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Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for
65–75% of the dry kernel weight and positively correlates with seed yield. A number of
starch synthesis-related genes have been identified in maize in recent years. However,
many loci underlying variation in starch content among maize inbred lines still remain
to be identified. The current study is a genome-wide association study that used a
set of 263 maize inbred lines. In this panel, the average kernel starch content was
66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines
were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110
evenly spaced, random SNPs. Population structure was controlled by a mixed linear
model (MLM) as implemented in the software package TASSEL. After the statistical
analyses, four SNPs were identified as significantly associated with starch content
(P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are
on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis
were found within the 100-kb intervals containing these four QTLs, and four highly
associated genes were within 20-kb intervals of the associated SNPs. Among the four
genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437)
is known as an important regulator of kernel starch content. The identified SNPs, QTLs,
and candidate genes may not only be readily used for germplasm improvement by
marker-assisted selection in breeding, but can also elucidate the genetic basis of starch
content. Further studies on these identified candidate genes may help determine the
molecular mechanisms regulating kernel starch content in maize and other important
cereal crops.

Keywords: GWAS, starch synthesis, gene ontology analysis, maize (Zea mays L.), ADP-glucose pyrophos-
phorylase

INTRODUCTION

Maize (Zea mays L.) is one of the most widely grown crops in the world, serving as the staple food
for more than 900 million people. Maize seeds (i.e., kernels) provide a rich source of carbohydrates,
mostly in the form of starch, which accounts for 65–75% of kernel dry weight. Therefore, the
seed yield of maize is largely determined by the efficient biosynthesis and storage of starch
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(Boyer and Hannah, 2001). Accordingly, improving the kernel
starch content could yield higher value products in the corn
processing industry (Goldman et al., 1993).

Starch biosynthesis is a complicated process. In brief, sucrose
is transported to the sink (e.g., kernels) and converted to
uridine diphosphate (UDP)-glucose and fructose by sucrose
synthase encoded by the Sh1 gene (Carlson and Chourey,
1996), and then UDP-glucose serves as the primary precursor
for starch biosynthesis. In the endosperm, starch biosynthesis
is coordinated by a series of enzymes, including ADP-glucose
pyrophosphorylase (AGPase), soluble starch synthase (SS),
starch branching enzyme (SBE), starch debranching enzyme
(SDBE), and plastidial starch phosphorylase (Pho1), whereas
amylose is synthesized by AGPase and granule-bound starch
synthase (GBSS; Jeon et al., 2010). AGPase, mainly present in
maize endosperm, embryo, and leaf tissue, is a heterotetramer
comprised of two structurally related dimerized polypeptides
designated as the large subunits (LS) and the small subunits
(SS), which are encoded by the Shrunken2 (Sh2) and Brittle2
(Bt2) genes, respectively (Huang et al., 2014). Overexpression of
related genes, such as Bt2, Sh2, and Shrunken1 (Sh1), can induce
significant increases of the starch content in maize endosperm
(Hannah et al., 2012; Jiang et al., 2013). In contrast, mutations
occurred at the starch accumulation genes can usually cause
starch content decreases. For example, the null mutant of AGPase
LS maize endosperm results in 25–30% less starch content relative
to the wild type (Tsai and Nelson, 1966). Additionally, the two
transcripts encoding AGPase LS, namely agpsemzm and agpllzm,
contributed to approximately 7% of the total endosperm starch
content (Huang et al., 2014).

