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Locally available resources can be shared within clonal plant systems through

physiological integration, thus enhancing their survival and growth. Most epiphytes

exhibit clonal growth habit, but few studies have tested effects of physiological integration

(resource sharing) on survival and growth of epiphytes and whether such effects vary

with species. We conducted two experiments, one on individuals (single ramets) and

another on groups (several ramets within a plot), with severed and intact rhizome

treatments (without and with physiological integration) on two dominant epiphytic ferns

(Polypodiodes subamoena and Lepisorus scolopendrium) in a subtropical montane

moist forest in Southwest China. Rhizome severing (preventing integration) significantly

reduced ramet survival in the individual experiment and number of surviving ramets in the

group experiment, and it also decreased biomass of both species in both experiments.

However, the magnitude of such integration effects did not vary significantly between the

two species. We conclude that resource sharing may be a general strategy for clonal

epiphytes to adapt to forest canopies where resources are limited and heterogeneously

distributed in space and time.

Keywords: canopy-dwelling plants, clonal growth, clonal integration, forest canopy, habitat adaptation, montane

moist forest, physiological integration

INTRODUCTION

Environments are characterized by patchy distributions of abiotic and biotic factors (Alpert and
Mooney, 1996; Chen et al., 2002; Jahnke et al., 2015). Clonal plants can integrate information about
such environmental heterogeneity and respond accordingly (Louâpre et al., 2012;Wang et al., 2013;
Oborny and Hubai, 2014; Chen et al., 2015; Saunders and Pezeshki, 2015). One strategy by which
clonal plants cope with environmental heterogeneity is physiological integration, i.e., the capacity
to share resources among interconnected ramets (Hutchings and Wijesinghe, 1997; Herben and
Suzuki, 2001; Song et al., 2013; Roiloa et al., 2014; Dong et al., 2015). Physiological integration
enables parent ramets to support offspring ramets (Matlaga and Sternberg, 2009; Oborny and
Hubai, 2014; Roiloa et al., 2014; Glover et al., 2015) and ramets growing in favorable conditions
to support those in unfavorable conditions (Roiloa et al., 2007; Xu L. et al., 2012; Kui et al., 2013;
Tuya et al., 2013; Cornelissen et al., 2014; Luo et al., 2014).
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Forest canopies house ca. 50% of terrestrial biodiversity
(Ozanne et al., 2003; May, 2010; Lowman and Schowalter,
2012). As a key component of tropical and subtropical floras
(Benzing, 2012; Zotz, 2013), canopy-dwelling epiphytes serve
important ecological functions in forest hydrology and nutrient
fluxes (Umana and Wanek, 2010; Zhang et al., 2015). However,
epiphytic habitats are usually described as “harsh” because tree
crowns are characterized by a limited storage capacity for
available nutrients and water, sporadic and dilute nutrient inputs,
low physical stability, extreme fluctuations in moisture and
temperature, high wind speed, and severe and variable vapor
pressure deficits (Théry, 2001; Zotz and Hietz, 2001; Benzing,
2012; Lowman and Schowalter, 2012). Significant variation in
resource availability can occur at small spatial and temporal
scales, and short-term drought can occur even in wet seasons
of tropical rain forests (Zotz and Hietz, 2001; Watkins et al.,
2007a). How epiphytes adapt to the harsh and heterogeneous
environments of forest canopies remains one of the most
fascinating questions in plant ecology (Benzing, 2012; Lowman
and Schowalter, 2012; Reyes-García et al., 2012).

Almost all epiphytic bryophytes and lichens and many
vascular epiphytes are capable of clonal growth (Jackson et al.,
1985; During, 1990; de Kroon and van Groenendael, 1997;
Benzing, 2012; Robinson and Miller, 2013). Different ramets
within a clone are often interconnected via rhizomes, stolons
or roots so that resource sharing (physiological integration)
within the clone is possible (Eilts et al., 2011; Cornelissen et al.,
2014; Weiser and Smycka, 2015). In the past decades, roles of
physiological integration have been extensively documented in
different species and in different habitats (Jackson et al., 1985; de
Kroon and van Groenendael, 1997; Song et al., 2013). However,
little is known about how physiological integration facilitates
adaptation of epiphytes to forest canopies.

