Supplementary Table S1). CELLO v2.5 server10 (Yu
et al., 2004) was used to further predict the localization of the
prefoldin proteins. The results showed that most of the candidate
prefoldins were probably localized to the cytoplasm, suggesting
that the prefoldin proteins participate in the cytoplasmic folding
of tubulin and actin monomers (Zhao et al., 2005; Gu et al., 2008).
Several plant prefoldins have also been localized in the nucleus
(Supplementary Table S1), suggesting their functional relevance
in DNA repair or integration, transcription and gene regulation
(Millán-Zambrano and Chávez, 2014; Mirón-García et al., 2014).

Phylogenetic Relationships, Gene
Organization, and Motif Analysis
To examine the phylogenetic relationships and evolutionary
history of prefoldins in plants, I first constructed an unrooted
tree and classified this gene family into nine groups (Group
I-IX) (Figure 1) based on the observed topological structure of
tree and sequence similarity. In addition, other methods, such
as, maximum likelihood, PhyML methods, were also used to
reconstruct the phylogenetic trees of prefoldin family, and very
similar results were got as well as the tree topology of NJ method.
Here, I employed the NJ tree for further analysis. This group
classification was also supported by other evidences, such as
intron-exon organization, and motif composition, which will be
described below. Phylogenetic relationships of some eukaryotic
prefoldin subunits have been illustrated (Hill and Hemmingsen,
2001). In which, six different clusters were generated with six
prefoldin subunit sequences through phylogenetic analysis. In
this study, I also found that all members of Groups II and IV had
high homology with eukaryotic PFD5 and PFD3, respectively,
which form α subunits of the prefoldin complex. While the

10http://cello.life.nctu.edu.tw
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FIGURE 3 | Location of the prefoldin genes and segmental duplication regions on maize chromosomes. The SyMAP database (Soderlund et al., 2011)
was used to determine the segmental duplication regions.

members of Group V, Group VII, Group VIII, and Group IX
represented four β subunits of PFD2, PFG4, PFD1 and PFD6,
respectively. In addition to the six prefodlin subunit sequences,
I also found and used three other prefoldin genes (At1g03760,
At1g26660, and At1g49245) in Arabidopsis for BLAST searching.
Because less conservation exists in prefoldin sequences, these
sequences from 14 plant species were divided into nine groups

(Figure 1). Each group contained 6–20 members. All terrestrial
plants evolved from the primitive chlorophycean species in
Viridiplantae (Misumi et al., 2008). Therefore, the origin of
this gene may date back to the primitive algae. My search for
prefoldin genes inChlamydomonas reinhardtii yielded about eight
members. This number remained relatively constant with the
complexity of the genomes in plant evolution (Figure 2). The

TABLE 2 | Inference of duplication time of prefoldin paralogous pairs in maize.

Paralogous pairs Ka Ks Ka/Ks Data (million years ago)

AC203985.4_FGT005/GRMZM2G135354 0.01906 0.42986 0.04434 39.08

GRMZM2G049390/GRMZM2G535911 0.02581 0 – 0

GRMZM2G023347/GRMZM2G070061 0.00793 0.19994 0.03966 18.18

GRMZM2G099909/GRMZM2G102580 0.02172 0.23898 0.09089 21.73

GRMZM2G010065/GRMZM2G392932 0.09121 0.19455 0.46883 17.69

GRMZM2G014676/GRMZM2G119740 1.26364 0.89611 1.41014 81.46
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most obvious expansion of prefoldin gene family occurred in
soybean, containing about 17% (24 paralogs) of the 140 identified
prefoldins, which may be due to recent genome duplication
occurring about 13 MYA (Schmutz et al., 2010).

In general, intron gain or loss generates structural complexity,
which is a key evolutionary mechanism of most gene families
(Cao, 2012; Chen and Cao, 2014; Cao et al., 2015). To
further insight into the evolutionary relationships of the plant
prefoldin genes, I investigated the exon-intron structure of
each member and compared with each other. The position
and distribution of introns of each prefoldin gene are shown
in Figure 1. Each prefoldin gene contains 0–13 introns
(Figure 1). Fifteen out of 20 members in Group V possessed

TABLE 3 | Functional divergence estimated in prefoldin paralogs.

