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Modern omics platforms have made the determination of susceptible/resistance genes
feasible in any species generating huge numbers of potential targets for crop protection.
However, the efforts to validate these targets have been hampered by the lack of a
fast, precise, and efficient gene targeting system in plants. Now, the repurposing of
clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated
protein 9 (Cas9) system has solved this problem. CRISPR/Cas9 is the latest synthetic
endonuclease that has revolutionized basic research by allowing facile genome editing
in prokaryotes and eukaryotes. Gene knockout is now feasible at an unprecedented
efficiency with the possibility of multiplexing several targets and even genome-wide
mutagenesis screening. In a short time, this powerful tool has been engineered
for an array of applications beyond gene editing. Here, we briefly describe the
CRISPR/Cas9 system, its recent improvements and applications in gene manipulation
and single DNA/RNA molecule analysis. We summarize a few recent tests targeting plant
pathogens and discuss further potential applications in pest control and plant–pathogen
interactions that will inform plant breeding for crop protection.

Keywords: CRISPR/Cas9, gene editing, plant–pathogen interactions, DNA double-stranded break, homologous
recombination, non-homologous end joining

INTRODUCTION

Genetic crosses and mutagenesis based breeding are time consuming and laborious. The recent
development of next generation sequencing is making available fast and cost effective genomic
platforms of an increasing number of species including pests, plant models and crops. Now it
is easier than ever to perform genome-wide association studies and determine the genes and
pathways involved in any particular aspect of pathogen resistance (Olukolu et al., 2014), and
pipelines are now well established for genomics-informed breeding (Varshney et al., 2015). It is
also quicker and cheaper to obtain the transcriptome of any crop under pathogen attack and
determine the virulence and defense pathways and genes that are deployed by both (Kawahara et al.,
2012; O’Connell et al., 2012). Proteomics is also starting to make a dent in understanding plant–
pathogen interactions (Lodha et al., 2013). A complex network of nuclear processes regulating gene
expression and function is emerging from this gene discovery phase but association of a particular
pathogen effector with the corresponding host target(s) is still poorly understood (Motion et al.,
2015).

Frontiers in Plant Science | www.frontiersin.org 1 June 2016 | Volume 7 | Article 765

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2016.00765
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2016.00765
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.00765&domain=pdf&date_stamp=2016-06-01
http://journal.frontiersin.org/article/10.3389/fpls.2016.00765/abstract
http://loop.frontiersin.org/people/258481/overview
http://loop.frontiersin.org/people/297749/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00765 May 30, 2016 Time: 15:14 # 2

Barakate and Stephens CRISPR/Cas9 Applications in Crop Protection

Omics technologies generate a huge amount of data and
require powerful computational tools to integrate these high-
throughput platforms in order to fully understand the multi-
layered networks of biomolecules underpinning plant–pathogen
interactions. Gene silencing has been extensively used to validate
the function of candidate host resistance genes (Duan et al.,
2012) and pathogen virulence factors (Yin et al., 2015). However,
pathogens have evolved effective suppressors against host RNA
silencing, making the system unsuitable for engineering strong
and durable resistance in crops (Pumplin and Voinnet, 2013).
A more attractive option is gene targeting (GT) which allows
any endogenous gene to be disrupted or replaced with a copy
that has been manipulated in vitro. In GT experiments, double-
stranded break (DSB) at the target gene is repaired by one
of the two main competing DNA repair pathways: the more
frequent non-homologous end joining (NHEJ) pathway or the
rare but precise homologous recombination (HR) (Chapman
et al., 2012). GT could have a huge impact as a ‘clean transgenesis’
technology for precise gene manipulation or transfer of novel
traits into crops. Despite huge efforts, this powerful tool has
been elusive in plant science for a long time as it relied on
extremely rare spontaneous DSBs (Puchta and Fauser, 2013).
However, this barrier has been recently overcome by the
development of novel endonucleases that break DNA specifically
at chosen genomic targets. Unfortunately, gene replacement
by HR is still inefficient in plants and will need further
improvement.