Kernel starch content is a typical quantitative trait controlled
by a large number of quantitative trait loci (QTL). Despite recent
progress in understanding starch biosynthesis and accumulation
at molecular levels, QTLs underlying phenotypic variation
in starch content across maize lines are still to be defined
(Willmot et al., 2006; Dudley et al., 2007; Chen et al., 2012).
Additionally, inconsistencies in the number and locations
of the detected QTLs for kernel starch content have been
reported using traditional QTL markers (Li et al., 2009; Wang
et al., 2010; Yang et al., 2013). These inconsistent results are
probably caused by the limited population size and genetic
diversity within mapping populations, and the resultant type
I or type II errors are often further magnified by the use
of traditional molecular markers, which can only capture a
small portion of the genetic diversity of the species. Genome-
wide association studies (GWAS) with SNP arrays are an
alternative to the traditional QTL-mapping approaches using
markers such as SSRs, AFLPs, RFLPs, and SRAPs. Compared with
traditional QTL mapping approaches, association mapping has
exhibited several advantages in exploring the genetic mechanism
underlying the complex agronomic traits. First, the populations
used in association mapping can be collections of individual
varieties, inbred lines, or landraces with varying traits. Diversified
historical recombination events among different lineages make
it possible to discover linked markers associated with causative
genes (Xue et al., 2013; Wen et al., 2014). Second, the application
of SNP arrays allows the detection of 10s of 1000s of loci

simultaneously. Mutations or standing variation may influence
the expression and functionality of genes and ultimately lead
to different agronomically important characters. The main
objectives of this study were to identify QTLs controlling kernel
starch content in maize through GWAS using newly developed
robust maize SNP50 array (Ganal et al., 2011) and to predict
the possible candidate genes responsible for starch synthesis and
accumulation.

MATERIALS AND METHODS

Plant Material
Accurate quantification of the target trait is a prerequisite for
molecular mapping and a biased population structure can lead
to false positive associations (i.e., type I error). In this study, a
population comprised of a global core collection of 263 maize
inbred lines was used to represent a wide range of diversity,
among them, 71 inbred lines are from tropical and subtropical
zones, while the remainder are from temperate regions. In order
to ensure the normal flowering and pollination of the tropical
germplasm, we choose to conduct this study in the tropical
regions of Sanya. All the inbred lines were planted in a field
in Ledong (Hainan Province, 18.75◦N, 109.17◦E) in Nov. 2011,
2012, and 2013. The average annual rainfall total was 1,181 mm.
The average annual temperature is 23◦C. The average annual
sunshine total is 1039.6 h. The accumulated temperature (in
excess of 10◦C) is 9,300.7◦C. In the field plot, 24 seeds of each
maize inbred line were planted in a randomized complete block
design with three replicates (across growing seasons). In one
block, eight seeds of each maize inbred line were planted in a
row, leaving a 20-cm gap between each line. During the growing
seasons, plants were irrigated and given extra doses of pollen by
hand. The mature seeds of each inbred line were harvested in bulk
and used for starch content analysis.

Determination of Starch Content
For three consecutive years, the maize kernels of 263 lines
were harvested and analyzed each year to minimize variation
across different years. The subsampled kernels from the bulk
harvest were used for starch content measurement with a
near-infrared analyzer (model: MATRIX-1, Bruker Corporation,
Karlsruhe, Germany) according to the method described by
Dudley and Lambert (1992). The uniform kernels of maize
were filled into the sample cup, and the excess corn was
scraped off with a ruler. Every sample from every year was
analyzed three times to generate technical replicates, and the
average values of the three replicates were calculated for further
analyses. The data was analyzed using the ANOVA method as
implemented in SPSS 18.0 (IBM Corp., Armonk, NY, USA).
Broad-sense heritability was also calculated according to the
method developed by Knapp et al. (1985) with the formula
H2

B (%) = σ2
G/(σ2

G + σ2
GE/n + σ2

e/nb) ∗100, where σ2
G

is the genetic variance, σ2
GE is the genotype × environment

interaction variance, σ2
e is the error variance, n is the number

of environments, and b is the number of replications in each
experiment. A frequency map was made using Origin 8.0
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TABLE 1 | ANOVA of starch contents among maize inbred lines.

Trait Mean ± SE Range 95% confidence level H2
B (%)

Lower limit Upper limit

Starch content 66.99 ± 0.13 60.60–71.58 66.18 71.58 88.3

SS DF MF F P

Between groups 10122.179 262 38.634 22.172 0

Within group 3666.162 2104 1.742

Total 13788.341 2366

(OriginLab Corporation, Northampton, MA, USA). Using an R
package, the best linear unbiased prediction (BLUP) values were
estimated from the average value of each inbred line across the
3 years. The BLUP values were used as the input data for the
association mapping analysis.

