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Artemisia annua, an annual herb used in traditional Chinese medicine, produces a
wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene
lactone artemisinin, an active ingredient in the treatment for malaria. Here we report
three new monoterpene synthases of A. annua. From a glandular trichome cDNA
library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and
characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple
products with camphene and 1,8-cineole as major products, respectively, and AaTPS2
produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able
to support their catalytic activities, altered product spectrum was observed in the
presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and
root of A. annua with gas chromatography–mass spectrometry detected more than
20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total.
Mechanical wounding induced the expression of all three monoterpene synthase genes,
and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with
phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role
of these monoterpene synthases in plant–environment interactions. The three new
monoterpene synthases reported here further our understanding of molecular basis of
monoterpene biosynthesis and regulation in plant.

Keywords: Artemisia annua, monoterpene synthase, β-myrcene, camphene, 1,8-cineole

INTRODUCTION

Plants produce a plethora of organic compounds, among which terpenoids constitute the largest
group with highly diversified structures and functionality. Apart from a small number of terpenoids
that are essential for plant growth and development, the majority functions as specialized (or
secondary) metabolites and is involved in the interaction of the plant with its environment
(Gershenzon and Dudareva, 2007; Allmann and Baldwin, 2010; Tholl and Lee, 2011), such as
phytoalexins against pathogens and herbivores (Ben-Yehoshua et al., 2008; Rodriguez et al., 2011;
Schmelz et al., 2011), airborne molecules of plant–plant (Baldwin et al., 2006) or plant–insect
signaling (Olson et al., 2008; Allmann and Baldwin, 2010). Terpenoids are not only abundant in
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many essential oils and resins but also are emitted from the foliage
and flower of a variety of plant species (Ahmad and Misra, 1994;
Brown et al., 2003; McKay et al., 2003).

Artemisia annua is an annual herb of the Asteraceae family.
Extensive chemical analyses of plant extracts have demonstrated
the presence of several classes of secondary metabolites, including
terpenoids and flavonoids (Woerdenbag et al., 1990; Juteau
et al., 2002; Lopes-Lutz et al., 2008). Among those with
pharmacological activities, the sesquiterpene lactone artemisinin
is widely used in the treatment of malaria, especially in the form
of combination therapies (van Agtmael et al., 1999; Graham
et al., 2010). The volatile blend of A. annua comprises both
monoterpenes and sesquiterpenes. The monoterpene fraction
is composed of a diverse array of structures from the regular
and irregular acyclic compounds (e.g., linalool, β-myrcene,
and artemisia alcohol) to the monocyclic (e.g., phellandrene
and 1,8-cineole), bicyclic (e.g., borneol and camphor), and the
tricyclic compounds (e.g., tricyclene; Ahmad and Misra, 1994;
Woerdenbag et al., 1994; Brown, 2010).

Plant monoterpenes are usually formed in plastids and
their accumulation is often associated with complex secretory
or storage structures such as glandular trichomes, secretory
cavities, and resin ducts (Byun-McKay et al., 2006; Wang
et al., 2008; Goodger et al., 2009; Goodger and Woodrow,
2011; Vitalini et al., 2011). Monoterpenes are derived from
the C10 precursor of geranyl diphosphate (GPP), catalyzed
by monoterpene synthase (Tholl, 2006). Approximately 1/3 of
plant monoterpene synthases characterized so far convert GPP
into acyclic products (Degenhardt et al., 2009). These reactions
proceed by ionization with the assistance of a divalent metal ion
(usually Mg2+ or Mn2+) to the extended geranyl cation, followed
by proton loss to form olefinic products including (E)-β-ocimene
and β-myrcene or addition of water to form terpene alcohol
such as geraniol or linalool. It is also conceivable that linalool,
β-myrcene, and (E)-β-ocimene are derived from the linalyl cation
that is the result of a previous isomerization. The formation of
cyclic products requires reliminary isomerization of the geranyl
cation to a linalyl intermediate capable of cyclization to α-terpinyl
cation, which is the universal intermediate for the production of
cyclic monoterpenes (Bohlmann et al., 1998; Degenhardt et al.,
2009).

