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TreeWatch.net is an initiative that has been developed to watch trees grow and function
in real-time. It is a water- and carbon-monitoring and modeling network, in which high-
quality measurements of sap flow and stem diameter variation are collected on individual
trees. Automated data processing using a cloud service enables instant visualization
of water movement and radial stem growth. This can be used to demonstrate the
sensitivity of trees to changing weather conditions, such as drought, heat waves, or
heavy rain showers. But TreeWatch.net’s true innovation lies in its use of these high-
precision harmonized data to also parameterize process-based tree models in real-time,
which makes displaying the much-needed mechanisms underlying tree responses to
climate change possible. Continuous simulation of turgor to describe growth processes
and long-term time series of hydraulic resistance to assess drought-vulnerability in real-
time are only a few of the opportunities our approach offers. TreeWatch.net has been
developed with the view to be complementary to existing forest monitoring networks
and with the aim to contribute to existing dynamic global vegetation models. It provides
high-quality data and real-time simulations in order to advance research on the impact of
climate change on the biological response of trees and forests. Besides its application
in natural forests to answer climate-change related scientific and political questions,
we also envision a broader societal application of TreeWatch.net by selecting trees in
nature reserves, public areas, cities, university areas, schoolyards, and parks to teach
youngsters and create public awareness on the effects of changing weather conditions
on trees and forests in this era of climate change.

Keywords: sap flow, stem diameter variation (dendrometer), process-based modeling, vegetation modeling,
turgor, hydraulic failure, plant growth, drought

INTRODUCTION

Climate change is impacting forests worldwide, threatening biodiversity, and ecosystem function
and services (Anderson-Teixeira et al., 2015). Biological consequences of climate change are
already apparent (Hughes, 2000), including increased tree mortality through drought, heat stress,
insect infestation, and disease outbreaks (Anderegg et al., 2015; Teskey et al., 2015). Just as
internationally coordinated forest monitoring initiatives boosted in the 1970s to respond to
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urgent scientific, political, and societal questions related to forest
decline in relation to air pollution (Rautio and Ferretti, 2015),
large monitoring networks around the globe (Table 1) are
now investigating forest ecosystem responses to climate change.
In particular, understanding the biological response of forests
to climate change remains a great challenge, but is critical
to biodiversity conservation, and management of ecosystem
function and services (Anderson-Teixeira et al., 2015). Data
sets from various monitoring initiatives and model forecasts
are two essential components to no only understand forest
ecosystem responses to climate change, but are also essential to
support forest decision makers (Lindner et al., 2014). Adaptation
strategies need a framework that includes monitoring and
modeling activities as otherwise the forest manager will be
grappling in the dark when making decisions (FAO, 2012).

While data from the larger networks (Table 1) add to the
abundant evidence that forests globally are changing, it remains
difficult to identify the mechanisms underlying such changes
(Anderson-Teixeira et al., 2015). Focusing on responses of
individual trees could single out the relative contributions of
these underlying mechanisms. Indeed, trees have been named
the ‘living laboratories’ for climate change responses (Farrell
et al., 2015). A tree, like a human, can be viewed as a complex
organism with an array of regulatory mechanisms to keep critical
systems operating within appropriate bounds and mechanisms to
repair damage that may occur when these bounds are exceeded
(Anderegg et al., 2012).

In existing networks (Table 1), individual tree measurements
are, despite their enormous potential, limited to incremental
growth, which is conventionally measured every 3–5 years with
a tape measure or with simple band dendrometers to track
changes in stem circumference. These tree readings can help
to start answering major questions about climate change and
the potential uptake of CO2 emitted by human activity, but
how carbon sequestration and the size of the carbon sink will
alter with climate change remains highly uncertain (Popkin,
2015). Because radial stem growth is highly dynamic, species-
specific, and dependent on environmental factors (see Köcher
et al., 2012, 2013), it is a good indicator of tree vitality and
of tree responses to environmental stress (Dobbertin, 2005).
Modern systems connected to data loggers monitor changes
in stem radius (or diameter) at high-frequency time resolution
(minute scale), and use these as biological drought and growth
indicator (e.g., TreeNet1, Zweifel, 2016). In addition, a close
relationship with net ecosystem productivity, which integrates
fluxes over the entire forest ecosystem, has been observed, and
although causal explanation for this strong relationship is still
fragmentary, it points to a compelling complementarity between
both monitoring systems (Zweifel et al., 2010; Gea-Izquierdo
et al., 2014).

