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Photosynthesis limitation by CO2 flow constraints from sub-stomatal cavities to
carboxylation sites in chloroplasts under drought stress conditions is, at least in some
plant species or crops not fully understood, yet. Leaf mesophyll conductance for CO2

(gm) may considerably affect both photosynthesis and water use efficiency (WUE) in
plants under drought conditions. The aim of our study was to detect the responses of gm
in leaves of four winter wheat (Triticum aestivum L.) genotypes from different origins under
long-term progressive drought. Based on themeasurement of gas-exchange parameters
the variability of genotypic responses was analyzed at stomatal (stomata closure) and
non-stomatal (diffusional and biochemical) limits of net CO2 assimilation rate (AN). In
general, progressive drought caused an increasing leaf diffusion resistance against CO2

flow leading to the decrease of AN, gm and stomatal conductance (gs), respectively.
Reduction of gm also led to inhibition of carboxylation efficiency (Vcmax). On the basis
of achieved results a strong positive relationship between gm and gs was found out
indicating a co-regulation and mutual independence of the relationship under the drought
conditions. In severely stressed plants, the stomatal limitation of the CO2 assimilation
rate was progressively increased, but to a less extent in comparison to gm, while a
non-stomatal limitation becamemore dominant due to the prolonged drought. Mesophyll
conductance (gm) seems to be a suitable mechanism and parameter for selection of
improved diffusional properties and photosynthetic carbon assimilation in C3 plants, thus
explaining their better photosynthetic performance at a whole plant level during periods
of drought.

Keywords: photosynthesis, drought, mesophyll conductance, AN/Ci, carboxylation efficiency, wheat

INTRODUCTION

At the global level, drought accompanied by low water availability in soils is considered the main
environmental factor that limits plant growth and yield (Chaves et al., 2003; Nemani et al., 2003;
Zhao et al., 2011). This combination may negatively affect the productivity of agricultural crops as
well as natural ecosystems and the diversity of plant species (Zivcak et al., 2013). There are some
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strategies aimed at maintaining water resources in soils and
plants, e.g., improvement of crop water use efficiency (WUE;
Wang et al., 2002; Condon et al., 2004) and photosynthesis itself,
which may increase crop yields in the near future (Parry et al.,
2002; Flexas et al., 2013).

A water deficit develops in plants when water losses by
evapotranspiration are inadequately replaced by the water flow
from soil. In a natural environment, a water deficit occurs
progressively from a week to months, depending upon the
characteristics of the soil where the plants are grown (Cano
et al., 2014).Water deficiency triggers many responses at different
levels (molecular to whole plant) of plants in conditions of
water scarcity (Shao et al., 2009; Zivcak et al., 2014) that involve
different survival strategies (such as stress escape, avoidance
or tolerance), adaptive changes and deleterious effects which
can all develop even in parallel (Barnabás et al., 2008). They
also include the production of many biological macro- and
micro-molecules, such as nucleic acids (DNA, RNA, microRNA),
proteins, carbohydrates, lipids, hormones, ions, or mineral
elements (Shao et al., 2006). These responses to external limiting
factors can vary and are genotype- and species-related (Rampino
et al., 2006), including the length, intensity and duration of water
stress (Araus et al., 2002), plant age and ontogeny (Zhu et al.,
2005), light and temperature (Gallé et al., 2009), intensity of
previous stresses (Flexas et al., 2009), as well the application
of successive drought and recovery cycles (Gallé et al., 2011).
Moreover, under natural conditions, plants are often exposed to
multiple stress factors that influence photosynthesis and growth
(Lu et al., 2003). The combination of drought with other abiotic
stress factors, such as intense light, salinity or heat, considerably
increases the photoinhibition of photosynthesis (Shao et al., 2006;
Yan et al., 2013).