Association Mapping Analysis
A modified CTAB procedure was followed for DNA extraction
in this study (Healey et al., 2014), and the DNA quality
and concentration were verified by gel-electrophoresis and
spectrophotometer before genotyping.

The panel consisting of 263 inbred lines was genotyped
with the Illumina MaizeSNP50 chip (Illumina, Inc., San Diego,
CA, USA) according to the method described by Ganal
et al. (2011), which was also applied in previous studies
(Xue et al., 2013). The kinship matrix was calculated using
the Loiselle algorithm (Loiselle et al., 1995) to determine
relatedness among the sampled individuals. With the two
matrixes, a mixed linear model (MLM) was applied to
analyze the dataset using the GWAS software GAPIT (Genome
Association and Prediction Integrated Tool-R package; Lipka
et al., 2012), and principal components (PCs) were used to
control for population structure (quantile–quantile plots showed
over fitting of a PC + K model). These methods were
used for genome-wide association mapping with 52,370 SNPs
(MAF > 0.05).

Gene Ontology Analysis
The available genome sequence of the maize line B73 was used
as the reference genome for candidate gene analyses (Schnable
et al., 2009). The approximately 120-bp SNP probe sequences
(Illumina, Inc.) were used as queries to BLAST against MaizeGDB
(Lawrence et al., 2004)1. A 100-kb window was selected in
order to fall within the estimated 100-kb window of linkage
disequilibrium (LD) decay that occurs in our association panel.
The genes within this window size were identified in MaizeGDB
according to the positions of the closest flanking significant
SNPs (P < 0.0001) or supporting intervals (Maize genetics
and genomics database, 2015)2. The functions of corresponding
genes were predicted using the Blast2Go program (Conesa et al.,
2005).

1http://archive.maizegdb.org/
2http://gbrowse.maizegdb.org/gb2/gbrowse/maize_v2/

RESULTS

Variation in Starch Content among the
Maize Inbred Lines
The starch contents of the 263 maize lines (Supplementary
Table S1) were measured using the NIRS method. In this panel,
the average kernel starch content was 66.99% with a range from
60.60% to 71.58% (Table 1). Additionally, the starch content
showed a high heritability of 88.30%. The majority of inbred lines
produced kernels that were of 65–70% starch content exhibited a
normal distribution (r2

= 0.88; Figure 1). Starch content varied
significantly among different germplasms (P ≤ 0.05; Table 1).
These results suggested that the selected population was suitable
for the association analysis of kernel starch content.

Linkage Disequilibrium in the
Association Panel
All 52,370 SNPs (MAF > 0.05) were used as input data to
calculate the genome-wide LD in the present panel. A rapid
decline in LD was observed with increasing physical distance on
all chromosomes (Chr), but the decay rate varied among Chr
(Figure 2). LD was reached within 30–45 kb on Chr 1, 50–60 kb
on Chr 4 and 5, and 80–150 kb on the remaining Chr. The mean
length of LD decay across all Chr was 80–100 kb (r2

= 0.1). At a
cut-off of r2

= 0.2, the mean length of LD decay decreased rapidly
to 5 kb.

Genome-Wide Association Study and
SNP Discovery
In the present study, population structure was controlled for
by using the PC matrix, with six PC axes explaining about
6.9% of the variance. Quantile–quantile plots (Figure 3) showed
that the MLM model with six PC axes effectively accounted
for the population substructure of starch content. A total of
four SNPs (Supplementary Table S2) significantly associated
(P < 0.0001) with starch content were detected on Chr 1, 2,
and 5 (Figure 4), among which SNP SYN1878 was the most
significant (P = 2.9 × 10−5). These results are consistent with
the quantitative nature of starch content, which is known to be
controlled by a large number of genes with small effects.

The overall LD decay across the genome of this panel was
100 kb; as such, a 200-kb region flanking the left and right side of
each SNP was defined as a QTL, which were then used to identify
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FIGURE 1 | Frequency map of starch content.