Continuous time series of stem diameter variations capture
diel tree water relations (reflected in reversible shrinkage and
swelling) superimposed onto (long-term) irreversible radial stem
growth (Steppe et al., 2006; Zweifel et al., 2006; De Swaef et al.,
2015). Indeed, changes in diameter result from interactions of

1www.treenet.info

water and carbon inside the tree stem (Steppe et al., 2015a). These
changes are a great source of tree physiological and ecological
information (Zweifel, 2016), which can assist disentangling the
mechanisms underlying forest ecosystem responses to climate
change. In this paper, we therefore draw on the analogon of an
intensive care unit in medical sciences to propose an approach
to assess in real-time the tree’s trim by considering the tree as
a complex organism that transports water from the soil to the
atmosphere and sugars from the leaves (sources) to other plant
organs (sinks), and whose survival hinges on maintenance of both
transport systems. Monitoring equipment on the individual tree
level is then used in combination with process-based modeling
to translate raw sensor readings into physiological relevant
measures, and to simulate key variables, which might be difficult
to measure otherwise. We argue that an integrated approach
that considers both tree monitoring and process-based modeling
is needed to accurately predict forest dynamics in a changing
climate.

Smart selection of a certain number of trees in a forest,
and of different species in a stand, across different locations
and ecosystems over longer time periods, will provide insight
into growth, survival and adaptation strategies at the tree and
ecosystem scales. The selection of trees and their up-scaling can
be inspired by studies that have successfully scaled-up water
use from tree to stand level (e.g., Granier et al., 1996; Köstner
et al., 1998; Gebauer et al., 2012). Continuous measurements
and modeling on the individual tree level are currently lacking
in existing networks (Table 1) and are largely absent from
process-based ecosystem models, while they can provide vital
information on internal physiology of tree hydraulic and carbon
status complementary to large-scale fluxes measured by eddy
covariance and will better inform projections of forest ecosystem
responses to climate change.

THE TREEWATCH.NET INITIATIVE

Tree Monitoring
Climate change is expected to drive important changes in
tree physiology with manifold but not yet fully understood
impacts on forest ecosystem function and services. In this paper,
we strongly support the recent calls to focus experimental,
observational, and modeling efforts on the tree level to improve
our understanding of climate change impacts on forests (Fatichi
et al., 2014; Steppe et al., 2015a). We therefore view the tree as a
complex organism that needs monitoring equipment to capture
a ‘heartbeat’, which informs us on its actual trim. In contrast to
humans, a tree does not have a real heartbeat, but continuous
measurements with plant sensors on the tree stem display
periodic signals that resemble a human’s electrocardiogram
(Steppe et al., 2015a). These signals inform us on changes in
plant hydraulics and carbon metabolism in xylem and phloem
tissues (Steppe et al., 2015a; Zweifel, 2016). From the reviewed
methods to quantify real-time water and carbon dynamics within
a tree stem (Steppe et al., 2015a), a set of two sensors has
currently been selected as basic monitoring equipment: a sap
flow sensor and a stem diameter variation sensor (Figure 1).
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TABLE 1 | Important international large-scale forest monitoring networks.