To date three monoterpene synthases of A. annua have
been characterized, including two linalool synthases (AaQH1
and AaQH5) and a β-pinene synthase (AaQH6; Jia et al.,
1999; Lu et al., 2002). AaQH1 and AaQH5 display 88%
nucleotide sequence identity with each other and are expressed
primarily in leaves and inflorescence but not in root, and the
expression is inducible at transcriptional level by mechanical
wounding. Although in vitro AaQH1 and AaQH5 converted
GPP into (3R)-linalool, this compound was not detected in
the essential oil of A. annua leaves (Jia et al., 1999). AaQH6
showed a circadian pattern of expression and its recombinant
protein converted GPP into (-)-β-pinene and (-)-α-pinene
at a ratio of 94:6 (Lu et al., 2002). However, most of the
monoterpenoids detected in A. annua have not been linked
to a monoterpene synthase. In this investigation, we cloned
and functionally characterized three monoterpene synthases

of A. annua: AaTPS2, AaTPS5, and AaTPS6, which produce
β-myrcene, camphene, and 1,8-cineole as their major products,
respectively.

MATERIALS AND METHODS

Plant Materials and Reagents
Artemisia annua cv. Qiute was used in this investigation
and the seeds were collected from Sichuan Province, China.
Seeds of A. annua were surface-sterilized and germinated in
Murashige and Skoog medium. Seedlings (1 week old) were
transferred to soil and grown in greenhouse at 25◦C under light
intensity of 150 µmol photons m−2s−1 with 14-h-light/10-h-
dark cycle. Tissues from 6-week-old plants were collected for
further analysis unless otherwise indicated. To induce flowering,
2-month-old plants were transferred to 12-h-light/12-h-dark
photoperiod and inflorescences were collected in the next month.
Leaves close to inflorescences (approximately one third of the
upper stem) were defined as young leaves, and those close to
the basal part (one-third of the lower stem) were defined as
mature leaves. All the biochemicals and reagents were purchased
from Sigma–Aldrich (St. Louis, MO, USA), unless otherwise
noted.

Phytohormone and Wounding Treatment
For salicylic acid (SA), methyl jasmonate (MeJA), and
gibberellin (GA) treatments, 4-week-old plants of A. annua
were dipped in the phytohormone solution (5 mM of SA,
50 µM of MeJA, or 100 µM of GA) or dimethyl sulfoxide
(DMSO) solution for 4 h. Mechanical wounding of 4-
week-old plants was conducted as published (Lewinsohn
et al., 1992). Young leaves were collected and total RNAs
were isolated from three treated individual plants for
analysis.

Plant Terpenoids Extraction
Fresh plant materials (0.5 g) were collected and ground with
liquid nitrogen and extracted with 2.5 ml pentane containing
2 ng/µl nonyl acetate in a shaker at 28◦C for 1 h. The extractions
were analyzed by gas chromatography–mass spectrometry (GC–
MS; Agilent 6890 Series GC System coupled to an Agilent
5973 Network Mass Selective Detector), with the temperature
program: initial temperature of 40◦C (5 min hold), increase
to 160◦C at 10◦C/min, and ramp to 280◦C at 30◦C/min
(5 min hold). Products were identified by comparison with
authentic standards and NIST (National Institute of Standards
and Technology) and Wiley libraries.

Gene Isolation, Expression, and
Sequence Analysis
Total RNA was extracted using TRIzol R© reagent (Thermo
Scientific, Waltham, MA, USA) and 1 µg total RNA was
reverse-transcribed using the RNA PCR kit (TaKaRa, Dalian,
China), followed by cDNA synthesis and gene expression
analysis. Full length cDNAs were isolated by 5′- and 3′-
rapid amplification of cDNA ends (5′-and 3′- RACE) using
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the Pfu DNA polymerase (Promega, Fitchburg, WI, USA).
Quantitative real-time PCR (qRT-PCR) was performed with
SYBRGreen PCR Mastermix (TaKaRa, Dalian, China) on a
Mastercycler R© epRealPlex2 (Eppendorf, Hamburg, Germany)
cycler with A. annua actin (EU531837) as reference. Transcript
levels of genes were determined as described previously (Yu
et al., 2010). Nucleotide and amino acid sequence alignments
were performed using ClustalW1. Chloroplast signal peptide
prediction was performed at ChloroP2 and SignalP3 websites.
Primers used in this investigation are listed in Supplementary
Table 1.

