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INTRODUCTION

All of the post-embryonic, above-ground structures of seed plants are generated from the shoot
apical meristem (SAM), which acts as a reservoir of stem cells. Members of the flax genus (Linum
spp.) have been used historically as models for the study of SAMs (Esau, 1942). Cultivated flax
(Linum usitatissimum) is grown in more than 50 countries for its seeds or its stem phloem
(bast) fibers (Rubilar et al., 2010). Due to prolonged intrusive growth, and a highly crystalline
cellulosic secondary wall, flax phloem fibers are among the longest and strongest cells in plants
(Mohanty et al., 2000). In flax, all phloem fibers are derived from primary growth in the shoot apex.
Specification of phloem fibers occurs in the apical-most 0.5 mm of the stem, since young phloem
fibers can be anatomically distinguished starting 0.4–0.5 mm from the shoot apex (Gorshkova
et al., 2003). The molecular mechanisms that govern fiber identity are almost entirely unknown
(Gorshkova et al., 2012). Also, in contrast to the significant progress obtained in the past decade
toward understanding xylem differentiation, information about the phloem fiber differentiation
is very scarce (De Rybel et al., 2016). In the past decade, shoot apex transcriptomes have been
described in various plants, including maize, pea, soybean, rice, Arabidopsis and chickpea, but
none of these produce significant primary phloem fibers (Ohtsu et al., 2007; Wong et al., 2008;
Haerizadeh et al., 2009; Jiao et al., 2009; Yadav et al., 2009; Wang et al., 2014). Most molecular and
cellular research on flax fiber has thus far focused on later stages of development (Day et al., 2005;
Roach and Deyholos, 2007; Fenart et al., 2010). Differential transcript expression data from the
region of the shoot apex in which fiber specification occurs would complement other approaches
(e.g., mutant screening) aimed at understanding primary phloem fiber differentiation.

VALUE OF THE DATA

• The genetic basis of primary phloem fiber identity in any species is unknown. This limits basic
research and crop improvement.

• Data were obtained from tissues at high spatial resolution, which allows the results to be
correlated with specific developmental processes.

• The identification of transcripts enriched in the shoot apical region will help define mechanisms
of phloem fiber specification, and contribute to improved understanding of the SAM in
general.
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DATA

We used RNAseq to compare transcript expression patterns
in two segments of the vegetative stem of 14d flax plants,
from which all visible leaves had been removed. The segments
were: (i) the apical region (AR) of the shoot apex, which
contained the apical-most 0.5 mm of the stem, including the
SAM and its immediate derivatives; and (ii) the basal region
(BR), which contained the entire stem except for the apical-
most 1 cm, and therefore represented all stem and vascular
tissues at later stages of differentiation as compared to the
AR. Four biologically independent replicates of AR (AR1,
AR2, AR3, AR4), and two biologically independent replicates
of BR (BR1, BR2) were sequenced on the Illumina HiSeq
platform in a total of nine runs. Data were deposited in the
Sequence Read Archive (SRA) as the following accessions:
AR1: SRR1056618; AR2: SRR1056620, SRR1056621; AR3:
SRR1056622, SRR1056623; AR4: SRR1056624, SRR1056625;
BR1: SRR1038482; BR2: SRR1421513 (http://www.ncbi.nlm.
nih.gov/sra?term=SRP033325). In total, 117.5 million clean
reads (21 Gbp) were obtained and mapped to the reference
flax genome to detect transcripts enriched in the AR as
compared to the BR. These differential transcript expression
data (measured as normalized FPKM) are available at NCBI
GEO (GSE80718; http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE80718), and an annotated version of the file is
available as Supplemental Table 1.