Initiative Founded Extent Goals and approach

IUFROa

International Union of
Forest Research
Organizations: the
Global Network for
Forest Science

1892 International
110 countries
700 member organizations
15000 scientists

IUFRO is a worldwide international organization devoted to forests and related sciences. IUFRO
promotes excellence and knowledge sharing in forest-related research to enhance the
understanding of ecological, economic and social aspects of forests and trees. IUFRO
formulates forest-related policies, and supports ‘supersites’, which are global networks where
state-of-the-art instruments are being used to obtain long-term baseline data.

CTFS-ForestGEOb

Center for Tropical
Forest Science-Forest
Global Earth
Observatory

1980 International with focus on
tropical regions
24 countries
63 forest research plots
200 scientists

CTFS-ForestGEO is a unified, global network of forest research plots and scientists dedicated
to the study of forest function and diversity with a strong focus on tropical regions.
CTFS-ForestGEO aims at conducting long-term research on forests in order to increase
understanding of forest ecosystems, monitor the impacts of global change, guide sustainable
forest management and build capacity in forest science. Participating research sites are
continuously monitored using a standardized tree census protocol, typically repeated every five
years. Primarily diameter at breast height is measured, and changes in biomass or productivity,
demographic rate and community composition are characterized.

ICP Forestsc

International
Co-operative Program
on assessment and
monitoring of air
pollution effects on
forests

1985 International
42 countries
6000 level I plots
800 level II plots

ICP Forests is one of the largest biomonitoring networks launched in response to wide public
and political concern about extensive forest damage. ICP Forests provides a periodic
compilation of spatial and temporal variation of forest condition (level I), and aims at a better
understanding of the cause-effect relationships between the condition of the forest and stress
factors (level II) in Europe and beyond. Extensive level I monitoring provides an annual overview
on forest condition based on defoliation, discolouration and visible damage on trees. Intensive
level II monitoring includes more frequent surveys of crown condition (every year), foliar
chemistry (every 2 years), soil chemistry (every 10 years), tree growth (every 5 years), ground
vegetation (every 5 years), atmospheric deposition (continuous), and meteorology (continuous).
Harmonized methods for sampling and analysisd are adopted across all plots.

FLUXNETe 1996 International
64 countries
827 tower locations of
which 526 are active

FLUXNET exists of regional networks, and coordinates regional and global analysis of
observations from micrometeorological tower sites. FLUXNET provides infrastructure for a
central database of site characteristic data, supplies information about the availability of flux
data and compiles, archives and distributes carbon, water and energy flux measurements. Flux
tower sites use eddy covariance methods to measure the exchange of CO2, water vapor and
energy between terrestrial ecosystems and the atmosphere at 30-min frequency.

ILTER Networkf

International Long Term
Ecological Research
Network

1980 (US LTER)
1993 (ILTER)
2003
(LTER-Europe)

International (ILTER):
41 countries (formal
LTER/LTSER)
5 countries (candidate,
potential or at risk)
USg:
26 LTER sites
2000 scientists
Europeh:
25 countries
400 LTER sites
35 LTSER platforms

ILTER has been created to conduct research on ecological issues, which can last for decades,
and spans huge geographical areas. ILTER brings together national or regional networks of
scientists, engaged in long-term, site-based ecological (LTER) and socio-economic (LTSER)
research to improve our knowledge on the structure and functions of ecosystems. One of the
founding members of ILTER is the Chinese Ecosystem Research Network (CERN), which has
been established in 1988, and is currently one of the largest national networks in the world.
ILTER provides scientific expertise, research platforms, and long-term datasets to document
and analyze environmental change. ILTER contributes to the knowledge base informing policy
and to the development of management options in response to the grand challenges under
global change.

ICOS RIi

Integrated Carbon
Observation System
Research Infrastructure

2008 Pan-European
8 countries
95 measuring stations

ICOS RI provides harmonized and high precision scientific data on carbon cycle and
greenhouse gas budget, and perturbations, which is openly available. ICOS RI was created to
establish a sustained greenhouse gas observation system and to enable high quality climate
change research. It provides long-term observations required to understand the present state,
and to predict the future behavior, of the global carbon cycle and greenhouse gas emissions.
ICOS RI installs standardized and integrated national atmospheric (CO2, CH4, CO, and
radiocarbon-CO2 concentrations), ecosystem (fluxes of CO2, CH4, H2O, and heat) and marine
(surface ocean – atmosphere carbon exchange, acidification, temperature. . .) stations.