Groups
comparison

θ1 SE2 LRT3 N(0.5)4 N(0.8)4

I/II 0.826543 0.239298 17.32376 15 15

I/III 0.803522 0.190311 12.43868 13 4

I/IV 0.646644 0.285272 8.070123 15 7

I/V 0.027228 0.201279 1.794084 1 1

I/VI 1.105756 0.246338 13.44324 15 14

I/VII 1.689677 0.300763 31.56156 15 15

I/VIII 1.053435 0.198181 25.42036 15 15

I/IX 0.014082 0.230382 1.732052 1 1

II/III 0.765629 0.156564 12.61142 6 3

II/IV 0.960633 0.189864 18.39889 15 8

II/V 0.332706 0.276028 3.636844 6 2

II/VI 0.404784 0.300171 0.682597 1 0

II/VII 0.977057 0.268244 13.87541 15 15

II/VIII 0.811230 0.216721 13.90022 15 6

II/IX −0.278640 0.410256 0.078849 0 0

III/IV 0.514812 0.177764 6.860248 4 1

III/V 0.507173 0.345447 0.811551 1 0

III/VI 0.976963 0.304516 8.12796 15 13

III/VII 0.187283 0.378168 1.031081 3 0

III/VIII 0.996719 0.203875 19.93697 15 14

III/IX 0.199838 0.371056 0.945485 1 0

IV/V 0.483363 0.269882 1.506023 1 1

IV/VI 0.563231 0.320949 6.915311 15 12

IV/VII 0.636617 0.225039 13.53771 15 11

IV/VIII 0.254421 0.133029 4.686944 2 1

IV/IX −0.389670 −0.851500 0.209424 0 0

V/VI 1.083988 0.393359 7.594005 15 15

V/VII 1.395175 0.280780 12.16217 15 15

V/VIII 0.844957 0.220248 10.71504 14 4

V/IX −0.619080 −0.380780 2.643254 0 0

VI/VII 0.515722 0.419894 1.993136 13 2

VI/VIII 0.932783 0.312437 10.2438 15 15

VI/IX 0.359807 1.001866 0.075892 0 0

VII/VIII 1.021701 0.258359 12.72445 15 15

VII/IX 1.647830 0.628639 6.871029 15 15

VIII/IX −0.048070 0.311906 0.876434 1 0

1θ: the coefficient of functional divergence. 2SE: standard error. 3LRT: likelihood
ratio test. 4N(0.5) and N(0.8): the numbers of divergent residues when the cut-off
value is 0.5 and 0.8, respectively.

a minimum of zero intron each, whereas GRMZM2G392932
possessed a maximum of thirteen introns. Similar exon-intron
structure occurred in most prefoldin genes of same group,
implying conserved evolutionary relationship. For instance,
most prefoldin gene in Group VII has two introns with
same insertion position and phase distribution, whereas most
members within Group IV contain five introns. The structural
diversity in different groups suggests multiple origins of gene
ancestry.

Next, to obtain more insights into the diversity of motif
compositions in the 140 prefoldin proteins, I used the MEME
motif search tool (Bailey et al., 2006) to search for the conserved
motifs in these proteins, and found 15 conserved motifs
(Figure 1). As described above, nine groups were classified
among these prefoldin genes based on the phylogenetic analyses.
Noticeably, I also found common motif compositions in most
members of each group, implying functional similarities between
them (Figure 1). Several groups (such as Groups I, IV, and V)
possess five motifs, while Group VI only has one motif. Except
for members in Group VI, motif 3 was shared by most other
prefoldin proteins. I also found some additional distinct motifs
in specific groups, such as, motif 2 restricted in Group I, II,
and III; motifs 14 and 15 in Group I; motif 9 in Group III;
and motif 13, 7, 6, and 11 in Group IV, V, VIII, and IX,
respectively. Previous study has indicated that low conservation
exists between prefoldin sequences (Hill and Hemmingsen,
2001). My motif composition analyses of the prefoldin proteins
also confirm it. The diversity of the prefoldin sequences may
increase the complexity of the binding substrate, thus greatly
expand the functional scope of the prefoldin complex. Further
investigation may be required to determine if any of these distinct
motifs across diverse groups also have a unique functional
role.