EXPERIMENTAL DESIGN, MATERIALS,
AND METHODS

Plant Materials
Flax (i.e., linseed) plants (L. usitatissimum L. cv. CDC Bethune;
Rowland et al., 2002) were grown in potting mix in an
environmental chamber at 22◦C, with a cycle of 16 h light
and 8 h dark, as previously described (Wang et al., 2012).
Fourteen days after germination (Figure 1A), approximately 0.5
mm of the apical-most part of each stem (the apical region,
AR) was dissected under a Leica S6D stereo microscope, all
visible leaf primordia were removed, and the tissue was frozen
in liquid nitrogen. A representative dissection, visualized under
an environmental scanning electron microscope, is shown in
Figure 1B, and transverse sections of a shoot apex, corresponding
to the apical and basal-most tissues sampled, are shown
in Figures 1C,D. Shoot apices were similarly dissected from
approximately 200 plants and pooled prior to each RNA
extraction. After collecting the shoot apex, the remainder of the
stem (i.e., the basal region, BR) from 1 cm below the shot apex to
the stem base was also dissected, stripped of leaves, visible lateral
branches and axillary meristems, and frozen in liquid nitrogen.
In this way, maturing stems from at least six plants were pooled
for each RNA extraction. For RNASeq of the AR, samples were
harvested from four biological replicates (i.e., four sets of plants
that were grown spatially and temporally independently from
each other), and tissues were obtained from two biologically
independent replicates were used for the BR. For qRT-PCR, three
additional, independent biological replicates (i.e., different plants

FIGURE 1 | Plant tissues used for library construction. (A) A 14 day plant

at the time of dissection. (B) Environmental scanning electron micrograph of

an unfixed, dissected shoot apical region (AR), representative of the tissue

used for RNA extractions. (C,D) Transverse sections through the apical (C)

and basal (D) limits of the shoot apical region (AR), showing extent of

morphological differentiation at time of RNA extraction. Plants used for RNA

extraction did not contain the leaf primordia seen in (D). Scale bars (A) 1 cm;

(B–D) 50 µm.

than those used for RNASeq) were obtained from each of the AR
and BR.

RNA Extraction and Sequencing
RNA from each biological replicate (Section Plant Materials) was
extracted separately. RNeasy Micro Kit (Qiagen) and RNeasy
Plant Mini Kit (Qiagen) were used to isolate RNA from the
AR and BR samples, respectively. Extracted RNA was then
digested with TURBO DNA-freeTM Kit (Life Technologies) to
remove DNA contamination and their quality was evaluated
using a RNA 6000 Nano chip (Agilent Technologies) on an
Agilent 2100 Bioanalyzer. Total RNA was delivered to the service
provider, BGI (Shenzen, China), where each biological replicate
was sequenced separately. oligodT coupled magnetic beads were
used to isolate poly-A+mRNA, which was used as a template for
cDNA synthesis (Superscript II, Invitrogen) primed by random
hexamers, followed by second strand synthesis using E. coli
DNA PolI (Invitrogen). Double-stranded cDNA (Qiaquick PCR
Purification Kit, Qiagen), was sheared with a nebulizer, end
repaired, and ligated to Illumina PE adapter oligos, and the
products size-selected by gel purification to produce 200 bp
fragments. These were PCR amplified through 15 cycles to prior
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to sequencing using an Illumina HiSeq 2000 with 90 bp, paired-
end reads. The quality of the sample during processing prior to
sequencing was monitored using the Agilent 2100 Bioanalyzer
and ABI StepOnePlus Real-Time PCR System. Because the
sequencing output for samples AR2, AR3, and AR4 was slightly
lower than expected (9.6 million reads output per sample),
additional aliquots of each of these three samples were sequenced
in three additional runs. Raw reads from all runs were filtered
to remove adapter sequences, contamination, and low-quality
reads, and the filtered raw reads were deposited in the SRA
archive. Each of the nine paired read files were uploaded to SRA
in fastq format.

RNASeq Analysis of Differential Transcript
Abundance
To quantify the relative abundance of transcripts in the
shoot apex (AR) as compared to the remainder of the stem
(BR), the clean sequencing reads described in Section RNA
Extraction and Sequencing were mapped to the flax reference
genome (Wang et al., 2012; downloaded from Phytozome
9 as Lusitatissimum_200.fa) using Tophat2 (Trapnell et al.,
2012), and the accepted hits were used as input for cufflinks,
with default parameters. The resulting assemblies were merged
and with the reference genome annotation (downloaded from
Phytozome 9 as Lusitatissimum_200_gene.gff3) with cuffmerge,
and finally Cuffdiff was used to calculate normalized differential
transcript abundance between the samples. The output of cuffdiff

(gene_exp.diff) is available at NCBI GEO as accession GSE80718,
and an annotated version of this file is available as Supplemental
Table 1. The merged.gtf file is available as Supplemental Table 2,
and defines positions of a locus identified by cufflinks, in
reference to the scaffolds in the Lusitatissimum_200.fa genome
assembly. Within these results, transcripts for 6207 genes were
significantly (q < 0.05) more abundant in AR compared to
BR, and 4405 of these were enriched at least 2-fold in the AR.
Conversely, transcripts for 8388 genes were significantly (q <