FIGURE 2 | Linkage disequilibrium decay of each chromosome.
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FIGURE 3 | Quantile–quantile plot for associations with starch content.
P-values are shown on a -log10 scale, and the dashed horizontal line indicates
the genome-wide significance threshold (−log P ≥ 3).

genes from the maize genome browser publically available at
www.maizegdb.org. A total of 77 candidate genes were found in
these associated regions (listed in Supplementary Table S2). The

genes within this 200-kb window size were identified through
MaizeGDB according to the positions of the closest flanking SNPs
or supporting intervals3. Based on the gene annotation of the
B73 maize genome, some genes that are likely involved in starch
synthesis were subjected to gene ontology (GO) analysis. The
Blast2Go program was used to predict the functions of these
genes (Table 2), and at least two of these genes or their orthologs
were known functional genes involved in the starch synthesis
pathway: (GRMZM2G163437, which encodes the ADP glucose
pyrophosphorylase SS, and GRMZM2G450163, which encodes
6-phospho-fructokinase).

DISCUSSION

NIRS for Kernel Starch Content Analysis
Traditional starch content measurement protocols employ kernel
powdering and starch hydrolysis to measure starch content
according to the percentage of hydrolyzed soluble sugar glucose
in the dry kernel (Yemm and Willis, 1954; Li et al., 2011).
This method is not only laborious and time-consuming, but
also damages the integrity of maize kernels that could have
value in breeding programs. On the contrary, NIRS is a fast,

3http://gbrowse.maizegdb.org/gb2/gbrowse/maize_v2/

FIGURE 4 | Manhattan plot of starch content abscissa means for maize chromosomes 1–10.

TABLE 2 | Candidate gene functions by Blast2Go.

Gene ID Sequence description Sequence
length (bp)

Hits Minimum eValue GOs GO terms

GRMZM2G163437 adp-glucose
pyrophosphorylase small
subunit

4,593 8 1.1E-121 10 cytosolC; heterotetrameric ADPG
pyrophosphorylase complexC; amyloplastC;
photoperiodismP; ATP bindingF; starch
biosynthetic processP; chloroplast stromaC;
glucose-1-phosphate adenylyltransferase
activityF; glycogen biosynthetic processP;
apoplastC

GRMZM2G064179 transposon en spm sub-class 1,109 11 11 1 plastidC

GRMZM2G450163 6-phosphofructokinase 6687 No No 5 glycolysisP; 6-phosphofructokinase activityF; ATP
bindingF; diphosphate-fructose-6-phosphate-1-
phosphotransferase activityF;
6-phosphofructokinase complexC

Gene ontology (GO) terms are categorized and denoted as cellular components (C), molecular functions (F), or biological processes (P) according to their superscripts.
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reliable, and non-destructive method for the evaluation of such
breeding traits, especially using bulk materials (Plumier et al.,
2013). The reliability of NIRS for measuring maize kernel starch
content has been previously confirmed by Fang (2011), who
found a remarkable positive correlation (r2

= 0.961) between
the values measured by NIRS and those obtained by traditional
chemical methods. In our study, the NIRS method also yielded
reliable results as demonstrated by the small deviations (<5%
in most cases) among the biological replicates (Supplementary
Table S1).

Population Structure for Association
Mapping of Kernel Starch Content
In previous studies, kernel starch content was often studied
together with protein or oil content (Wassom et al., 2008;
Li et al., 2009; Yang et al., 2013) and most genetic materials
used in these previous experiments were derived from high
oil maize lines. To conduct a proper GWAS on kernel starch
content in maize, it was necessary to test an unbiased population
with a sufficient number of individuals from among diverse
genetic backgrounds. In our study, the association panel was
comprised of tropical, subtropical, and temperate lines from
regions including South Asia, North and South America, Europe,
and the Middle East, representing the core diversity of the
broader species population that has been characterized previously
(Yan et al., 2009; Xue et al., 2013). Our study particularly
focused on results obtained in the Hainan seed base because the
primary agronomic features of these lines have been preliminarily
evaluated in various maize breeding programs. Owing to
previously demonstrated significant genotype-by-environment
effects (Visioni et al., 2013), the interaction between genotype
and environmental conditions was considered in the design of
this study, and starch content data from 3 years (2011, 2012, and
2013) was used to minimize the effect of growing environment on
starch content.