Initially, two endonucleases were engineered by fusing a
programmable DNA-binding domain to the cleavage domain
of the bacterial restriction enzyme FokI. The first endonuclease
was generated by linking the DNA-binding domain of a zinc-
finger transcription factor to make the first truly flexible
chimeric nuclease zinc-finger nuclease (ZFN) (Smith et al.,
2000). Similarly, the DNA-binding domain of a transcription
activator-like effector of the plant pathogen Xanthomonas was
used to make the second, and relatively easier to design, nuclease
transcription activator-like effector nuclease (TALEN) (Christian
et al., 2010). These two big breakthroughs were superseded
by an even simpler system based on the clustered, regularly
interspaced, short palindromic repeats (CRISPR) and CRISPR-
associated genes (Cas) used by some bacteria and Archaea
to destroy invading genetic material (Jinek et al., 2012). Our
knowledge of CRISPR/Cas is rapidly evolving and the findings are
extensively reported and reviewed. Here we will briefly describe
the natural and engineered CRISPR–Cas systems followed by the
latest and future applications in plant–pathogen interactions.

THE NATIVE CRISPR–Cas SYSTEM

The CRISPR–Cas system was discovered in bacterial genomes
as early as 1987 (Ishino et al., 1987) but its biological role
was determined only in 2007 (Barrangou et al., 2007). These
evolving adaptive immune systems against invading phages and
plasmids are now re-classified into five types I–V (Makarova
et al., 2015). During the first invasion, the hosts capture
short DNA sequences of about 20 nucleotides, known as

spacers, from the foreign genetic material and integrate them
between two repeats at the CRISPR locus (Nuñez et al., 2015).
Upon subsequent encounters, CRISPR arrays with the acquired
spacers are transcribed and processed into small CRISPR
RNAs containing the spacer (crRNAs). This chimeric molecule
interacts with another auxiliary trans-activating CRISPR RNA
(tracrRNA), forming a duplex RNA or guide RNA (gRNA) that
guides the Cas nuclease to the homologous target (protospacer),
resulting in an R-loop structure. The tracrRNA activates Cas
nuclease activity, cleaving both strands of the target DNA
upstream of a conserved protospacer-adjacent motif (PAM). Cas
nuclease has two domains, RuvC and HNH, that cut the PAM-
containing strand and its complementary strand, respectively,
thus producing a single DSB (Heler et al., 2015). The spacer
and PAM requirements depend on CRISPR–Cas type (Xue et al.,
2015). In the case of the widely used type II CRISPR–Cas9
system, the last 12 ribonucleotides at the 3′-end of the RNA
spacer, known as the seed sequence, dictates the specificity of the
complementary target. Mismatches at its 5′-end were thought to
be tolerated during gRNA–Cas9 binding to the target. However,
the interaction of this region and PAM-distal sequences turned
out to be necessary for the activation of Cas9 endonuclease
activity (Cencic et al., 2014). PAM sequences are 2–5 bp motifs
essential for spacer acquisition and target cleavage (Shah et al.,
2013).

REPURPOSING OF THE CRISPR–Cas9
SYSTEM FOR GENE EDITING IN
EUKARYOTES

The knowledge of the biological function and mechanism of
CRISPR–Cas inspired its reprogramming to target any chosen
DNA sequence. CRISPR–Cas9 of Streptococcus pyogenes was
engineered by simply replacing the first 20 nucleotides of crRNA
with the intended target sequence and fusing both crRNA and
tracrRNA molecules to make a single guide RNA (sgRNA)
(Jinek et al., 2012). This newly programmable system was first
adopted to target eukaryotic genes in animals, followed by several
successful applications in plants including crops (Bortesi and
Fischer, 2015; Butler et al., 2015; Lawrenson et al., 2015). The
ease of implementation of CRISPR–Cas9 by anyone with basic
molecular biology skills has made it the tool of choice for gene
editing in any species of interest. Upon generating a DSB at the
desired site by the Cas9–gRNA complex, the host cell repairs
the DNA lesion by NHEJ pathway resulting in short insertions
or deletions, leading to gene knockout. The flexibility of the
CRISPR–Cas9 system allows targeting of adjacent sites in a single
gene for specific removal of a region, which will be extremely
useful for the studies of gene and mRNA cis-elements and protein
domains (Brooks et al., 2014). CRISPR–Cas9 can also be used in
plants to knockout all or single multigene family members (Endo
et al., 2015) and even multiple unrelated genes (Lowder et al.,
2015).