Recently, we selected one clonal, facultative, epiphytic fern
to test effects of physiological integration in both epiphytic and
terrestrial habitats in the dry season in a subtropical montane
moist forest (Lu et al., 2015). We found that clonal integration
contributed greatly to survival and growth of this species, and
that the effect was more important in forest canopies than
in forest understories (Lu et al., 2015). However, the target
species possesses the unique aspects of facultative epiphytes and
overwintering leaves (Lu et al., 2015), and is a common yet not
dominant species in the forest. Furthermore, the experiment
was carried out during the dry season when seasonal drought
occurred, whereas most dominant epiphytes stop growing (shed
leaves) in the dry season. Thus, it is still unknown whether clonal
integration also plays an important role in dominant epiphytes
and during the wet season. We hypothesize that (1) physiological
integration can also increase survival and growth of dominant
clonal epiphytes in the wet season.

In subtropical montane moist forests in Southwest China,
eight of the nine dominant vascular epiphytes are ferns
(Supplementary Table 1). Seven of these ferns produce long,
creeping rhizomes that may potentially be investigated in the wet
season (Xu and Liu, 2005;Ma, 2009). Because epiphytic ferns vary
inmorphology, physiology and phenology (Schneider et al., 2004;
Watkins et al., 2007b), it is likely that these epiphytic species have

adapted to habitats using various strategies. We thus hypothesize
that (2) clonal epiphytes with divergent traits differ in their degree
of dependence on clonal integration.

To test the hypotheses, we conducted two field experiments
on two dominant epiphytes with divergent traits in a wet
season in a subtropical montane moist forest in Southwest
China. Specifically, we addressed two questions. (1) Does clonal
integration increase survival and growth of dominant epiphytes
during the wet season when water stress was seemingly weak? (2)
If it does, does the effect of clonal integration on survival and
growth differ between the two epiphytes with divergent traits?
By addressing such questions in two dominant epiphytes and in
growing (wet) seasons, we aim to test whether clonal integration
is a general strategy for clonal epiphytes to adapt to forest
canopies. The results obtained will deepen our understanding of
the strategies of epiphytes dwelling on forest canopies.

MATERIALS AND METHODS

Study Site
We conducted the two field experiments in a primary subtropical
montane moist forest in the Xujiaba region (24◦ 32′ N, 101◦ 01′

E) of Yunnan province, China, a core area covering 5100 ha of the
northern crest of the AilaoMountain National Nature Reserve. In
this region, water loss occurs during the dry season, while water
accumulates during the wet season (You et al., 2013a; Lu et al.,
2015). During 2000–2010, the mean annual precipitation was
1874mm, with 87% occurring in the wet season (May to October)
and 13% in the dry season (November to April), the mean annual
relative humidity was 84%, and the mean air temperature was
11.1◦C (5.6◦C in January and 15.3◦C in July; Song et al., 2012).
The forest is dominated by Lithocarpus xylocarpus, Castanopsis
wattii, L. chintungensis, Schima noronhae, Machilus viridis, and
Hartia sinensis, and also inhabited by a diverse community of
epiphytes (Li et al., 2014).

Target Species
Polypodiodes subamoena (C. B. Clarke) Ching and Lepisorus
scolopendrium (Ham. ex. D. Don) Menhra are two dominant
vascular epiphytes in the montane moist forest (Xu and Liu,
2005; Ma, 2009). They mainly inhabit tree bark, junctions or
rocks, and are capable of clonal growth via long, creeping
rhizomes with adventitious roots (Zhang, 2012). The fronds
of both ferns wither in the dry season, but their rhizomes
can persist for several years. These two ferns exhibit different
functional traits (i.e., morphology, physiology, and growth;
Table 1). P. subamoena bears remote compound fronds and
pinnatipartite (15–20 paired), herbaceous laminas and mainly
occurs at 2400–3300 m a.s.l., whereas L. scolopendrium bears a
close single frond and a herbaceous or papery lamina and occurs
at 500–2800 m a.s.l. (Zhang, 2012).

Experiment Design
Individual Experiment

For each of the two species, we selected 60 mature ramets from
the boles or crowns of 20 host trees (i.e., phorophytes) with
diameter at breast height exceeding 30 cm. Ramet height of P.
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TABLE 1 | Contrasting functional traits of the ramets of two species,

Polypodiodes subamoena and Lepisorus scolopendrium.