Maize Kernel Starch Content Is
Genetically Controlled by Many Small
Effect QTLs
The complex genetic architecture of starch content has been
demonstrated through long-term selection experiments using
inbred lines (Moose et al., 2004). The continued phenotypic
response of kernel composition provides convincing evidence
that starch content is controlled by a number of small effect
QTLs as demonstrated by other studies using near isogenic
lines (Goldman et al., 1993; Clark et al., 2006; Dudley, 2008;
Wassom et al., 2008; Li et al., 2009; Cook et al., 2012). The
advent of high-density DNA marker linkage maps in many
plant species has provided an opportunity to identify QTLs
(Liu et al., 2008; Sun et al., 2008; Li et al., 2009). Through
this GWAS, we were able to detect substantially more reliable
QTLs. The information provided in this study can serve as the
starting point for functional gene studies to clarify the genetic
mechanisms underlying starch content diversity among different
maize lines.

Potential Genes Involved in Kernel
Starch Biosynthesis and Accumulation
Revealed by GWAS
The maize SNP50 BeadChip maize array used in this study
contains a total of 56,110 SNPs. Given the 2,300-Mb genome
size of maize, there is approximately 50 kb of total sequence for
each SNP marker used in this study. Therefore, a significantly
associated SNP may represent an approximately 100-kb region
covering the 50 kb upstream and downstream along each
chromosome. Thanks to the publically available maize genome
browser, we were able to browse and retrieve the coding
gene information from the associated QTLs (Wang et al.,
2013).

Efforts were made to utilize functionally characterized maize
genes for starch content regulation. Four structural genes
influence starch synthesis in maize: Sh2, Bt2, opaque-2 (O2), and
Sh1 (Goldman et al., 1993). Some functional genes involved in
metabolic reactions were also detected in this study. For example,
through GO analysis, the Glucose-1-phosphate adenylyltransferase
(APS1) gene (gene ID GRMZM2G163437) was identified as a
closely linked gene; this protein presumably catalyzes the alpha-
D-glucose-1-phosphate to ADP-glucose (ADPG) pathway and
plays an important role in starch synthesis (Li et al., 2009).
Another identified gene (gene ID GRMZM2G450163) encodes
6-phospho-fructokinase, which is involved in the Embden–
Meyerhof Pathway (EMP). The EMP is important to the
energy cycle as it converts fructose to glucose-1-phosphate.
A transposable element (gene ID GRMZM2G128149) was also
identified. As the maize genome is heavily duplicated and
full of gene insertions owing to transposable elements, it is
not surprising to see that this particular transposon might be
involved in starch content regulation. Similarly, Liu et al. (2014)
reported a transposable element insertion that disturbed the
starch synthase gene SSIIb in maize and thus altered starch
content.

FUTURE PERSPECTIVES

The GWAS presented here was able to uncover associations
between SNPs and kernel starch content in maize. Although this
methodology only provides a statistical link between traits and
genomic sequences, such information can be a solid starting point
for functional genetic studies. The gene candidates identified by
our GWAS will be profoundly enhanced as additional molecular
evidence (e.g., via transgenic approaches) becomes available.
Furthermore, SNPs within candidate genes can also be used to
further test the contributions of these genes to traits like kernel
starch content.

AUTHOR CONTRIBUTIONS

This study was conceived by JT and NL. GWAS and GO analyses
were conducted by YX and ZG. Collections of maize were
performed by WL. NL wrote the manuscript. All authors read and
approved the final manuscript.

Frontiers in Plant Science | www.frontiersin.org 6 July 2016 | Volume 7 | Article 1046

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01046 July 25, 2016 Time: 11:54 # 7

Liu et al. GWAS for Maize Starch Content

ACKNOWLEDGMENTS

This work was supported by the State Key Basic Research
and Development Plan of China (2014CB138203), the
National Natural Science Foundation of China (91335205),
and Fundamental Research Funds for the Henan Provincial
Colleges and Universities of Henan University of Technology
(2015RCJH05). Thanks are due to Dr. Jianbing Yan for assistance
with SNP data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2016.01046

TABLE S1 | Kernel starch contents of the 263 maize lines.

