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The use of natural plant biostimulants is proposed as an innovative solution to address
the challenges to sustainable agriculture, to ensure optimal nutrient uptake, crop
yield, quality, and tolerance to abiotic stress. However, the process of selection and
characterization of plant biostimulant matrices is complex and involves a series of
rigorous evaluations customized to the needs of the plant. Here, we propose a highly
differentiated plant biostimulant development and production platform, which involves
a combination of technology, processes, and know-how. Chemistry, biology and omic
concepts are combined/integrated to investigate and understand the specific mode(s)
of action of bioactive ingredients. The proposed approach allows to predict and
characterize the function of natural compounds as biostimulants. By managing and
analyzing massive amounts of complex data, it is therefore possible to discover, evaluate
and validate new product candidates, thus expanding the uses of existing products to
meet the emerging needs of agriculture.

Keywords: abiotic stress, Ascophyllum nodosum, biostimulants, crop growth and development, plant nutrition,
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INTRODUCTION

One of the biggest challenges for agriculture is the development of sustainable and environmentally
friendly systems to address the need to feed the growing world population. With decreasing area of
arable land as we approach the limits of genetic potential of staple crops, the only way to achieve this
objective is by increasing the crop yield and protecting what we produce. In other words, produce
“more with less” (Food and Agriculture Organization of the United Nations [FAO], 2012; Carvalho
and Vasconcelos, 2013; International Food Policy Research Institute [IFPRI], 2014). Parallel to
this, reducing energy consumption and utilizing resources more efficiently should be priorities
(Gregory and George, 2011). Simultaneously, quality of crops should be enhanced, particularly
under unfavorable growing environments. This means obtaining higher incomes for farmers,
having better postharvest storage and more nutritious food for consumers (Eckardt et al., 2009).

One of the most innovative and promising solutions to address these important challenges
consists of the use of plant biostimulants (PBS), referred as “materials which contain substance(s)
and/or microorganisms, whose function when applied to plants or the rhizosphere is to stimulate
natural processes to enhance/benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress,
and/or crop quality, independent of its nutrient content” (European Biostimulant Industry Council
[EBIC], 2016).
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Plant biostimulants formulations are generally proprietary
compositions based on seaweed extracts, complex organic
materials, plant hormone-like compounds, amino-acids, and
humic acids. Extensive reviews discuss the large group of PBS
derived from seaweeds, in particular Ascophyllum nodosum
(Khan et al., 2009; Craigie, 2011; Calvo et al., 2014; Sharma et al.,
2014) and the beneficial effect of natural biostimulants on specific
aspects of plant growth, production and fruit quality in different
crops (Parad̄iković et al., 2011, 2013; Bulgari et al., 2015; Saa
et al., 2015). Specific PBS activities such as increased root and
shoot growth, tolerance to abiotic stress, water uptake, reduction
of transplant shock etc., have been also reported (Adani et al.,
1998; Parrado et al., 2008; Alam et al., 2014; Petrozza et al.,
2014). Biostimulants can also reduce fertilizer use and nutrient
solution concentration in hydroponic systems (Vernieri et al.,
2006). A summary of the beneficial effects of PBS is reported in
Figure 1.

Considering the above, we expect a critical role for
biostimulants in the agriculture of the future. The market
of biostimulants is estimated to worth $1,402.15 million in
2014, and is projected to reach $2,524.02 million by 2019,
at a Compound Annual Growth Rate (CAGR) of 12.5%. The
expected drivers of this growth include (i) growing importance
for organic products in the agriculture industry (ii) increase
of biostimulants application in developing countries (iii) more
global PBS presence and acceptance among customers, since
the players in this market have developed a range of innovative
products to satisfy specific crop needs (Biostimulant Market,
2014).

While the knowledge on the benefits of PBS on plants is
steadily improving – evidenced by a significant increase of
research papers focused on PBS – there has been little attention to
the critical scientific steps required for an optimal selection and
characterization of biostimulant compounds, based on chemical
and biological analyses to develop optimal solutions for specific
agronomical needs.

Here we propose a robust platform that we named
GeaPower R©, based on different research approaches and
a combination of technology, know-how and processes
consolidated over a decade of experience aimed to investigate
and develop effective PBS products.