Chromosomal Position and Duplication
of Prefoldin Genes in Maize
Gene duplication, including segmental duplication, tandem
duplication and retroposition, plays an important role in
the evolution of organism (Chen Y et al., 2014; Cao and
Li, 2015). To investigate the duplication mechanisms of
prefoldin genes, I first examined their physical locations on
chromosomes and found that the prefoldin genes were scattered
in the maize genome (Figure 3). Further, all prefoldin genes
were located in the duplicated segments of chromosomes in
maize. Three of 6 pairs (GRMZM2G023347/GRMZM2G070061,
GRMZM2G099909/GRMZM2G102580, and GRMZM2G010065/
GRMZM2G392932) were retained in the maize duplication event
(Figure 3). Next, I also used Ks to estimate the evolutionary dates
of duplicated prefoldin genes (Table 2). The results indicated
that duplication events of maize 3/6 pairs occurred within the
past 17.69–21.73 million years, consistent with the time of
subsequent genome duplication events in maize (Gaut et al.,
1996). In addition, the earliest segmental duplication event
was also observed around 81.46 MYA in the prefoldins of
maize (GRMZM2G014676/GRMZM2G119740) (Kellogg, 2001).
Therefore, expansion of prefoldin genes in maize might have
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FIGURE 4 | Distribution of functional divergence sites of Group VI/VIII pairs. Alignment results of some prefoldin proteins and the predicted tertiary structure
are shown. Fifteen potential functional divergence sites are marked with a star in alignment results and marked with red circles on the predicted tertiary structure of
the prefoldin protein.

occurred due to the large-scale segmental duplication events
in evolution. Segmental duplication contributes to the prefoldin
family gene expansion in maize.

Functional Divergence Analyses of the
Prefoldin Proteins
To further study whether amino-acid substitutions cause
adaptive functional diversification, the program DIVERGE (Gu,
1999, 2001) was used to estimate type-I functional divergence
between different prefoldin groups. Thirty-six pairs of paralogous
members were compared and estimated the evolutionary rate of
each amino-acid sites. The results indicated that the coefficient
of functional divergence (θ) values between 29 group pairs was
less than 1 (Table 3), indicating significant site-specific alteration
in selective constraints of most members of the prefoldin group
pairs. Further, I also predicted a few critical residues associated
with the functional divergence. For example, about 15 critical
sites were predicted in Group I/II, I/VII, I/VIII, II/VII, V/VI,
V/VII, VI/VIII, VII/VIII, and VII/IX pairs, while no site was
predicted in the Group II/IX, IV/IX, and V/IX pairs. An
example of detailed distribution of the functional divergence
sites of Group VI/VIII pairs was shown in Figure 4. Further
analyses indicated that one divergence site is located in the
first residue. Other fourteen predicted sites are located in the
N-terminal of α-helice 2 (α2). As we know, prefoldin can form a
heterohexameric jellyfish like structure with coiled-coil tentacles
(Siegert et al., 2000). These tentacles are involved in substrate
binding. In this study, I found that some amino-acid sites on
α-helice 2 (tentacle) present different sequence composition,

implying an increase in substrate specificity for target proteins.
Higher theta values (θ) exit in Group I/VI, I/VII, I/VIII, V/VI,
V/VII, VII/VIII, and VII/IX pairs (Table 3), suggesting a higher
evolutionary rate between them. Thus, due to the different
evolutionary rates, the prefoldin genes diverge functionally from
each other. The amino-acid mutations promoted the functional
evolution and divergence of prefoldin genes, as an adaptation of
the species to the changing environment (Cao et al., 2011).