Each initiative is briefly defined, and main goals and approaches have been summarized. The year of foundation and current extent are also given. Networks are sorted
from oldest to newest.
ahttp://www.iufro.org
bhttp://www.forestgeo.si.edu (Anderson-Teixeira et al., 2015)
chttp://icp-forests.net
dhttp://icp-forests.net/page/icp-forests-manual
ehttp://fluxnet.ornl.gov
fhttp://www.ilternet.edu
ghttps://www.lternet.edu
hhttp://www.lter-europe.net
ihttps://www.icos-ri.eu
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FIGURE 1 | Sketch of the TreeWatch.net approach. Trees are typically sampled in natural forest ecosystems across the globe (dots represent fictitious sampling
locations), but can also be city trees in urban settings. Sampled trees are equipped with a ‘heartbeat’ monitor, which currently consists of a sap flow sensor and a
stem diameter variation sensor. The internet-connected plant sensors send their data to the PhytoSense cloud service, which handles data storage, data analysis,
data processing, running of process-based model simulationsand calibrations, and sending out notifications. This all happens in real-time, which enables
TreeWatch.net, a website built on top of the PhytoSense cloud service, to report instantly on each monitored tree’s health status. The unique approach of combining
continuous tree measurements with process-based modeling lays the ground for the next-generation global maps displaying direct biological responses of the
sampled trees; information which is currently lacking to bridge the gap with meteorology.

When combined with mechanistic modeling (Section “Process-
Based Tree Modeling”), these measurements allow revealing the
internal tree hydraulics and carbon status. As science evolves,
other monitoring equipment, such as acoustic emission sensors
(De Roo et al., 2016), may be added or may replace existing ones.

Sap flow is measured with a sap flow sensor, which uses heat
to sense water movement in the stem xylem and is typically
expressed as sap flow rate (in g h−1; Smith and Allen, 1996; Steppe
et al., 2010; Vandegehuchte and Steppe, 2013). Accurate estimates
of sap flow are essential in our tree monitoring approach to assess
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changes in tree hydraulics, internal water storage dynamics, and
to quantify whole-tree water use, but also to estimate the tree’s
carbon budget and stem respiration based on measurements of
xylem CO2 transport and stem CO2 efflux (Teskey et al., 2008;
Steppe et al., 2015a).

Point dendrometers or linear variable displacement
transducers (LVDTs) measure variations in stem diameter
(mm) at high temporal resolution (minute scale). The sensor
signal simultaneously displays the integrated result of: (i)
irreversible radial xylem and phloem growth; (ii) reversible
shrinking and swelling of the living stem cells due to changes in
internally stored water; (iii) contraction and expansion of dead
conducting xylem elements due to the increase and relaxation
of internal tensions; and (iv) thermal expansion and contraction
of the stem (Daudet et al., 2005; De Swaef et al., 2015). Because
of the tight coupling between tree hydraulics and radial stem
growth and, hence, carbon metabolism, variations in stem
diameter are the second vital component in our tree monitoring
approach.