FROM RAW MATERIALS TO
BIOSTIMULANTS: A STEP-BY-STEP
PROCEDURE

When the Process Begins: Definition and
Analysis of an Unmet Need
The first step that triggers the research platform for the study of
new PBS formulations is the definition of a specific agricultural
need. The study of the desired attribute along with a thorough
review of scientific literature in consultation with scientific
experts in the research field of interest, allows us to draw a list of
the natural sources or active ingredients that may be included in
a future prototype. An in-depth understanding of the biological

and chemical characteristics of raw materials such as seaweeds,
microorganisms and their metabolites, plant extracts, is needed
to identify, characterize and preserve specific active ingredients
that can help achieve the targeted physiological responses in
plants. Thus, it becomes crucial to choose the right time and
season to obtain -from raw materials- the most optimal yield
of specific biomolecules needed for researched activities (Parys
et al., 2009; Apostolidis et al., 2011). A typical example of this
approach is the use of Ascophyllum nodosum (L.), one of the
most researched seaweeds (Ugarte et al., 2006), and one of
the raw materials utilized in the GeaPower R© technology. It is
recognized as the dominant intertidal seaweed of the North
Atlantic coastline where water temperatures do not exceed 27◦C
(Keser et al., 2005), although this alga is known to grow under
extreme temperatures, from−20◦C in winter to air temperatures
of 20–25◦C and direct sun heating in summer (Strömgren,
1983).

Ascophyllum can be collected in Norway, where this macroalga
is exposed to 6 months of darkness during polar night, but
also subjected to high solar radiation in spring, especially
during low tide and high water transparency, leading to
strong oxidative stress due to the formation of reactive oxygen
species (ROS) induced by environmental factors (Dummermuth,
2003; Di Tommaso, 2012). These extreme conditions confer
pliability, elasticity, ability to conform to the flow, and
influence the chemical composition of this seaweed, as a
consequence of the exposure degree (Black, 1948, 1950;
Biber, 2002; La Barre et al., 2004). Careful selection and
harvest of algal materials with select biological attributes thus
becomes extremely critical to developing select biostimulant
preparations.

Extraction, Chemical/Biological
Characterization, and Prototyping
Customized extraction processes are required to maintain a
precise ratio of each ingredient in complex natural mixtures
thus assuring the efficacy, quality, and consistency of the final
products.

Extraction procedures are calibrated in order to selectively
isolate categories of chemicals specific for the intended use,
utilizing appropriate solvent mixtures, pH, temperature and
eventually enzymes to drive the process. The challenges and
hurdles in these procedures have been very well described by
Harborne (1984). Hou et al. (1997, 2000) described methods
to isolate alginate-containing fractions, pigments, proteins, and
sulphated polysaccharides, including specific processes for the
highest possible yield. Enzyme digestion procedures can also
be used in several processes to shorten the polymer length, for
example in proteins, but also in polysaccharides, resulting in
enhanced biological activity and bioavailability (Jiménez-Escrig
et al., 2011).

Further, the natural extracts must be analyzed qualitatively
and quantitatively for actives that they may contain. According
to the specific molecule (or family of molecules) that needs to
be analyzed, one may choose liquid chromatography, such as
HPLC-DAD-FLD, LC-MS-MS, Q-ToF, or gas chromatography,
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FIGURE 1 | Reported examples of the main effects and physiological actions played by plant biostimulants (PBS).

with GC-MS. The first step is the identification of the compounds
of interest, using qualitative techniques, such as GC-MS, LC-
MS-MS, Q-ToF. After this challenging step, the development
and validation of analytical methods for each active ingredient
to be quantified enables the appropriate separation of the
biomolecules of interest from other molecules present in
the background, thus allowing the realization of calibration
curves and quantification, ensuring minimal batch-to-batch
variation.

If, for example, we consider an alkaline extraction of
seaweeds, alginates will be partially converted to carboxylic
acids (Niemela and Sjostrom, 1985) and their identification and
quantification can be carried out by GC-MS; during the same
extraction procedure, polyphenols, such as phloroethols, will be
rearranged as complex dibenzofurans (Ragan and Glombitza,
1986), and HPLC-DAD will be a good analytical tool to separate,
qualitatively identify and quantify them against a suitable internal
standard. Fucoidans will undergo hydrolysis in oligomers and
constituent sugars. After complete hydrolysis and derivatization,
each monosaccharide can be quantified with HPLC-DAD.
Betaines presence can be quantified with LC-MS-MS (Blunden
et al., 2010), and the structure of native phlorotannins can be
elucidated by NMR (Parys et al., 2007), but also by Q-ToF
(Tierney et al., 2013).