Trait P. subamoena L. scolopendrium t P

Frond length (cm) 19.73 ± 0.74 16.14 ± 0.85 3.2 0.002

Frond width (cm) 4.61 ± 0.22 2.54 ± 0.10 8.7 <0.001

Frond thickness (mm) 0.33 ± 0.02 0.99 ± 0.04 −14.1 <0.001

Fv/Fm 0.74 ± 0.01 0.79 ± 0.01 −3.4 0.001

Aboveground mass per

ramet (g)

0.24 ± 0.02 0.12 ± 0.01 5.6 <0.001

Belowground mass per

ramet (g)

0.28 ± 0.02 0.25 ± 0.02 1.1 0.275

Total mass per ramet

(g)

0.52 ± 0.04 0.37 ± 0.02 3.5 0.001

Ramet density (no.

dm−2)

3.40 ± 0.11 6.50 ± 0.26 −11.1 <0.001

The given are mean ± SE of each species and results of t-tests.

Bold letters in column of “P” mean significant.

subamoena was 30.0 ± 0.4 cm (mean ± SE, ranging from 24.0
to 33.9 cm), and that of L. scolopendrium was 18.2 ± 0.3 cm
(mean ± SE, ranging from 15.0 to 22.2 cm). Half of the ramets
were randomly assigned to the severed-rhizome treatment and
the other half to the intact-rhizome treatment. For the severed
treatment, the rhizome internodes at both ends of the ramet
were carefully exposed and cut off halfway from the ramet to
prevent clonal integration. For the intact treatment, the rhizome
internodes of the ramet were also carefully exposed, but no
cutting was conducted so that physiological integration was
allowed. The experiment started on July 26, 2013 and ended on
October 26, 2013. At the end of the experiment, the survival
status of all ramets was noted and the surviving ramets were
harvested. A ramet was considered dead if all its fronds were shed,
dried or withered. We measured frond length and width of the
ramets with a ruler and frond thickness with calipers. Biomass
was measured after drying the ramets at 70◦C for 48 h. One day
before harvest, we also measured maximum quantum yield of
PS II (Fv/Fm) using a portable fluorometer (FSM-2; Hansatech,
Norfolk, UK).

Group Experiment

For each species, we selected 20 plots, each with at least
three ramets of the target species. Plots were located on 20
phorophytes (with diameter at breast height >30 cm). Half
of the plots were randomly selected and subjected to the
severed-rhizome treatment, and the remaining half to the intact-
rhizome treatment. For the severed treatment, the rhizomes
along the edges of each plot were carefully exposed by removing
surrounding soil, humus, mosses and/or lichens, if any, and
cut off with a sharp blade so that ramets inside the plot were
disconnected from those outside the plot to prevent integration.
For the intact treatment, the rhizomes along the edges of each
plot were also carefully exposed, but were kept intact (i.e., not
cut off) so that ramets inside the plot were connected with those
outside to allow integration. The experiment started on July 30,
2013 and ended on October 30, 2013. At harvest, we counted
number of surviving ramets and measured length, width, and

thickness of the fronds of each surviving ramet in each plot.
One day before harvest, we measured Fv/Fm using the FMS-
2 on the fronds of two ramets in each plot. Biomass in each
plot was measured after drying the plant materials at 70◦C
for 48 h.

Statistical Analyses
We analyzed the data from the two experiments separately. For
the individual experiment, we used logistic regression to test the
effect of rhizome severing (intact vs. severed) on survival of the
ramets because the data of survival were binary (alive or dead)
(McCullagh and Nelder, 1989). We used two-way ANOVA to test
the effects of rhizome severing, species, and their interaction on
growth (total biomass, aboveground, and belowground biomass),
morphology (frond length, width and thickness), and physiology
(Fv/Fm) of the individual ramets.

For the group experiment, we expressed the final biomass
data on a per initial ramet basis because initial number of
ramets differed greatly between the two species [P. subamoena
vs. L. scolopendrium: 3.4 ± 0.11 vs. 6.5 ± 0.26 g (mean ± SE);
t = −11.07, P < 0.001, n = 40]. We also calculated mean
frond length, width and thickness and Fv/Fm of the ramets in
each plot. We then used two-way ANOVA to test the effects
of rhizome severing, species and their interactions on number
of surviving ramets, growth, morphology and physiology in
the group experiment. When needed, data were transformed
to square root or natural logarithm to meet the ANOVA
assumptions. Statistical analyses were carried out with SPSS 19.0
(IBM, Armonk, NY, USA) and R software (R Development Core
Team, 2012).

RESULTS

Individual Experiment
In the individual experiment, rhizome severing significantly
affected survival of the single ramets (χ2

= 8.61, P = 0.003),
and such effects were not species-dependent (i.e., no interaction
effect; χ2

= 0.02, P = 0.893). Survival rates of the single ramets
were 86.7% for P. subamoena and 83.3% for L. scolopendrium
when the rhizomes were intact, but were reduced to 63.3 and
60.0% when the rhizomes were severed (Figure 1A).