TABLE S2 | SNPs, QTLs, and candidate genes significantly associated
(P < 0.0001) with starch content.

REFERENCES
Boyer, C. D., and Hannah, L. C. (2001). “Kernel mutants of corn,” in Specialty

Corns, ed. A. R. Hallauer (Boca Raton, FL: CRC), 1–31.
Carlson, S. J., and Chourey, P. S. (1996). Evidence for plasma membrane associated

forms of sucrose synthase in maize. Mol. Gen. Genet. 252, 303–310. doi:
10.1007/BF02173776

Chen, J., Zhang, J., Liu, H., Hu, Y., and Huang, Y. (2012). Molecular strategies
in manipulation of the starch synthesis pathway for improving storage starch
content in plants (review and prospect for increasing storage starch synthesis).
Plant Physiol. Biochem. 61, 1–8. doi: 10.1016/j.plaphy.2012.08.013

Clark, D., Dudley, J. W., Rocheford, T. R., and LeDeaux, J. R. (2006). Genetic
analysis of corn kernel chemical composition in the random mated 10
generation of the cross of generations 70 of IHO x ILO. Crop Sci. 46, 807–819.
doi: 10.2135/cropsci2005.06-0153

Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., and
Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and
analysis in functional genomics research. Bioinformatics 21, 3674–3676. doi:
10.1093/bioinformatics/bti610

Cook, P., McMullen, M. D., Holland, J. B., Tian, F., Bradbury, P., Ross-Ibarra, J.,
et al. (2012). Genetic architecture of maize kernel composition in the nested
association mapping and inbred association panels. Plant Physiol. 158, 824–834.
doi: 10.1104/pp.111.185033

Dudley, J. W. (2008). Epistatic interactions in crosses of Illinois high oil 3 Illinois
low oil and of Illinois high protein 3 Illinois low protein corn strains. Crop Sci.
48, 59–68. doi: 10.2135/cropsci2007.04.0242

Dudley, J. W., Clark, D., Rocheford, T. R., and LeDeaux, J. R. (2007). Genetic
analysis of corn grain chemical composition in the random mated 7 generation
of the cross of generations 70 of IHP x ILP. Crop Sci. 47, 45–57. doi:
10.2135/cropsci2006.03.0207

Dudley, J. W., and Lambert, R. J. (1992). Ninety generations of selection for oil and
protein in maize. Maydica 37, 81–87.

Fang, Y. (2011). Nondestructive analysis of crude starch in whole kernel maize by
near infrared reflectance spectroscopy. Crops 2, 25–27.

Ganal, M. W., Durstewitz, G., Polley, A., Bérard, A., Buckler, E. S., Charcosset, A.,
et al. (2011). A large maize (Zea mays L.) SNP genotyping array: development
and germplasm genotyping, and genetic mapping to compare with the
B73 reference genome. PLoS ONE 6:e28334. doi: 10.1371/journal.pone.00
28334

Goldman, I. L., Rocheford, T. R., and Dudley, J. W. (1993). Quantitative
trait loci influencing protein and starch concentration in the Illinois
Long Term Selection maize strains. Theor. Appl. Genet. 87, 217–224. doi:
10.1007/BF00223767

Hannah, L. C., Futch, B., Bing, J., Shaw, J. R., Boehlein, S., and Stewart, J. D. (2012).
A shrunken-2 transgene increases maize yield by acting in maternal tissues
to increase the frequency of seed development. Plant Cell 24, 2352–2363. doi:
10.1105/tpc.112.100602

Healey, A., Furtado, A., Cooper, T., and Henry, R. J. (2014). Protocol: a simple
method for extracting next-generation sequencing quality genomic DNA
from recalcitrant plant species. Plant Methods 10, 21–28. doi: 10.1186/1746-
4811-10-21

Huang, B. Q., Hennen-Bierwagen, T. A., and Myers, A. M. (2014). Functions
of multiple genes encoding ADP-Glucose pyrophosphorylase subunits in
maize endosperm, embryo, and leaf1. Plant Physiol. 164, 596–611. doi:
10.1104/pp.113.231605