Once the desired combination of active ingredients is defined,
it is very important to check and match the regulatory guidelines
on the different crops and geographies where they are intended to

be used. Simultaneously, a primary evaluation of the formulation
for the safety profile should be performed. The technology to
realize prototypes in liquid, emulsion, microgranular and powder
form is required to address the market needs; often these could be
the greatest challenge in biological formulations and is generally
considered proprietary information at the manufacturer level.
Standard shelf-life and stability trials including the accelerated
aging conditions, in warm (45◦C) and cold environments
(+4,−4, and −20◦C) on each prototype in the final packaging
are carried out. Following these evaluations, a detailed profile of
the active ingredients evolution over time and changes in physical
parameters of each prototype under each aging condition is
performed to develop recommendations for appropriate shelf-life
and storage conditions.

Biological Screening
Chemical analyses are further substantiated by biological assays
that characterize the composition at different levels, including
the physiological mechanisms activated by specific compounds.
This is essential to enrich the internal library, a proprietary
database including all the information about molecules of
interest, to link each component to a specific function and use
this information to better set prototype formulations according
to the need.

It has become increasingly evident that understanding the
functional links between genes/transcripts, proteins, metabolites
and nutrients is one of biology’s greatest challenges, and recent
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technological improvements have brought major advances in
this area (Carvalho and Vasconcelos, 2013). Functional genomics
presents a powerful tool that allows us to decipher the molecular
and physiological triggers for specific responses in plant systems
(Bouchez and Höfte, 1998). DNA microarrays are clear examples
of functional genomic application: a high-throughput technology
that allows rapid and quantitative measurement of parallel
expression of thousands of genes (Aharoni and Vorst, 2002).
The transcriptomic profiling provided by microarrays datasets
can generate a picture of cellular functions under a given
experimental condition (Schena et al., 1995; Tan et al., 2009). In
the field of PBS also, the use of microarrays has allowed us to
dissect the effects of PBS at transcriptomic level, highlighting the
ability of raw materials that are used to formulate PBS to induce
the expression of various sets of genes. By using molecular tools,
it is possible to hypothesize possible modes of action of different
substances, predicting their role as biostimulants (Santaniello
et al., 2013).

Besides the so called transcriptomic fingerprint released by
a microarray analysis, a parallel and/or subsequent qPCR study
is often needed in order to validate the data, starting from a
microarray dataset or de novo selection of target genes involved
in specific physiological processes (Morey et al., 2006). For
example, to screen the effect of a set of different seaweed-
based prototypes, we selected a set of tomato genes involved
in different biochemical pathways that can be used as markers
for the qPCR screening (Figure 2A). If one or more gene
markers display a significant differential expression after the
application of a prototype in comparison with untreated control,
then it is possible to hypothesize a role of the prototype in the
physiological process(es) in which the gene(s) is/are involved.
For instance, this can suggest a possible priming effect of treated
crops against distinct stresses (Figure 2A). More generally, the list
of genes can be chosen and/or extended according to the needs
and/or desired results, and also the experimental conditions (e.g.,
normal vs. stressful conditions) can be chosen based on the
target.

In parallel with genomics, the phenomic approach permits the
study of PBS on plant growth, performance, and composition
based on multi-spectrum, high-throughput image analysis to
detect morphometric and physiological parameters (Furbank and
Tester, 2011). Such multi-spectrum analysis (infra-red, visible,
and ultraviolet light) of reflected or re-emitted light from the
plant crown, stem and leaves provides information on the
nutritional, hydrological and physio-pathological state of plants,
as well as on a plant’s ability to absorb light (Petrozza et al.,
2014, Figure 2B). One example of a phenomic facility is the high-
throughput plant phenotyping platform (LemnaTec-Scanalyzer
3D system) placed at the ALSIA Centro Ricerche Metapontum
Agrobios s.r.l. (Matera, Italy; Figure 2B; Petrozza et al., 2013).