Prokaryotic Expression and Protein
Purification
To facilitate prokaryotic expression, the N-terminal signal
peptide of AaTPS2, AaTPS5, and AaTPS6 (46, 57, and 46 amino
acid residues, respectively) before RR motif (Lin et al., 2008)
was truncated by PCR amplification with Pfu DNA polymerase
(Supplementary Table 1). PCR products were digested by NcoI
and SalI and ligated into pET-32a expression vector (Novagen,
Darmstadt, Germany). The resulting plasmids were confirmed
by sequencing and were transferred into Escherichia coli BL21
(DE3). E. coli cells harboring expression vectors were grown at
37◦C till OD600 = 0.5, and protein production was induced by
1 mM isopropyl beta-D-1-thiogalactopyranoside (IPTG) at 22◦C
for 24 h. Recombinant proteins were purified with Ni-NTA resin
according to manufacturer’s manual (Qiagen, Hilden, Germany).
The protein concentration was determined using the Bradford
method (Bradford, 1976).

Enzyme Assay
Assays of catalytic activities of recombinant proteins were
performed in a volume of 500 µl reaction buffer (25 mM
HEPES, pH 7.0, 5 mM MgCl2, 5 mM dithiothreitol), containing
40 µM GPP and 10 µg protein, at 30◦C for 1 h unless
otherwise indicated. The reaction mixture was extracted
with 500 µl pentane and subjected to analysis by GC–MS
as described above. For quantitative analysis, nonyl acetate
was added as internal standard during pentane extraction
of the enzyme reaction mixture. The kinetic parameters of
recombinant AaTPS2, AaTPS5, and AaTPS6 were determined
according to previously published (Kampranis et al., 2007).
Briefly, 3 µg of the purified enzyme was added to each
assay mixture containing GPP ranging from 3 to 100 µM,
and incubated at 30◦C for 5 min, then stopped by the
addition of 0.5 M EDTA (pH 8.0). The reaction products
were extracted with 500 µl pentane containing 2 ng/µl nonyl
acetate, followed by GC–MS analysis. Kinetic parameter values
were obtained with GraphPad Prism 5 software (GraphPad
Software, Inc.). To determine the optimal temperature, the
assays were conducted at a series of temperatures ranging from
25 to 45◦C.

1http://www.genome.jp/tools/clustalw/
2http://www.cbs.dtu.dk/services/ChloroP/
3http://www.cbs.dtu.dk/services/SignalP/

RESULTS

Monoterpenes and Sesquiterpenes in
A. annua Tissues
To analyze monoterpenes and sesquiterpenes in different parts
of A. annua, fresh tissues of root, young and mature leaf,
stem, and inflorescence were extracted with N-pentane and
subjected to GC–MS. Totally, there were 23 monoterpenes and
10 sesquiterpenes being detected and identified by comparison
with authentic standards and GC–MS database, and, additionally,
there were at least three monoterpenes and eight sesquiterpenes
that were detectable from the extracts but could not be identified
unambiguously (Figure 1).

Of the five tissues examined, inflorescence contained the
most abundant and diverse terpenes. In total, 23 monoterpenes
(including three unidentified) and 12 sesquiterpenes (including
four unidentified) were detected in inflorescence extracts,
amounting up to 4 mg/g fresh weight (FW; Figure 1 and
Supplementary Table 2). The total contents of monoterpenes
varied significantly in different organs (i.e., >100-fold higher
in inflorescence than in root), in comparison to the less
degree of variations of total sesquiterpene contents in these
organs (Supplementary Table 2). Among the monoterpenes
calculated, only camphor was detected in all tissues examined,
and was also the only monoterpene detected in root (Figure 1).
Others like artemisia triene, β-myrcene, and trans-carveol,
showed distinct distribution patterns. For example, artemisia
triene was most abundant in stem; and β-myrcene was the
major component in inflorescence but a minor one in leaf,
whereas trans-carveol was detected only in leaf. Generally,
inflorescence has more abundant monoterpenes but shares a
similar spectrum with leaf (Figure 1). In comparison with
monoterpenes, sesquiterpenes were more diversified, among
which β-farnesene was abundant in root and stem, and
germacrene D accumulated mainly in leaf and inflorescence
(Figure 1).