Jeon, J. S., Ryoo, N., Hahn, T. R., Walia, H., and Nakamura, Y. (2010). Starch
biosynthesis in cereal endosperm. Plant Physiol. Biochem. 48, 383–392. doi:
10.1016/j.plaphy.2010.03.006

Jiang, L. L., Yu, X. M., Xin, Q. X., Yu, Q., Deng, S., Bai, B., et al. (2013). Multigene
engineering of starch biosynthesis in maize endosperm increases the total starch
content and the proportion of amylase. Transgenic Res. 22, 1133–1142. doi:
10.1007/s11248-013-9717-4

Knapp, S. J., Stroup, O. B., and Ross, W. M. (1985). Exact confidence intervals
for heritability on a progeny mean basis. Crop Sci. 25, 192–194. doi:
10.1007/BF00288995

Lawrence, C. J., Dong, Q., Polacco, M. L., Seigfried, T. E., and Brendel, V. (2004).
MaizeGDB, the community database for maize genetics and genomics. Nucleic
Acids Res. 32, D393–D397. doi: 10.1093/nar/gkh011

Li, N., Zhang, S. J., Zhao, Y. J., Li, B., and Zhang, J. R. (2011). Over-expression
of AGPase genes enhances seed weight and starch content in transgenic maize.
Planta 233, 241–250. doi: 10.1007/s00425-010-1296-5

Li, Y., Wang, Y., Wei, M., Li, X., and Fu, J. (2009). QTL identification of grain
protein concentration and its genetic correlation with starch concentration and
grain weight using two population in maize (Zea mays L). J. Genet. 88, 61–67.
doi: 10.1007/s12041-009-0008-z

Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., et al. (2012).
GAPIT: genome association and prediction integrated tool. Bioinformatics 28,
2397–2399. doi: 10.1093/bioinformatics/bts444

Liu, H. H., Liu, H. Q., Wei, L., Yang, X. H., and Lin, Z. W. (2014). A transposable
element insertion disturbed starch synthase gene SSIIb in maize. Mol. Breed. 34,
1159–1171. doi: 10.1007/s11032-014-0107-2

Liu, Z. H., Xie, H. L., Tian, G. W., Chen, S. J., Wang, C. L., Hu, Y. M., et al.
(2008). QTL mapping of nutrient components in maize kernels under low
nitrogen conditions. Plant Breed. 127, 279–285. doi: 10.1111/j.1439-0523.2007.
01465.x

Loiselle, B. A., Sork, V. L., Nason, J., and Graham, C. (1995). Spatial genetic
structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am.
J. Bot. 82, 1420–1425. doi: 10.2307/2445869

Maize genetics and genomics database (2015). Maize Genetics and Genomics
Database. Available at: http://gbrowse.maizegdb.org/gb2/gbrowse/maize_v2/
(accessed June 2015).

Moose, S. P., Dudley, J. W., and Rocheford, T. R. (2004). Maize selection passes the
century mark: a unique resource for 21st century genomics. Trends Plant Sci. 9,
358–364. doi: 10.1016/j.tplants.2004.05.005

Plumier, B., Danao, M. J., Singh, V., and Rausch, K. (2013). “Analysis and
prediction of unreacted starch content in corn using FT-NIR spectroscopy,” in
Proceedings of the Conference Paper in Transactions of the American Society of
Agricultural and Biological Engineers Paper No 131596314, Kansas City, MO.

Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al.
(2009). The B73 maize genome:- complexity, diversity, and dynamics. Science
326, 1112–1115. doi: 10.1126/science.1178534

Sun, H. Y., Lu, J. H., Fan, Y. D., Zhao, Y., Kong, F. M., Li, R. J., et al. (2008).
Quantitative trait loci (QTLs) for quality traits related to protein and starch in
wheat. Prog. Nat. Sci. 18, 825–831. doi: 10.1016/j.pnsc.2007.12.013

Tsai, C. Y., and Nelson, O. E. (1966). Starch-deficient maize mutant lacking
adenosine diphosphate glucose pyrophosphorylase activity. Science 151, 341–
343. doi: 10.1126/science.151.3708.341