The value of an integrated molecular/phenomic analysis
in characterizing the role of a specific PBS was recently
demonstrated in relation to the application of Megafol R©, a natural
PBS, on tomato plants in order to show the reduction of drought-
stress related damage (Petrozza et al., 2012, 2014).

Besides omics, in vitro assays may also be useful tools to
speed up the process of preliminary screening. Here, plants

FIGURE 2 | Genomic, phenomic, and in vitro platforms to screen the
effect of a set of different natural extracts-based prototypes using
tomato (Solanum lycopersicum L.) cv. Microtom as plant model.
(A) Relative abundance of mRNA transcripts of markers for specific
physiological processes in response to a range of treatments with biostimulant
prototypes (Protot.). Transcript levels (signal intensities) are presented in the
form of a heat-map (using HeatMapper Plus Tool), on a color scale between
low (yellow) and high (red). (B) LemnaTec-Scanalyzer 3D System placed at
ALSIA – Metapontum Agrobios Research Center (Matera, Italy).

(Continued)
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FIGURE 2 | Continued

The physiological and morphometric parameters that can be measured
using plant phenomics are UV (Ultraviolet) to fluorescence, photosynthesis
and health index; RGB (Red-Green-Blue) to plant morphology, architecture,
digital biomass and green/yellow index; NIR (Near-Infrared) to plant water
content. (C) Comparison of UTC (untreated control) and PBS-treated (final
concentration of 0.5 mL/L) plants grown on agar-based medium. (D) Root
phenotype differentiation, based on imaging analysis software GiA Roots
(Galkovskyi et al., 2012), comparing UTC (untreated control) with PBS-treated
(final concentration of 0.5 mL/L) plants. Traits displayed are: Average root
width (Width), Bushiness (Bush), Network Depth (Ndepth), Aspect ratio (AspR),
Network length distribution (Ldist), Major Ellipse Axis (MajA), Maximum number
of roots (MaxR), Network width (Nwidth), Median number of roots (MedR),
Minor Ellipse Axis (MinA), Network Area (NwA), Network Convex Area (ConvA),
Network perimeter (Perim), Network solidity (NS), Specific root length (SRL),
Nsurf (Network surface area), Network length (Nlen), Netwok volume (Nvol) and
Network width to depth ratio (NW/D). The error bars indicate the standard error
of the mean.

are germinated under sterile conditions in petri dishes, flasks,
or tubes, and then grown on a liquid or a solid medium in
an incubator, where light and temperature parameters can be
modulated and monitored. According to the plant model, PBS
formulations are added either to the solid or the liquid medium
at different concentrations to evaluate dose-effect response
curve. Such experimental conditions allow us a fast screening
of prototypes on plants, eliminating the influence of soil and
other environmental parameters, including competition with
fungi and bacteria (Chawla, 2004). For example, it is possible
to perform in vitro tests using tomato (cv. Microtom) seeds
on an agar-based substrate containing sucrose 1.5%, without
any additional nutrient sources. A PBS formulation may be
included into the medium, in order to evaluate the biostimulant
effect of selected matrices, in relation to untreated controls
(Figures 2C,D).

Tests in Controlled Environment
It has been demonstrated that the use of PBS can improve
quantitative and qualitative parameters also if applied in
hydroponic or other environmentally controlled crop systems.
Some of the effects reported are the reduction of nutrient solution
concentration in floating system, besides yield and nutritional
quality increase. For this reason, screening under plant growth
chambers and greenhouses are considered robust methods to
evaluate the agronomical validity of PBS formulations (Vernieri
et al., 2006; Parad̄iković et al., 2011). Plants are grown directly
on soil, pots, or liquid media (hydroponic solution), and treated
with prototypes (foliar and/or root applications). This approach
allows us to define the best application methods, timing and
rates, and provides preliminary indications on phytotoxicity. The
use of the plant growth chamber is ideal for studies of specific
kinds of stress, such as temperature stress, giving quantitative and
qualitative evidences related to the compounds tested (Feng et al.,
2003).

In conclusion, the above described steps, provide robust
scientific bases to support the development of innovative PBS
solutions for agriculture.