Isolation of Monoterpene Synthase
Genes
A cDNA library of A. annua glandular trichome (Li et al., 2013)
was searched for monoterpene synthase genes based on both
annotation and sequence comparisons, and full-length cDNAs
were obtained by 5′- and 3′-rapid amplification of cDNA ends
(RACE). Three cDNAs, namely AaTPS2 (KF987082), AaTPS5
(KF987083), and AaTPS6 (KF987084), encoding proteins of
586, 602, and 587 amino acids, respectively, were isolated.
Searching of NCBI non-redundant protein database revealed
that these proteins share the highest sequence identities with
plant monoterpene synthases, including AaQH1, AaQH5, and
AaQH6 previously reported (Jia et al., 1999; Lu et al.,
2002). AaTPS5 has a protein sequence identity of 54%
with AaQH6, whereas AaTPS2 and AaTPS6 are over 65%
identical to AaQH1 and AaQH5 (Jia et al., 1999; Lu et al.,
2002).

Alignment of these new monoterpene synthases with AaQH1,
AaQH5, and AaQH6 showed that, besides the putative plastid
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FIGURE 1 | Monoterpenes and sesquiterpenes produced by Artemisia annua plant. Fresh samples of stem, root, inflorescence, young leaf, and mature leaf
were extracted with N-pentane containing 2 ng/µl nonyl acetate in a shaker at 28◦C for 1 h and analyzed by gas chromatography–mass spectrometry (GC–MS).
Peaks are: IS: Internal Standard, nonyl acetate; peaks 1–23 are monoterpenes: (1) santolina triene; (2) tricyclene; (3) α-thujene; (4) artemisia triene; (5) α-pinene; (6)
camphene; (7) sabinene; (8) β-pinene; (9) β-myrcene; (10) I-phellandrene; (11) α-terpinene; (12) limonene; (13) 1,8-cineole; (14) γ-terpinene; (15) artemisia ketone;
(16) trans-sabinene hydrate; (17) artemisia alcohol; (18) chrysanthenone; (19) camphor; (20) borneol; (21) 4-terpineol; (22) α-terpineol; (23) trans-carveol; peaks A–H
are sesquiterpenes: (A) α-copaene; (B) β-cubebene; (C) β-elemene; (D) trans-caryophyllene; (E) trans-β-farnesene; (F) γ-curcumene; (G) naphthalene; (H) germacrene
D; (I) β-selinene; (J) bicyclogermacrene; peaks labeled with dots represent monoterpenes and sesquiterpenes that were not unambiguously identified.

targeting signaling sequence at N-terminal, the DDxxD domain
involved in metal cofactor binding are present in all six proteins
(Figure 2). There is also an additional metal binding motif
NSE/DTE domain, as well as an RRx8W domain that is conserved
in plant monoterpene synthases (Figure 2). Phylogenetic analysis
of AaTPS2, AaTPS5, and AaTPS6 with terpene synthases from
other plant species placed the three in the TPS-b subfamily, along
with other angiosperm monoterpene synthases (Supplementary
Figure 1; Bohlmann et al., 1998).

Enzymatic Activities of AaTPS2, AaTPS5,
and AaTPS6
To elucidate their functions, AaTPS2, AaTPS5, and AaTPS6
were expressed in E. coli after removing the N-terminal
plastid targeting sequences. The fusion proteins were purified
and incubated with GPP, farnesyl diphosphate (FPP), or
geranylgeranyl diphosphate (GGPP), respectively, with Mg2+

as metal cofactor. With GPP substrate, AaTPS2 catalyzed the
formation of a single monoterpene product, β-myrcene, whereas
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FIGURE 2 | Alignment of deduced amino acid sequences of AaTPS2, AaTPS5, and AaTPS6 with linalool synthases (AaQH1 and AaQH5) and β-Pinene
synthase (AaQH6) of A. annua. The horizontal line marks the putative N-terminal transit peptide. The conserved RRX8W and DDXXD motifs and the additional
metal binding NSE/DTE domain are marked with frames. The alignment was carried out by Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) and the result
of alignment was formatted by BoxShade (http://www.ch.embnet.org/software/BOX_form.html).

multiple products were identified for both recombinant AaTPS5
and AaTPS6 (Figure 3A). AaTPS5 catalyzed the production of
five monoterpenes, of which camphene was the major one which
accounted for 52.12% of the total, and (-)-α-pinene (30.08%),
(-)-β-pinene (3.89%), tricyclene (2.68%), and β-myrcene (1.23%)
were the less abundant products (Figure 3B). AaTPS6 also
formed multiple products with 1,8-cineole as the major one
(59.28% of the total), in addition to ten other products including
sabinene and β-phellandrene (together 19.04%), α-terpineol
(7.84%), trans-sabinene hydrate (4.03%), (-)-α-pinene (3.00%),
cis-β-terpineol (2.51%), β-myrcene (2.01%), α-thujene (0.69%),
as well as two unidentified minor products (Figure 3C).