Process-Based Tree Modeling
Current spatiotemporal knowledge of climate-forest dynamics
is primarily based on simulations by dynamic global vegetation
models (DGVMs). Although turgor, or the positive pressure
potential in living cells, is the critical component in quantifying
growth (Lockhart, 1965; Génard et al., 2001; Steppe et al., 2006),
all existing DGVMs simulate long-term tree and forest stand
growth using photosynthesized net carbon as source, which
is then, according to allometric rules or simplified functional
allocation schemes, partitioned among different carbon pools
without considering tree hydraulics. Therefore, Fatichi et al.
(2014) correctly call for moving from such a carbon source to a
more sink-driven vegetation modeling in which water transport
and turgor play a key role. As discussed previously (Steppe et al.,
2006, 2015a), turgor is not only affecting cell wall expansion
or irreversible radial growth (Lockhart, 1965), but also other
growth processes, such as cell formation, deposition and assembly
of new cell wall material depend on turgor and cell volume
(Boyer, 1968; Ray, 1987; Proseus and Boyer, 2006). Because
turgor in living tree cells is mainly built-up during night upon
refilling of dehydrated tissues, growth processes mainly occur
during the night, and are only optimal when tree water status
is also optimal (Daudet et al., 2005; Saveyn et al., 2007; Steppe
et al., 2015a). If we aspire a better spatiotemporal description
of water fluxes together with more realistic scenarios for future
climate and the carbon cycle (Friedlingstein et al., 2006; Thornton
et al., 2007; Bonan et al., 2011), next generation DGVMs need
to include a mechanistic understanding of water and carbon
dynamics in xylem and phloem, and their interactions, at the tree
level.

During the past few decades, implementation and application
of process-based tree models has greatly advanced our knowledge
on plant hydraulic functioning and growth (Steppe et al.,
2015b). Started from a simple Ohm’s law analog model proposed
by van den Honert (1948) for steady-state water transport,
process-based tree models have greatly improved since, and
large efforts have recently being put into the integration of

xylem and phloem transport pathways, given the important
coupling between hydraulic processes and the transport and
allocation of carbohydrates (Höttlä et al., 2009; De Schepper
and Steppe, 2010; Hubeau and Steppe, 2015). To further our
knowledge of climate change impacts on the forest scale,
process-based tree models are likely to become increasingly
important.

In our approach, we advocate a combination of process-
based tree modeling and continuous measurements at the tree
level to better understand impacts of climate change on forests.
Given that the current ‘heartbeat’ tree monitor consists of
sap flow and variation in stem diameter, any process-based
model that interlinks both processes is a direct candidate for
our framework. The history and the current-state-of-the-art
of possible candidate process-based models have recently been
reviewed (De Swaef et al., 2015). The models we typically consider
simulate tree sap flow dynamics, which can be directly linked
to variations in stem diameter by using radial flow of water
between xylem and phloem (Figure 1). The radial water flow
causes changes in stem water content via a hydraulic capacitance,
which results in changes in turgor, and drives irreversible radial
stem growth according to Lockhart’s (1965) equation on top
of elastic shrinkage and swelling. Steppe et al. (2006) originally
developed such a so-called flow and storage model. Of particular
interest for our approach is that such models feature essential
hydraulic parameters (resistance and capacitance), and enable
simulation of vital, but often difficult to measure variables (earlier
described turgor, water potential), which all play an important
role in hydraulic failure, tree mortality, and, therefore, long-term
forest dynamics (Fatichi et al., 2014).

Phytosense Cloud Service
Whereas continuous tree measurements, including sap flow and
stem diameter variation, have been recognized as promising
technology for monitoring tree hydraulics and carbon status
(Anderegg et al., 2012; Köcher et al., 2013; De Swaef et al.,
2015; Steppe et al., 2015a; Zweifel, 2016), and the use of process-
based tree models is expected to get a boost given the recent
recommendations on next-generation DGVMs (McDowell et al.,
2013; Fatichi et al., 2014), no existing framework combines
continuous tree readings with mechanistic modeling in real-
time. This is exactly what our approach is aiming at: instant
information on tree hydraulics and carbon status using
continuous measurements and process-based model simulations.

To optimally combine the continuous tree measurements
with the process-based simulation models, and to ensure
real-time visualization of the tree’s hydraulic function and
carbon status, the PhytoSense cloud service is used in our
approach (Figure 1). This cloud service is the ‘brain’ behind
the commercial plant monitoring system PhytoSense2 and
is responsible for real-time data storage, data analysis, data
processing, running model simulations and calibrations, and
sending out notifications.