Functional Network Analysis of the
Maize Prefoldins
Genes involved in the same biological process are often
coordinately expressed, and thus their co-expression information
will be as a factor to understand the biological process (Eisen
et al., 1998). To further explore which genes are possibly
interacted by maize prefoldin, I performed a coexpression
analyses with the COB11 (Schaefer et al., 2014). I found that
7 of 13 maize prefoldins were co-expressed in this network,
resulting in 347 interactions exhibited by 78 genes (Figure 5).
Among the 347 interactors identified, 23 and 17 genes were
coexpressed with GRMZM2G014676 and GRMZM2G135691,
respectively. GRMZM1G014676 is an orthologous gene of
Arabidopsis PFD5 (At5g23290), while GRMZM2G135691 is an
orthologous gene of Arabidopsis PFD1 (At2g07340) (Figure 1).
Moreover, PFD5 plays an essential role in Arabidopsis tolerance
to salt stress (Rodríguez-Milla and Salinas, 2009). They may
also have similar biology functions. The network analysis of

11http://csbio.cs.umn.edu/cob
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FIGURE 5 | Prefoldin genes interaction network. Seven prefoldin genes are mapped to the co-expression database and reveal a total of 78 unique genes that
showed 347 interactions in maize.

FIGURE 6 | Expression profiles of the maize prefoldin genes in 20 different developmental stages.
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FIGURE 7 | Expression profiles of the maize prefoldin genes under abiotic stresses and IAA. Experiments were conducted in triplicate. Significance was
tested relative to each CK using t-test. Significance of ∗P < 0.05 and ∗∗P < 0.01. Error bar: standard deviation.

maize prefoldins has a reference value for the functional
research of prefoldin genes. Some of these interactors include
carrier proteins, such as equilibrative nucleoside transporter
(ENT), mitochondrial phosphate carrier (MPC), acyl carrier
protein (ACP), and so on. ENT (GRMZM2G002391) -mediated
nucleosides transport across plasma membrane influenced
Arabidopsis growth and pollen germination (Bernard et al.,
2011). MPC (GRMZM2G118208) is a mitochondrial solution
carrier protein, which delivers phosphate across the inner
mitochondrial membrane and function in plant development
and resistance (Haferkamp and Schmitz-Esser, 2012). As a
small acidic protein with conserved Asp-Ser-Leu (DSL) motif,
ACP (GRMZM2G149580) functions in root nodule symbiosis in
soybean (Wang et al., 2014). I also found that another interactor,
an auxin binding protein (ABP1), is required for binding to auxin
at low concentration and involved in the embryogenesis, auxin
signaling and cell division (Chen X et al., 2014; Xu et al., 2014).
In addition, an Arabidopsis cyclin-dependent kinase (CDK) G2
regulated the salinity stress response and was associated with
the control of flowering time (Ma et al., 2015). Coexpression
analyses reflect the correlation of the expression profiles of
different genes, and are suggestive in tracing the genes in the
same biological process or pathway. My results indicated that

some proteins possessed carrying, binding, and kinase function
were usually coexpressed with maize prefoldins (Figure 5). The
prefoldin genes may be involved in some related molecular
processes by interacting with these interactors. Thus, whether
these interactors could function with prefoldin need further
experimental verification. The approaches and results open a
new way to explore the molecular mechanism of prefoldin
dynamics. Also, this interaction can also help to study the
key regulatory steps in these processes or pathways. It will be
advantageous to screen candidate genes for further functional
researches.

Expression Patterns and Promoter
Sequence Analysis of the Maize
Prefoldin Genes
The gene expression patterns may provide important clues
to their functions (Cao and Shi, 2012). Here, I first tested
spatial and temporal specific expression patterns of maize
prefoldin genes in 20 tissues using microarray data. I detected
10 probes of the maize prefoldin transcripts, and other three
transcripts (GRMZM2G049390, GRMZM2G535911, and
GRMZM2G014676) with no detectable probes were not
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FIGURE 8 | Promoter analyses of the maize prefoldin genes. Cis-regulated elements responsive to abiotic stresses and phytohormones are marked differently.

further analyzed in this study. The results showed that
the expression abundance of the prefoldin genes detected
presented great variability in maize (Figure 6). Some
prefoldins (AC203985.4_FGT005, GRMZM2G135354, and
GRMZM2G392932) expressed exclusively in developing embryo
and endosperm may improve seed yield and quality. Notably,
due to the great expression in maize silk, GRMZM2G135691 may
play a key role in silk development.