Product Development: Phytotoxicity
Assessment, Field Testing, REACh
Compliance
Even if certain prototypes display good efficacy in respect to the
initial need, other crucial factors need to be considered before
releasing a new commercial product, in particular:

Phytotoxicity
In order to assess any negative/toxic effects of the selected
prototype on plants, several phytotoxicity tests are carried out on
different target crops, using a large range of rates of application.

Field Trials
Once the agronomic performance of a certain prototype is
determined, it is critical to validate them through a number
of trials under field conditions. In order to ensure robust
and statistically significant results, the efficacy of prototypes
should be accurately verified on target crops worldwide. Thus,
prototypes are tested in varying agroclimatic conditions, under
distinct growing environments and according to local agronomic
practices.

REACh (Registration, Evaluation, Authorisation and
Restriction of Chemical substances for the European Union)
compliance is critical: in accordance with the EU guidelines
for agricultural product development, the preliminary
safety evaluation is integrated with the REACh compliance
assessment that includes physicochemical, toxicological and
ecotoxicological evaluations. Under REACh it is necessary for
producers/importers to register chemical substances unless
exempt from REACh registration (European Parliament,
Council of the European Union, 2006). In case of the use of
microorganisms, a particular dossier should be filled out, in order
to specify the identity, properties (or characteristics), toxicology
and other attributes of the selected microbials for the intended
use as PBS (Kamilova et al., 2015).

The Last Step: Process Development
and Further Scientific Validation
Once a new PBS prototype is selected according to the
Geapower R© steps described earlier, the commercial team embarks
on developing a manufacturing process which is efficient,
consistent and optimizes yields and costs. This step is carried out
at the lab and pilot plant facilities (upstream and downstream
equipments), to simulate commercial scale up. At this point
the prototype may be launched as a pre-commercial prototype,
which becomes available for the scientific community to perform
further scientific studies. This is for example the case of a
biostimulant developed to overcome abiotic stress such as
drought, composed of specific amino acids, glycosides, vitamins,
polysaccharides, betaines, organic nitrogen and carbon derived
from Ascophyllum nodosum and other plant materials (Saa
et al., 2015). Plants pre-treated with this PBS were healthier in
terms of digital biomass (image-based biomass estimation) and
chlorophyll fluorescence, and this positive effect was confirmed
at molecular level observing a lower expression of drought-
related genes even when plants were strongly water-stressed. This
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suggests that treated plants were indeed experiencing a lower
level of water stress, as a consequence of the treatment itself
(Petrozza et al., 2014). In addition to this case study, the beneficial
attributes of PBS in recent years has resulted in an increasing
number of research papers that validate the commercial value
of these complex natural compounds. In our view, this will be
bring important advances in the detection and demonstration of
clear, measurable effects of PBS on plant production and, more
generally, in agriculture.

CONCLUSION

The increasing pressure on the land to support a fast-growing
world population has made it necessary to intensify agricultural
production. Such pressure will inevitably lead to the development
of alternative technologies to improve the efficiency of crop
production and food security (Beddington, 2011). The solution
we propose involves a highly differentiated PBS discovery,
development, characterization, and production platform, to
which we give the name GeaPower R©. This approach uses the
power of chemistry, biology and omics to integrate large amounts
of complex data in order to assess and validate the inherent
activities and synergies of candidate natural compound mixtures
and micro-organisms for commercial use in agriculture.

We believe this systematic approach, starting from customized
access to raw materials, through extraction methods to product
development, helps efficiently turn prospective natural active
ingredients into high quality nutrient solutions. GeaPower R©

permits us to understand what makes a PBS formulation work
explaining the mode(s) of action of complex biomolecules, and
discover new opportunities. With this approach it is also possible
to predict the function of natural substances and how they

modulate the physiology of plants, making them more efficient
even under limited water and/or nutrient resources in their
environment (du Jardin, 2012).

Finally, in our view extensive experience with field trials,
together with continuous research and know-how acquisition in
terms of PBS formulation and biological effect, are and will be
crucial to satisfy the needs of present and future professional
agriculture. The plant biostimulants may thus represent the
previously non-existent bridge between the biological, live
products and the prescriptive chemical products that serve the
agricultural input markets.
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