The DSB lesion can also be repaired by the HR mechanism
in the presence of a donor template, leading to precise gene
replacement (knock-in). HR-based gene replacement is still
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inefficient and has been demonstrated in only a few plant species
(Bortesi and Fischer, 2015). The efficiency of homology directed
repair (HDR) of CRISPR–Cas9 induced DSBs was recently
increased by inhibiting the NHEJ pathway in mammalian cells
(Chu et al., 2015; Maruyama et al., 2015). Cas9 was recently
found to dissociate slowly from DSB by releasing first the 3′end
of the cleaved DNA strand that is not complementary to the
sgRNA. Consequently HDR was increased to 60% in human
cells by using rationally designed single-stranded DNA donor
template of the optimal length complementary to the strand that
is released first (Richardson et al., 2016). Maize was the first crop
where CRISPR–Cas9 was successfully used to generate plants
with precise modifications (Svitashev et al., 2015). Precise gene
modifications have been achieved at high frequency in tomato by
combining the CRISPR–Cas9 nuclease with a geminivirus-based
vector for donor DNA template delivery (Čermák et al., 2015).
The combination of some or all of the incremental improvements
in different animal and plant species could enhance gene
replacement efficiency for all crops.

In pathogens, GT without DSB induction was only improved
by inhibiting the NHEJ pathway, as in the ku70 mutant of
Verticillium dahliae (Qi et al., 2015). CRISPR–Cas9 has now
made gene editing possible in fungi (Matsu-ura et al., 2015;
Nødvig et al., 2015). The effector Avr4/6 of the soybean pathogen
Phytophthora sojae was efficiently knocked out or even precisely
replaced by the selectable marker nptII, uncovering additional
roles for the corresponding R gene loci RPS4 and RPS6 (Fang and
Tyler, 2016). The establishment of gene editing tools in P. sojae
will speed up studies for crop protection in other oomycetes.

Resistance to geminiviruses has been long sought after and was
achieved recently in three independent studies using CRISPR–
Cas9 in Nicotiana benthamiana (Ali et al., 2015; Baltes et al.,
2015; Ji et al., 2015). In these works, CRISPR–Cas9 was shown
to mutate the viral genome, resulting in reduced viral replication
and attenuated infection symptoms. A single gRNA targeting a
conserved sequence in the replication origin resulted in efficient
inhibition of multiple monopartite and bipartite geminiviruses
in the same host. However, further studies will be required
to monitor the evolution of this resistance over generations
and in more challenging environments (Chaparro-Garcia et al.,
2015).

Viral vectors can also be targeted by CRISPR–Cas9 technology
to abolish pathogen transmission or even reduce insect
population by the so-called mutagenic chain reaction (Gantz
and Bier, 2015). This system is initiated when both Cas9 and
gRNA transgenes are inserted by homology directed repair at the
intended target in males. The transgenes are then copied into the
homologous chromosome by HR in the germ-line cells. During
fertilization, the males transfer the CRISPR–Cas9 cassette into the
next generation and the chain continues. This gene drive system
has been demonstrated to be very efficient in manipulating
two species of mosquito which are vectors for malaria (Esvelt
et al., 2014; Gantz et al., 2015; Hammond et al., 2016). Though
attractive, gene drive will not work in self-fertilizing weeds and
non-native invasive plant species but it could potentially be used
against flies that are vectors of plant pathogens provided that they
are amenable to transgenesis. However, safeguarding against the

unintended ecological impact of manipulated insect populations
is of great importance and biosafety concerns are starting to be
addressed by developing antidote systems to reverse gene drive
effects (DiCarlo et al., 2015).