Besides GPP, the recombinant AaTPS5 also converted FPP to
β-caryophyllene, but with low catalytic activity (Supplementary
Figure 2), whereas neither AaTPS2 nor AaTPS6 showed any
detectable activity toward FPP. None of these enzymes were able
to accept GGPP as substrate in our assay conditions.

Most of the reaction products isolated from in vitro enzymatic
assays were detected in A. annua extracts except β-phellandrene,
cis-β-terpineol and two unidentified minor products of AaTPS6.
Among the in vitro products of the three monoterpene synthases,
some such as (-)-α-pinene and β-myrcene, were shared by
AaTPS5 and AaTPS6, whereas others like (-)-β-pinene and
camphene were common to AaQH6 or AaTPS2. Thus these
enzymes have overlapping activities in terms of products,
although their in planta products could differ. However, the ratio
of camphene to tricyclene produced by AaTPS5 (∼19:1) was
similar to that detected in all plant tissues (17∼18:1) except stem
(14:1). Similarly, in the main products of AaTPS6 1,8-cineole and
sabinene showed a ratio of about 3:1, close to 2.8∼3.2:1 in extracts
of young leaf and stem, but different form that in inflorescence
(∼4.8:1; Supplementary Table 3 and Figure 3A).

In the absence of a divalent metal ion, recombinant
proteins of these three monoterpene synthases showed no
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FIGURE 3 | Enzymatic characterization of AaTPS2, AaTPS5, and AaTPS6 recombinant proteins. (A) GC–MS analysis of pentane extracts of AaTPS6,
AaTPS2, and AaTPS5 recombinant proteins after incubation with GPP as substrate. The protein tag produced by pET32a empty vector was used as control.
(B,C) Product percentages of AaTPS5 (B) and AaTPS6 (C), sabinene (peaks 5) and β-phellandrene (peak 7) were calculated together because they could not be
separated well by gas chromatography. Peaks are: (1) tricyclene; (2) α-thujene; (3) α-pinene; (4) camphene; (5) sabinene; (6) β-pinene; (7) β-phellandrene; (8)
β-myrcene; (9) 1,8-cineole; (10) trans-sabinene hydrate; (11) cis-β-terpineol; (13) α-terpineol; (12) and (14) products unidentified. (D) Relative activities of AaTPS2,
AaTPS5, and AaTPS6 with different divalent metal cofactors. (E) Relative activities of AaTPS2, AaTPS5, and AaTPS6 recombinant proteins toward GPP substrate at
different temperatures.

activity during incubation with GPP, and the activities were
restored when either Mg2+ or Mn2+ was added as the
metal cofactor. All three enzymes exhibited higher catalytic
activities with Mg2+ than with Mn2+ at 5 mM (Figure 3D).
Unexpectedly, in the presence of Mn2+ as the divalent ion,
AaTPS2 and AaTPS5 catalyzed the formation of linalool from
GPP (Supplementary Figure 3), which was not present in the

products extracted from the Mg2+-containing reaction buffer
(Figure 3A).

Kinetic analysis with GPP in the presence of Mg2+ showed
that AaTPS2 had a Michaelis constant (Km) of 8.25 µM with
estimated kcat of 0.52 s−1 and a specific constant (kcat/Km) value
of 6.31 × 104 s−1 rM−1. The Km values of AaTPS5 and AaTPS6
were 19.47 µM and 17.70 µM with estimated kcat of 1.49 s−1
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and 4.46 s−1, and kcat/Km values of 7.66 × 104 s−1 rM−1 and
2.52 × 105 s−1 rM−1, respectively, (Table 1). The Km values of
AaTPS2, AaTPS5, and AaTPS6 are in the typical range of enzymes
involved in plant secondary metabolism (Bar-Even et al., 2011).

