AUTHOR=Hu Wei , Kong Hua , Guo Yunling , Zhang Yuliang , Ding Zehong , Tie Weiwei , Yan Yan , Huang Qixing , Peng Ming , Shi Haitao , Guo Anping TITLE=Comparative Physiological and Transcriptomic Analyses Reveal the Actions of Melatonin in the Delay of Postharvest Physiological Deterioration of Cassava JOURNAL=Frontiers in Plant Science VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2016.00736 DOI=10.3389/fpls.2016.00736 ISSN=1664-462X ABSTRACT=

Melatonin plays important roles in various aspects of biological processes. However, it is less known on the effects and mechanism of melatonin on the postharvest physiological deterioration (PPD) process of cassava, which largely restricts the potential of cassava as a food and industrial crop. In this study, we found that exogenous application of melatonin significantly delayed PPD of cassava tuberous roots by reducing H2O2 content and improving activities of catalase and peroxidase. Moreover, 3425 differentially expressed genes by melatonin during the PPD process were identified by transcriptomic analysis. Several pathways were markedly affected by melatonin treatments, including metabolic-, ion homeostasis-, and enzyme activity-related processes. Further detailed analysis revealed that melatonin acted through activation of ROS-scavenging and ROS signal transduction pathways, including antioxidant enzymes, calcium signaling, MAPK cascades, and transcription factors at early stages. Notably, the starch degradation pathway was also activated at early stages, whereas it was repressed by melatonin at middle and late stages, thereby indicating its regulatory role in starch metabolism during PPD. Taken together, this study yields new insights into the effect and underlying mechanism of melatonin on the delay of PPD and provides a good strategy for extending shelf life and improvement of cassava tuberous roots.