0.05) more abundant in BR compared to AR and 7901 of these
were enriched at least 2-fold in the BR. Inspection of the data
showed that several markers of shoot apex tissues were highly
enriched in the AR sample. For example, PROTODERMAL
FACTOR 1 (PDF1) transcripts have been reported to be
expressed exclusively in the L1 layer of meristems and the
protoderm of organ primordia (Abe et al., 1999). In our results,
transcripts of putative PDF1 genes (Lus10007351, Lus10031390,
Lus10010941) were at least 19.5-fold more abundant in AR
than BR (Supplemental Table 1). Similarly, CUP-SHAPED
COTYLEDON (CUC) genes are required for SAM function and
organ separation (Hasson et al., 2011). Transcripts of three
putative CUC genes (Lus10041924, Lus10005537, Lus10013205)
were at least 45-fold more abundant in AR than BR; two
other putative CUC genes (Lus10037106, Lus10003458) were
not detected in either sample. As a third example, the SHOOT
MERISTEMLESS (STM) transcription factor is essential for SAM
formation and maintenance (Endrizzi et al., 1996); a putative
STM gene (Lus10030003) was 4.8-fold enriched in the AR

FIGURE 2 | Ratio of transcript abundance in the stem apical region (AR) compared to the basal region (BR), as measured by qRT-PCR and RNA-Seq

on independently grown tissues.
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sample compared to BR. Conversely, several markers of late
differentiation were more enriched in the BR compared to the
AR. For example, CELLULOSE SYNTHASE A (CESA) genes
CESA4, CESA7, and CESA8 are associated with secondary wall
synthesis (Chantreau et al., 2015); we observed transcripts of
flax genes annotated as CESA4 (Lus10008225, Lus10008226),
and CESA8 (Lus10007296, Lus10029245) to be at least 125-fold
enriched in the BR compared to the AR (no CESA7 genes were
identified in the original flax genome annotation used in this
study). Another well-established marker of xylem differentiation,
XYLEM CYSTEINE PROTEINASE-2 (XCP2; Avci et al., 2008).
The two putative flax XCP2 genes (Lus10030722, Lus10013204)
were enriched 106-fold in the BR compared to the AR. Thus,
expression of at least some well-known markers of early and
late stem development were observed in patterns that matched
expectations.

Quantitative Real-Time PCR Analysis of
Differential Transcript Abundance
To evaluate the accuracy of the differential transcript expression
measurements that we obtained (Section RNASeq Analysis
of Differential Transcript Abundance) we used qRT-PCR to
measure transcript abundance in independently grown replicates
of the same tissues that were used for RNA-Seq. In order to
select an appropriate reference gene for the qRT-PCR, GeNorm
was used to determine the expression stability of nine commonly
used reference genes among tissues assayed in our study (Huis
et al., 2010). GADPH and ETIF5A were found to be the most
stable, and ETIF5A gene chosen arbitrarily from this pair as
the internal control. Thirteen genes were selected for qRT-PCR,
as an independent validation of the accuracy of the RNA-Seq
results (Figure 2). These genes were selected in part because
they were all transcription factors from gene families that could
be potentially associated with early differentiation events in the
shoot apex including specification of vascular/phloem identity

(Zhao et al., 2005; Kalve et al., 2014; De Rybel et al., 2016).
Real-time PCR was performed in Applied Biosystems 7500 Fast
Real-time PCR System following the manufacturer’s protocol.
Each amplification reaction was 10 µl and it consisted of 0.4
µM of each primer, 5 µl SYBR Green Master Mix and 2.5 µl
16-fold diluted cDNA. Threshold cycles (CT) were determined
through 7500 Fast Software. The PCR program used was as
follows: 95◦C for 2 min, 40 cycles of 95◦C for 10 s and 60◦C for
30 s, then 72◦C for 30 s and 72◦C for 3 min; fluorescence data was
collected at 60◦C. Data were analyzed using the 2−11CT method.
Primer sequences used are listed in the Supplemental Table
3. As shown in Figure 2, the RNA-seq and qRT-PCR analysis
showed highly consistent expression patterns for the 13 genes
tested. We therefore conclude that that RNA-Seq data presented
here accurately represents differences in transcript expression
between the shoot apical region (AR) and the bulk of the
stem (BR).
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