The optimum temperatures were determined for the
recombinant enzymes at the range from 25 to 45◦C. The
enzymatic activity of AaTPS6 did not differ significantly in this
temperature range: it reached peak at 25◦C, and retained 70% at
45◦C (Figure 3E). The optimum temperatures of AaTPS5 and
AaTPS6 were 35 and 40◦C, respectively, and decreased rapidly
with the rising temperature (Figure 3E).

Expression Patterns of AaTPS2, AaTPS5,
and AaTPS6
Expressions of AaTPS2, AaTPS5, and AaTPS6 in leaf, stem,
root, and inflorescence were analyzed by qRT-PCR. Although
transcripts of these monoterpene synthase genes were detected
in all these organs, their expression patterns differed. AaTPS2
exhibited the highest expression level in stem and low in other
tissues; transcript of AaTPS5 was more abundant in young leaves
than in mature leaves; and AaTPS6 was highly expressed in root
and young leaves (Figures 4A–C). Despite their divergence in
relative transcript levels in different tissues, all these monoterpene
synthase genes showed higher expression levels in young leaf
than in mature leaf, consistent with the contents of monoterpenes
(Figure 1).

AaADS, encoding a sesquiterpene synthase for the synthesis of
amorpha-4,11-diene, a key precursor of artemisinin biosynthesis,
shows an increase of steady-state mRNA level upon treatments
with phytohormones of SA, MeJA, and GA (Yu et al., 2012).
Interestingly, treatment of these phytohormones also induced
expressions of AaTPS5 and AaTPS6, but did not affect AaTPS2
expression (Figures 4D–F). SA and MeJA showed similar effects
on AaTPS5 expression (∼fourfold increases of transcript level)
whereas GA was to a less extent (∼threefold increase; Figure 4E).
AaTPS6 was induced strongly by GA (∼12-fold increase),
moderate by MeJA (∼eightfold) and less by SA (∼fourfold;
Figure 4F). Moreover, AaTPS2, AaTPS5, and AaTPS6 were all
up-regulated after mechanical wounding (Figures 4D–F), similar
to the two linalool synthase genes AaQH1 and AaQH5 (Jia et al.,
1999; Lu et al., 2002). These different responses of AaTPSs to
phytohormone and wounding treatments indicate distinct roles
of their monoterpene products in A. annua plant.

DISCUSSION

Monoterpenes represented more than 65% of the leaf volatiles
and 80% of the inflorescence volatiles as quantified here

TABLE 1 | Kinetic parameters of AaTPS2, AaTPS5, and AaTPS6 proteins.

Km (µM) Kcat (s−1) Kcat/Km (s−1 rM−1)

AaTPS2 8.25 0.52 6.31 × 104

AaTPS5 19.74 1.49 7.66 × 104

AaTPS6 17.70 4.46 2.52 × 105

(Supplementary Table 2). Analyzing of the volatile bouquets of
A. annua demonstrated that monoterpenes including 1,8-cineole,
β-myrcene, (-)-α-pinene, (-)-β-pinene, sabinene, and camphene
are the main compounds that contribute to the fragrant odor
(Ahmad and Misra, 1994). The monoterpene synthases, AaTPS2,
AaTPS5, and AaTPS6 we characterized here are responsible for
more than 1/3 monoterpenes produced in planta, most of which
are bioactive compounds both in vivo and in vitro. For example,
1,8-cineole, the main product of AaTPS6, is characterized as
a mosquito feeding and ovipositional repellent in tarweed
(Hemizonia fitchii), and also has an effect on progeny production
of Tribolium castaneum (Klocke et al., 1987; Tripathi et al., 2001).
Thus the three monoterpene synthases reported here not only
enrich our knowledge of terpene biosynthesis, but also provide
gene resources for engineering of bioactive monoterpenes.