IMPROVEMENTS TO THE CRISPR–Cas9
SYSTEM EFFICIENCY AND SPECIFICITY

Since the conception of the CRISPR–Cas9 gene editing system, its
components Cas9 and gRNA have been continuously optimized
to improve the efficiency and accuracy of GT (Bolukbasi et al.,
2015; Graham and Root, 2015). The repurposing of the CRISPR–
Cas9 system to alter eukaryotic genes necessitated targeting the
bacterial Cas9 to the nucleus by adding a nuclear localization
signal at one or both termini of the protein. To improve
translation efficiency, the Cas9 gene was initially codon optimized
for human cells and was quickly followed by several plant
versions, for both dicots and monocots (Bortesi and Fischer,
2015). The endonuclease Cas9 can easily be converted into a
DNA nickase by a single amino acid change in either of its
two domains (D10A in RuvC and H840A in HNH; Cong et al.,
2013) to cut only one strand. A DSB can still be introduced
at the target by these nickases in the presence of two gRNAs
that target opposing strands at neighboring sites. This feature
has been exploited to improve the specificity of CRISPR–Cas9
and reducing potential off-targets (Ran et al., 2013), a major
concern with engineered endonucleases in animals (Hendel et al.,
2015) and in plants (Bortesi and Fischer, 2015). Several assays
for quantifying on- and off-targets have been developed and
inspired strategies for minimizing off-target effects (Hendel et al.,
2015; Zhang et al., 2015). In plants, the use of whole genome
sequencing as the most accurate method is limited to Arabidopsis
and rice with good genome reference (Bortesi and Fischer, 2015).
Unlike in human gene therapy, off-targets are less problematic in
plants where one could eliminate such events by backcrosses. The
determination of Cas9 structure (Nishimasu et al., 2014, 2015)
has also inspired rational engineering of new Cas9 variants with
altered PAM recognition (Kleinstiver et al., 2015) and greater
specificity (Slaymaker et al., 2016). Orthologs of commonly used
Cas9 from S. pyogenes (SpCas9) have been reported to have
different features and requirements. The S. aureus Cas9 (SaCas9)
gene is 1 kbp shorter than SpCas9, improving its stability in viral
vectors (Ran et al., 2015). In the screening effort for SpCas9
orthologs, another protein, Cpf1 (CRISPR from Prevotella and
Francisella 1) of type V CRISPR–Cas systems, has been reported
to function in a completely different way to Cas9. Cpf1 does not
need a tracrRNA but requires a T-rich PAM motif upstream of the
target site and generates a DSB with 5′ overhangs (Zetsche et al.,
2015).

The design of guide RNAs for efficient and specific gene
editing has also been the focus of many studies combining
experimental and computing analyses. Several user-friendly
algorithms have been developed and freely shared online with
the scientific community1. Most of these bioinformatics tools

1http://omictools.com/crispr-cas9-category
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are designed to score the efficiency of all potential targets
with a PAM motif in the input gene sequence (Wiles et al.,
2015). The chance of off-target effects elsewhere in the genome
can also be accounted for where the genome sequence is
available. These bioinformatics tools are continuously being
refined with the availability of new experimental data (Malina
et al., 2015; Wong et al., 2015). The structure of the artificial
single guide RNA has been revisited recently and improved by
lengthening the duplex crRNA/tracrRNA and improving gRNA
transcription by shortening its thymine repeat (Dang et al.,
2015).

Several systems for delivering Cas9 and gRNA molecules
into the cell are available, depending on the species of interest.
Plasmid constructs are often used to express Cas9 from RNA
polymerase II-driven promoters and gRNAs with polymerase III-
mediated transcription. A new strategy based on endogenous
tRNA maturation has been developed for expressing multiple
gRNAs from a single pol III promoter (Lowder et al., 2015;
Xie et al., 2015). While a pol II promoter can be chosen to
drive tissue-specific expression of Cas9, snoRNA U3, and U6
pol III promoters are constitutive. However, newly reconstructed
sgRNAs can now be expressed from pol II promoters (Wang
et al., 2015). Inducible promoters can also be used to induce gene
editing in vivo, yet reduce potential off-target effects and Cas9-
associated toxicity (Dow et al., 2015). Even better, Cas9 and the
gRNA can be simultaneously expressed from a single promoter
allowing for more spatio-temporal control of each component
(Yoshioka et al., 2015). These conditional gene editing methods
present new opportunities in crop research but have not yet been
tested in plants.