Next, I also investigated the responses of maize prefoldin
genes under drought, low temperature and salt stresses
using 10-day-old seedlings. Quantitative RT-PCR was used
to analyze the expression profiles of 13 prefoldin genes in
maize under various stresses (Figure 7). The expression of
GRMZM2G135354 and GRMZM2G049390 was significantly
upregulated during drought, whereas other prefoldin genes
were downregulated. The expression of over 84 percent
of maize prefoldins was significantly repressed under salt,
whereas GRMZM2G135354 and GRMZM2G049390 were
strongly induced, suggesting that the prefoldin genes might
present different responses to salinity or drought stress.
Similar results also occurred with low-temperature. Under
low temperature stress, most prefoldin genes were significantly
downregulated (Figure 7). For instance, the expression level
of GRMZM2G135691 decreased about 50 times. However, the
expression of some prefoldin genes (GRMZM2G010065, and
GRMZM2G049390) was induced. Previous study has shown
that osmotic stress caused by drought and salinity can change
microtubule orientation, and then regulates primary root
elongation in Arabidopsis (Liu et al., 2014). Moreover, low

temperature also leads to the depolymerization of microtubule
(Bartolo and Carter, 1991). My expression profiles of maize
prefoldin genes under these stresses indicated that most
prefoldin members were significantly repressed. Therefore,
it can be inferred that under the drought, salinity, or low
temperature stress, the decreased expression of prefoldin genes
may inhibit or change the development of microtubules.
Next, the auxin response of these maize prefoldin genes was
also investigated. Among the 13 prefoldin genes detected,
three members (GRMZM2G392932, GRMZM2G014676,
and GRMZM2G049390) were upregulated during IAA
treatment, suggesting important roles in regulating IAA
response. Nevertheless, the expression of GRMZM2G135354
and GRMZM2G535911 was unchanged after IAA treatment,
whereas others were steadily decreased during the treatment
(Figure 7).

To further explore the potential regulatory mechanism
of maize prefoldin genes in phytohormone and abiotic
stress stimuli, I used the PLACE web server12 (Higo et al.,
1999) to identify their putative cis-elements. Here, 1,000-
bp promoter regions of the maize prefoldin genes were
analyzed. A few phytohormones and abiotic response
regulatory elements were found. They included auxin
response factor (ARF)-binding site (S000270); tissue-specific
expression and auxin-inducible (S000273); auxin-inducible
(S000370); IAA/SA-inducible (S000024); SA-inducible
(S000390); drought-inducible (S000414 and S000174);

12http://www.dna.affrc.go.jp/PLACE/
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cold/drought-inducible (S000153); and salt-inducible (S000453)
response regulatory elements. I also found that all maize prefoldin
genes contained multiple regulatory elements in their promoter
regions (Figure 8), suggesting that these phytohormones and
abiotic stresses regulated the expression of maize prefoldin
genes. Comparing the distribution of nine cis-elements in their
promoter sequences, I found variation between all sister pairs of
maize prefoldin genes, implying divergent expression profiles in
the duplicated genes. It may be the reason of subfunctionalization
or neofunctionalization (Prince and Pickett, 2002).

SUMMARY

I performed a comparative analysis of the plant prefoldin
gene family in this study, and found that the prefoldin
family could be divided into nine groups by phylogenetic
analyses. Gene organization and motif compositions of the
prefoldin members were highly conserved in each group,
implying their functional conservation. Segmental duplication
contributed to maize prefoldin family gene expansion. A few
critical residues associated with the functional divergence were
predicted. Functional network analyses identified some co-
expressed genes, which usually have binding, carrying and kinase
activity. Furthermore, the differential expression profiles of the
maize prefoldin genes suggested functional divergence during
development and IAA and some abiotic stress treatments. Some

cis-elements responsive to abiotic stress and phytohormone
were also found in the upstream sequence of the maize
prefoldin genes. These data will provide useful insights for
further functional investigation of this gene family in the
future.
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