Visioni, A., Tondelli, A., Francia, E., Alexander, P. A., Malosetti, M., Russell, J.,
et al. (2013). Genome-wide association mapping of frost tolerance in barley
(Hordeum vulgare L.). BMC Genomics 14:424. doi: 10.1186/1471-2164-14-424

Frontiers in Plant Science | www.frontiersin.org 7 July 2016 | Volume 7 | Article 1046

http://journal.frontiersin.org/article/10.3389/fpls.2016.01046
http://gbrowse.maizegdb.org/gb2/gbrowse/maize_v2/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01046 July 25, 2016 Time: 11:54 # 8

Liu et al. GWAS for Maize Starch Content

Wang, J., Kong, L., Gao, G., and Luo, J. (2013). A brief introduction to web-based
genome browsers. Brief. Bioinform. 14, 131–143. doi: 10.1093/bib/bbs029

Wang, Y. Z., Li, J. Z., Li, Y. L., Wei, M. G., Li, X. H., and Fu, J. F. (2010).
QTL detection for grain oil and starch content and their associations in two
connected F2:3 populations in high-oil maize. Euphytica 174, 239–252.

Wassom, J. J., Wong, J. C., Martinez, E., King, J. J., DeBaene, J., Hotchkiss,
J. R., et al. (2008). QTL associated with maize kernel oil, protein, and starch
concentrations; kernel mass; and grain yield in Illinois high oil x B73 backcross-
derived lines. Crop Sci. 48, 243–252. doi: 10.2135/cropsci2007.04.0208

Wen, Z., Tan, R., Yuan, J., Bales, C., Du, W., Zhang, S., et al. (2014). Genome-wide
association mapping of quantitative resistance to sudden death syndrome in
soybean. BMC Genomics 15:809. doi: 10.1186/1471-2164-15-809

Willmot, D. B., Dudley, J. W., Rocheford, T. R., and Bari, A. (2006). Effect of
random mating on marker-QTL associations for grain quality traits in the cross
of Illinois High Oil x Illinois Low Oil. Maydica 51, 187–199.

Xue, Y. D., Warburton, M. L., Sawkins, M., Zhang, X. H., Setter, T., Xu, Y. B.,
et al. (2013). Genome-wide association analysis for nine agronomic traits in
maize under well-watered and water-stressed conditions. Theor. Appl. Genet.
126, 2587–2596. doi: 10.1007/s00122-013-2158-x

Yan, J., Shah, T., Warburton, M. L., Buckler, E. S., McMullen, M. D., and Crouch, J.
(2009). Genetic characterization and linkage disequilibrium estimation of

a global maize collection Using SNP Markers. PLoS ONE 4:e8451. doi:
10.1371/journal.pone.0008451

Yang, G., Dong, Y., Li, Y., Wang, Q., Shi, Q., Zhang, X. H., et al.
(2013). Verification of QTL for grain starch content and its genetic
correlation with oil content using two connected RIL populations
in high-oil maize. PLoS ONE 8:e53770. doi: 10.1371/journal.pone.
005377

Yemm, E. W., and Willis, A. J. (1954). The estimation of carbohydrates in
plant extracts by the anthrone. Biochemistry 57, 508–514. doi: 10.1042/bj05
70508

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Liu, Xue, Guo, Li and Tang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 8 July 2016 | Volume 7 | Article 1046

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels
	Introduction
	Materials And Methods
	Plant Material
	Determination of Starch Content
	Association Mapping Analysis
	Gene Ontology Analysis

	Results
	Variation in Starch Content among the Maize Inbred Lines
	Linkage Disequilibrium in the Association Panel
	Genome-Wide Association Study and SNP Discovery

	Discussion
	NIRS for Kernel Starch Content Analysis
	Population Structure for Association Mapping of Kernel Starch Content
	Maize Kernel Starch Content Is Genetically Controlled by Many Small Effect QTLs
	Potential Genes Involved in Kernel Starch Biosynthesis and Accumulation Revealed by GWAS

	Future Perspectives
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