Rhizome severing significantly decreased total and
belowground biomass (Table 2; Figure 1B) and maximum
quantum yield of PS II (Fv/Fm; Table 2; Figure C) of the single
ramets of both epiphytes. Such effects did not depend on species
(no Se× Sp interaction; Table 2). Severing had no effect on frond
length, width or thickness of the single ramets of either species
(Figures 1D–F). Species significantly affected biomass, Fv/Fm,
frond length, width and thickness (Table 2; Figure 1), affirming
the contrasting growth, physiological and morphological traits
of these two species (Table 1).

Group Experiment
In the group experiment, rhizome severing significantly reduced
number of ramets, total biomass and belowground biomass of
both epiphytes, and such effects did not depend on species
(no Se × Sp interaction; Table 3; Figures 2A,B). Rhizome
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FIGURE 1 | Effects of rhizome severing on (A) survival, (B) biomass, (C) Fv/Fm, and (D–F) frond morphology of the two epiphytic ferns in the individual

experiment. Error bars represent SEs.

severing did not significantly affect Fv/Fm, frond length, width
or thickness of either species (Table 3; Figures 2C–F). Species
significantly affected aboveground and belowground biomass,
Fv/Fm, frond length, width and thickness (Table 3; Figure 2).

DISCUSSION

Both individual and group experiments showed that severing
rhizomes decreased survival and growth of the two dominant
epiphytic ferns in the wet season, supporting the first hypothesis
that clonal integration (resource sharing) contributes to
performance of epiphytes. These results agree with the findings
on the facultative epiphytic fern Selliguea griffithiana (i.e.,
growing in both epiphytic and terrestrial habitats) conducted

in a dry season in the same forest using similar approaches (Lu
et al., 2015) and also those on the terrestrial fern Diplopterygium
glaucum in a subtropical evergreen forest in China (Du et al.,
2010). While numerous studies have tested effects of clonal
integration (Song et al., 2013; Glover et al., 2015; Weiser and
Smycka, 2015), very few have examined those on performance of
epiphytes (Lu et al., 2015). This study of multiple species verified
the key role of resource sharing for epiphytes in surviving and
growing in the wet season.

Extraordinary heterogeneity is present because light intensity
and temperature diminish downward through the forest canopy,
whereas humidity and nutrients increase toward the ground
(Benzing, 2012). Epiphytes also suffer from water shortage
between rainfall events even in wet seasons in tropical forests
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(Watkins et al., 2007a; Bartels and Chen, 2012). Our study site is
characterized by a seasonal climate with variation in precipitation
(You et al., 2013a). Although the forest is exposed to frequent

TABLE 2 | Individual experiment results of a two-way ANOVA for effects of

species and rhizome severing on biomass, Fv/Fm, and frond morphology.

Trait Species (Sp) Severing (Se) Se × Sp

Total massa 13.18*** 8.68** 0.17

Aboveground massa 64.01*** 0.74 0.58

Belowground mass 0.01 12.65** 2.06

Fv/F
a
m 5.47* 17.84*** 1.05

Frond length 15.288*** 0.08 0.48

Frond widtha 141.98*** 0.03 0.61

Frond thickness 251.74*** 0.53 0.67

F statistics are shown with significance levels (***P < 0.001; **P < 0.01; *P < 0.05).
aAnalysis performed on square-root transformed data.

rain and mist during the wet season, alternating wet and dry
events occur daily and weekly (You et al., 2013a,b). Large trees
have great microhabitat heterogeneity within their crowns and
exhibit substantial changes from the inner to the outer crown in
branch diameter, canopy humus cover, openness, and mean daily
maximum vapor pressure deficits (Woods et al., 2015). Epiphytes
dwelling in these large treetops must cope with microhabitat
heterogeneity (Théry, 2001; Zotz andHietz, 2001; Benzing, 2012).
The findings of this study and the previous one (Lu et al.,
2015) suggest that clonal epiphytes may evolve a high degree
of clonal integration to alleviate resource stress in both wet
and dry seasons. This may especially be the case for epiphytic
ferns that exhibit poor water conservation owing to their limited
hydraulic conductance and passive stomatal control (McAdam
and Brodribb, 2012a,b).