All processing on the cloud service is performed automatically
so that little or no user interaction is required. A powerful

2Developed by Phyto-IT (Mariakerke, Belgium): http://www.phytosense.net
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system based on ‘transformations’ has been developed for
real-time conversion of raw into processed data. A wide
range of transformations is available: averaging, cumulating,
summing, integrating, filtering, minimum/maximum, and the
ability to apply any arbitrary equation to the data. More
advanced transformations are also available to calculate sap flow
rates in real-time, and to automatically remove disturbances
from diameter variation signals. Once defined, transformations
are automatically applied each time new data is received.
Besides transformations, PhytoSense also allows to run dynamic
simulation models in real-time. Although not required, models
are typically first implemented in the plant modeling software
PhytoSim3 and then converted into optimized code, which can
run on the PhytoSense platform. These models can be any
set of algebraic and (first order) differential equations [see
for instance Steppe et al. (2006) or De Swaef et al. (2015)],
and can be automatically recalibrated at certain time intervals
using a moving window calibration procedure [see also Steppe
et al. (2008)]. This lays the ground for novel stress detection
approaches and ecophysiological warning systems, because daily
estimates of the calibrated model parameters can now be
displayed as time series in real-time from which important tree
physiological behavior can be derived. Finally, notifications can
be generated when measured or simulated data is below or above
a threshold value for a specified amount of time, when a sensor is
offline for a specified amount of time or when a model parameter
exceeds the appropriate bounds.

PhytoSense provides a flexible API (Application Programming
Interface) that allows any internet-connected device to connect
to it. Any online data logger can use the API to send data to
PhytoSense and custom-build applications or websites can use
the API to visualize the available data. This makes the data from
the TreeWatch.net trees readily available, which fits the ‘Internet
of Things’ vision of this era.

TreeWatch.net and the Way Forward
TreeWatch.net4 is a website built on top of the PhytoSense
cloud service (Section “Phytosense Cloud Service”; Figure 1).
TreeWatch.net originated at the Laboratory of Plant Ecology,
Ghent University, Belgium, to show how the combination of
tree monitoring and process-based modeling can significantly
contribute to instant assessment of stress impacts on tree
hydraulics and carbon status. The unparalleled enthusiasm
and interest of the COST STReESS5 community in such a
measuring/modeling framework gave the impetus to develop
TreeWatch.net further as a global water and carbon monitoring
and modeling network for advanced research on the dynamic
interplay between trees and the regional climate.

Currently, TreeWatch.net monitors beech (Fagus sylvatica
L.) and oak (Quercus robur L.) trees in the experimental
forest Aelmoeseneie of Ghent University, Belgium. Sap flow is

3Developed by Phyto-IT (Mariakerke, Belgium): http://www.phyto-it.com/Phyto
Sim.shtml
4http://treewatch.net
5COST Action FP1106 – Studying Tree Responses to extreme Events: a SynthesiS:
http://www.streess-cost.eu

measured with custom-built Sapflow+ sensors (Vandegehuchte
and Steppe, 2012) and stem diameter variations are recorded with
a point dendrometer (model ZN11-T-WP, Natkon, Switzerland).
We plan to gradually extend the network by adding trees across
north-south trajectories in different populations in Europe,
and in other continents, to profit from a wide climatic
gradient going from low temperatures in the northern sites
to warm and dry conditions in the southern sites, where
tree responses are expected to be temperature- and drought
limited, respectively. Trees will be sampled according to a
stringent protocol taking into account various tree characteristics
(e.g., tree status, tree height, stem diameter, and leaf area),
and will be equipped with standardized plant sensors to
avoid variability in the collected data due to different sensor
types. Sensors connected to data loggers with wireless data
transfer and remote control accessibility are used to send the
data to the PhytoSense cloud service. The harmonized data
offered by TreeWatch.net will be used in an innovative way
to parameterize real-time process-based tree models (Section
“Process-Based Tree Modeling”), and to run the models
to understand tree response to climate change and growth
differences across trajectories from underlying water and carbon
relationships. Modeling will enable us to put the continuous
measurements in a larger context by helping us understand the
more general concepts underlying growth and tree hydraulic
functioning.