Most monoterpenes produced by AaTPS2, AaTPS5, and
AaTPS6 are detected in inflorescence and leaf, with comparable
proportions of these compounds in vivo and in vitro. However,
discrepancy was found between the transcript levels of these
genes and the accumulation of corresponding monoterpenes.
In root, the only monoterpene detected was camphor, but
AaTPS2, AaTPS5, and AaTPS6 were all actively transcribed. It
will be interesting to examine if these monoterpenes were indeed
produced in root but subjected to secondary modifications,
such as oxidation and glycosylation. As previously reported,
the yield of terpenoids in aerial organs in various plants is
highly dependent on trichome abundance (Biswas et al., 2009).
Glandular trichomes of A. annua are extensively distributed on
aerial organs and their density are higher in young than in
older leaves (Olofsson et al., 2011), which is consistent with
monoterpene contents detected here.

Among the three monoterpene synthases elucidated here, the
recombinant AaTPS2 catalyzes GPP to acyclic β-myrcene as its
only product while AaTPS5 and AaTPS6 produce multiple cyclic
products with the acyclic β-myrcene as a byproduct. Acyclic
monoterpenes, such as β-myrcene and (E)-β-ocimene, may arise
by deprotonation of carbocations, whereas the isomerization
step to linalyl diphosphate is required in the case of cyclic
types, such as limonene and pinenes, which cannot be derived
directly from GPP because of the geometric impediment of the
trans-double bond at C2-C3 (Croteau et al., 1985, 1987). Thus,
the differences between the mechanisms in formation cyclic
and acyclic monoterpenes are correlated to the production of
single or multiple products by different monoterpene synthases,
which are capable of overcoming the topological impediment
to direct cyclization of GPP initiated by divalent metal ion-
dependent ionization (Schwab et al., 2001). Terpene synthases
require divalent metal ions as cofactor that binds to the active
site during catalysis and different divalent ion metals and
concentrations can affect enzyme activities in vitro (Picaud et al.,
2005). Of the two divalent ion metal tested here, Mg2+ is
preferred to Mn2+ by all three enzymes. Notably, AaTPS2 and
AaTPS5 produced an additional acyclic product, linalool, in the
presence of Mn2+, which accounted for the major product of
the corresponding reactions. Although we cannot confidently
elucidate the mechanism of reaction process affected by either
metal ion, the phenomenon might be due to the alteration of
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FIGURE 4 | Expression patterns of AaTPS2, AaTPS5, and AaTPS6. The transcripts were analyzed by quantitative real-time RT-PCR, with AaACTIN (EU531837)
as internal standard. (A–C), relative transcript levels of AaTPS2, AaTPS5, and AaTPS6 in different organs. ML, mature leaves; YL, young leaves; S, stem; Inf,
inflorescence; R, root. (D–F) Relative transcript levels of AaTPS2, AaTPS5, and AaTPS6 after phytohormone treatments [5 mM salicylic acid (SA), 50 µM methyl
jasmonate (MeJA), or 100 µM gibberellin (GA)] and mechanical wounding treatment (W) for 4 h. Error bars indicate standard deviation (SD) of three biological
replicates.

catalytic pocket by binding of lager Mn2+ to allow a water
molecule to enter the pocket and specifically attack linalyl
cation resulted in linalool production. Additional modeling and
mutagenesis work shall help to understand the structural basis for
these divalent cation dependent catalytic differences.

Many terpenes are important compounds involved in plant
tolerance/resistance to biotic and abiotic stresses (Kang et al.,
2010; Rodriguez et al., 2011). The mechanical wounding can

lead to enhanced expression of monoterpene synthase genes
of A. annua, suggesting that they are likely involved in an
inducible defense system. AaTPS5 and AaTPS6 can also be
induced by phytohormones including MeJA, SA, and GA, which
are important regulators of plant defense against herbivores and
pathogens, and modulate epidermal differentiation programs
(Jiang and Fu, 2007; Tsuda et al., 2008; Gao et al., 2011; Hou
et al., 2013; Yi et al., 2014). The significant induction of AaTPS6
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by GA is consistent with the study of Salvia officinalis that 1,8-
cineole synthase and its products are induced upon GA treatment
(Schmiderer et al., 2010). Our results of the induction pattern of
monoterpene synthase genes in A. annua provide further clues to
the physiological functions of terpenes on plant adaptation.

Although AaTPS2, AaTPS5, and AaTPS6 in A. annua are
responsible for most of the fragrant odor monoterpenes in this
medicinal herb, there are still monoterpenes in A. annua that have
not be ascribed to any of the monoterpene synthases reported so
far. This terpenoids-rich herb must have additional monoterpene
synthases that await characterization.
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