OTHER FACETS OF THE CRISPR–Cas9
SYSTEM

The CRISPR–Cas9 system has become the tool of choice for
gene manipulation owing to its simplicity and the willingness
of researchers to share the necessary plasmids and methods,
including the various algorithms for designing gRNAs. Most of
these ingredients are now deposited with the non-profit plasmid
repository Addgene2 (Harrison et al., 2014). Although most
studies focus on knocking out a single gene or a combination
of a few targets (multiplexing), the CRISPR–Cas9 system is so
powerful that it has been successfully used for genome-wide
mutagenesis in mammalian (Malina et al., 2014; Peng et al.,
2015) and Drosophila (Bassett et al., 2015) cells. The CRISPR–
Cas9 based genetic screen uses thousands of unique gRNAs
covering the genome of interest and relies on efficient delivery
of Cas9/gRNA cargo. This type of forward genetic screen will
be very useful in studies of plant–pathogen interactions, but the
transformation of plant or pathogen cells must be optimized.
This goal can be achieved with at least some pathogens and plant
models like Arabidopsis and tobacco.

When both RuvC and HNH nuclease domains are mutated,
Cas9 becomes an inactive or dead endonuclease (dCas9). Qi et al.

2https://www.addgene.org/crispr/

(2013) were the first to demonstrate that dCas9 can specifically
repress gene expression in Escherichia coli in the presence of
the gene specific gRNA. This work was quickly followed by
another report where dCas9 was fused to transcriptional effectors
to silence or activate gene expression in eukaryotes, thereby
reversibly manipulating gene expression (Gilbert et al., 2013).
Similarly, the epigenome can be manipulated at a specific site by
fusing dCas9 with various DNA effectors or histone methylases
and acetylases (Hilton et al., 2015; Laufer and Singh, 2015).
dCas9-based gene regulation platforms can be used for both
genome-wide loss-of-function and gain-of-function screens and
the system is amenable to controlled induction (Dominguez
et al., 2016). When tagged with fluorescent proteins, dCas9 can
be used instead of fluorescence in situ hybridization (FISH)
to detect chromosomal loci in living (Chen et al., 2013) and
fixed (Deng et al., 2015) cells. In this application, dCas9-
fluorescent protein fusions can be targeted by a gRNA to a
specific locus in the genome for cytological detection. The
simultaneous detection of multiple loci in the same cell is
feasible by simply fusing different dCas9 orthologs with different
fluorescent proteins. Most of the dCas9-based tools will be
very useful in deciphering plant–pathogen interactions. Inducible
activation or inhibition of master regulators could have huge
practical agronomical applications but the down-side is that
the dCas9/gRNA transgenes must be kept permanently in the
plant.

CONCLUDING REMARKS AND
OUTLOOK

Different omics platforms have opened the flood gate of potential
disease resistance genes that need a more efficient validation
pipeline than earlier gene manipulation tools like gene silencing.
Plant–pathogen omics data could be improved even further
by reducing the background noise in the biological samples.
This can now be achieved, for example, by performing cell-
type specific RNA or chromatin profiling with novel tools like
INTACT (Deal and Henikoff, 2010). Cell-type enrichment will
help monitor the dynamics of post-translational modifications
during plant–pathogen interactions (Park and Yun, 2013; Motion
et al., 2015). CRISPR–Cas9 technology has revolutionized gene
manipulation capabilities in many species including crops. The
multitude of functions that can be performed with CRISPR–
Cas9 and its many derivatives (Sander and Joung, 2014) make
it a molecular tool that will open new opportunities in the
complicated world of plant–pathogen interactions and help
design durable crop resistance to pathogens. Only the gene
editing function of CRISPR–Cas9 has so far been used in
plants and pathogens. However, the future use of dCas9-based
tools will also help to unmask the master regulators of disease
resistance (Seo and Choi, 2015). GT tools will help integrate
omics data in order to fully understand and improve crop
defense mechanisms. The complexity of the plant microbiome
with good and bad microbes is beginning to be unraveled (Bai
et al., 2015). CRISPR–Cas9 tools will help future studies of
plant–pathogen interactions to transcend individual genes or
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pathogens and become more holistic in approaches to elucidate
plant microbiome systems.
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