Continuous real-time model simulations of the much-
needed turgor when aspiring growth modeling, but also
dynamics in model parameters, including hydraulic resistance
and capacitance, are only a few of the opportunities that will
be at hand to perform an integrated survey of tree responses
to changes in the regional climate. These modeled features
should be validated with ground-based data from fieldwork
to increase confidence in the model, or to further improve
it when discrepancies between modeled and measured data
are observed. By visualizing hydraulic features, like hydraulic
resistance, we will be the first to show changes in tree hydraulics
and vulnerability to drought stress in real-time. The real-time
aspect is a much-needed feature because now science relies
on off-line, destructively collected vulnerability curves (Choat
et al., 2012), which makes assessment indirect and therefore
less reliable. In addition, TreeWatch.net aims at displaying
pioneering maps with biological tree response to temperature
and drought (Figure 1), which will be used to bridge the gap
between tree functioning and meteorology (weather formation).
Weather station data and soil moisture status at the sites, which
are needed to interlink tree responses and regional climate, can be
either additionally measured or accessed from existing networks
(Table 1).

The results from TreeWatch.net are expected to spur
discussion regarding long-standing assumptions for relationships
between fluxes observed at the ecosystem level and the
mechanisms responsible. Especially in DGVMs, the use of coarse
scale observations and potentially incorrect mechanisms could
mislead mitigation and adaptation plans of the future (Hanson
and Gunderson, 2009). TreeWatch.net is, therefore, developed
to be complementary to the data from these larger networks

Frontiers in Plant Science | www.frontiersin.org 6 July 2016 | Volume 7 | Article 993

http://www.phyto-it.com/PhytoSim.shtml
http://www.phyto-it.com/PhytoSim.shtml
http://treewatch.net
http://www.streess-cost.eu
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00993 July 1, 2016 Time: 14:38 # 7

Steppe et al. TreeWatch.net

(Table 1) and may help to identify the much-needed mechanisms
underlying changes in forests. But the use of TreeWatch.net is not
limited to research in natural forest ecosystems only, as it can also
be used in cities and urban plantings where trees are known to
grow in a ‘future climate’ and can be used as ‘living laboratories’
to study plant responses to climate change (Farrell et al., 2015).
At present, a maple (Acer pseudoplatanus L.) tree monitored at
the Faculty of Bioscience Engineering6, Ghent University, serves
this purpose.

TreeWatch.net is not only powerful in science, but is also able
to serve an important educational role by teaching youngsters
about the role of trees as regulators of the environment through
so-called ‘talking forests’7. In May 2015, the experimental forest
of Ghent University was opened as such a ‘talking forest’, for
which a dedicated website8 has been designed using the flexible
API of the PhytoSense cloud service. Assisted by experienced
nature guides, students from both primary and secondary
schools can now be invited to ‘listen’ to the trees and can
find the real-time measurements on their phones or tablets
to get insight into the interaction between climate and the
forest.

CONCLUSION

TreeWatch.net primarily aims at addressing forest and
environmental issues that are of concern for our society, and
takes the challenge to provide answers to urgent scientific and
political climate-change related questions. But because of its
intrinsic educational power, one of the long-term dissemination
perspectives of TreeWatch.net is that trees are also selected in
nature reserves, MAB9-sites, public areas, cities, university areas,
schoolyards, and parks to create global awareness on the effects

6 http://treewatch.net/faculty-of-bioscience-engineering/
7 http://www.flanderstoday.eu/innovation/talking-forest-teaches-youngsters-

about-regulating-environment
8 http://www.aelmoeseneiebos.ugent.be/?p=pratendbos
9 Man and the Biosphere

of (extreme) weather conditions on trees growing across all
continents.
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