Effects of clonal integration may differ among species (Song
et al., 2013; Isogimi et al., 2014) and even among genotypes
of the same species (Alpert et al., 2003; D’Hertefeldt et al.,

FIGURE 2 | Effects of rhizome severing on (A) ramet number, (B) biomass, (C) Fv/Fm, (D–F) and frond morphology of the two epiphytic ferns in the

group experiment. Error bars represent SEs.
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TABLE 3 | Group experiment results of a two-way ANOVA for effects of

species and rhizome severing on the number of ramets, biomass, Fv/Fm,

and frond morphology.

Trait Species (Sp) Severing (Se) Se × Sp

Number of rametsa 0.72 6.36* 1.73

Total mass 0.88 13.99** 0.49

Aboveground mass 11.45** 2.39 1.55

Belowground massb 4.77* 12.75** 0.12

Fv/F
b
m 6.78* 0.04 0.43

Frond length 4.51* 0.04 0.67

Frond width 20.86*** 0.03 0.87

Frond thicknessb 308.86*** 2.89 0.08

F statistics are shown with significance levels (***P < 0.001; **P < 0.01; *P < 0.05).
aAnalysis performed on log transformed data.
bAnalysis performed on square-root transformed data.

2014; Zhou et al., 2014). For instance, rhizomatous species
may be more reliant on clonal integration than stoloniferous
species (Song et al., 2013), and genotypes from sand dunes
have shown a greater impact of clonal integration than those
from grasslands (Alpert, 1999). Although, the two epiphytic
ferns differ greatly in morphological, physiological, and growth
traits (Tables 1–3, Figures 1, 2), we found that the effects of
clonal integration on ramet survival or growth did not differ
significantly between the two epiphytes. These results thus do
not support the second hypothesis, and suggest that clonal
integration may be a general strategy for clonal epiphytes to
survive and grow in forest canopies where resources are rather
limited and also heterogeneously distributed in space and in time.

Clonal integration had a significant effect on Fv/Fm of
epiphytes in the individual experiment, but not in the
group experiment (Tables 2, 3, Figures 1, 2). Previous studies
also showed contrasting effects of clonal integration on
photochemical activity of ramets (Luo et al., 2014; Roiloa
et al., 2014). For instance, integration significantly affected
photochemical activity of Alternanthera philoxeroides (Luo et al.,
2014) and Fragaria vesca (Roiloa et al., 2014), but had little effect
on that of the terrestrial fern D. glaucum (Du et al., 2010). Thus,
effects of clonal integration on photochemical activity of the
fronds may not be translated into the effects on survival and
growth of the ramets. Data on survival and growth are more
robust to evaluate the benefits of clonal integration.

We observed little impact of clonal integration on frond
morphology of either of the epiphytes in either of the experiments
(Tables 2, 3, Figures 1, 2), agreeing with the findings of our
previous study (Lu et al., 2015). However, many studies have
shown a significant effect of clonal integration on morphological
traits such as length and thickness of petioles and internodes
of stolons and rhizomes (Alpert, 1999; Saitoh et al., 2002;
Xu C. et al., 2012; Dong et al., 2015; Glover et al., 2015).
Our results suggest that clonal epiphytes may not rely on
integration-mediated changes in frond morphology to adapt to
forest canopies.

CONCLUSIONS

Our results indicate that clonal integration (resource sharing)
may have been selected for as a general trait for clonal epiphytes
to adapt to the harsh and heterogeneous epiphytic habitats.
While epiphytes have been shown to take different strategies to
adapt to forest canopies (Benzing, 2012; Lowman and Schowalter,
2012; Reyes-García et al., 2012), our study suggests that resource
sharing is an additional one for clonal epiphytes. Epiphytes are
a key component of forest canopies and play important roles
in maintaining biodiversity (e.g., fauna diversity; Ozanne et al.,
2003; Ellwood and Foster, 2004; May, 2010) and ecosystem
functioning (e.g., carbon and nutrient cycling; Umana and
Wanek, 2010; Benzing, 2012; Lowman and Schowalter, 2012).
Considering that many epiphytes are clonal and also most
of the dominant epiphytes are clonal (Jackson et al., 1985;
During, 1990; de Kroon and van Groenendael, 1997; Benzing,
2012; Robinson and Miller, 2013), we hypothesize further that
resource sharing may also play important roles during the
underlying processes by promoting survival and growth of
clonal epiphytes. Therefore, further studies could be designed
to examine whether effects of resource sharing within clones of
epiphytes can be cascaded to affect biodiversity and ecosystem
functioning.
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