The impact of drought on photosynthesis can basically be
divided into two groups: (i) a direct effect, which increases
the restriction of the CO2 diffusion pathway via stomata, as
intercellular airspaces leading to the mesophyll cells that cause
a decline in CO2 availability for Rubisco (Cornic et al., 1989;
Chaves, 1991; Flexas et al., 2004a,b, 2007; McDowell, 2011),
(ii) an indirect effect, such as alterations in the biochemistry
and metabolism of the photosynthetic apparatus, membrane
permeability (aquaporins) (Lawlor and Cornic, 2002; Chaves
et al., 2009) and the promotion of oxidative stress (Aranda et al.,
2012).

Indeed, restricted CO2 diffusion from the atmosphere to
the site of carboxylation is the main reason for decreased
photosynthesis under water stress conditions caused by both
the stomatal and mesophyll limitations (Centritto et al., 2003;
Flexas et al., 2004a,b; Grassi and Magnani, 2005; Zivcak et al.,

Abbreviations: Ŵ∗, chloroplastic CO2 compensation point; 8PSII , actual
photochemical efficiency of photosystem II; AN, net CO2 assimilation rate;
Ca, ambient CO2 concentration; Cc, CO2 concentration at the carboxylation
site of Rubisco; Ci, CO2 concentration in sub-stomatal cavities; gm, mesophyll
conductance; gs, stomatal conductance; Jf, electron transport rate; MS, mild water
stress; PPFD, photosynthetically active photon flux density; Rd, day respiration
rate; RWC, relative water content; SS, severe water stress; Vcmax, maximal in
vivo carboxylation activity of Rubisco; WUEi, intrinsic water use efficiency; WW,
well-watered conditions; c.v., coefficient of variability.

2014). Stomata are the primary component of the CO2 diffusional
pathway, which limits water loss. Under prolonged drought, they
also limit the CO2 supply inside the leaves (Martorell et al., 2014).
In C3 plants, low gs reduces water loss from drying plants to
save water via a rapid and effective survival strategy. The stomata
response could vary in degree, becoming more pronounced with
the increasing severity of a stress (Zivcak et al., 2013). The net
CO2 assimilation rate (AN) is usually reduced by water deficit
due to not only stomatal closure but also non-stomatal processes
(Medrano et al., 2002) such as decreased gm (Flexas et al., 2008).
According to Fick’s first law of diffusion, AN is determined as
follows: AN = gs·(Ca − Ci) = gm·(Ci − Cc), where Ca, Ci, and
Cc are the CO2 concentrations in the atmosphere, sub-stomatal
cavities and carboxylation site of Rubisco, respectively (Long and
Bernacchi, 2003). Previous works usually stated that gm is large
and constant (therefore, Ci = Cc). However, at present, there are
many lines of evidence suggesting that the CO2 concentration in
chloroplasts is significantly lower than in sub-stomatal cavities
because of the finite value of gm (von Caemmerer and Evans,
1991; Niinemets et al., 2009). Although gm is rather small, it
markedly regulates Cc and hence limits leaf photosynthesis (Di
Marco et al., 1990; Harley et al., 1992; Loreto et al., 1992; Warren
and Adams, 2006).

The mesophyll conductance indicates the conductance for
CO2 flowing from the intercellular air spaces to the site
of carboxylation in the chloroplasts of mesophyll cells and
includes the quite complicated pathways of the cell wall, plasma
membrane, chloroplast envelope, and stromal thylakoids. It
involves gas phase resistance among intercellular air spaces and
liquid phase resistance from the cell wall to stroma (Evans et al.,
2009). Recent studies show a crucial role for gm in the regulation
of photosynthesis, and it has already been assumed that gm
represents up to 40% of the CO2 diffusional limitations to whole
photosynthesis (Warren, 2008).

Currently, there are many studies showing decreased gm
during a progressive leaf water deficit. Recent studies (Roupsard
et al., 1996; Flexas et al., 2004a, 2006; Delfine et al., 2005; Galmés
et al., 2007, 2011; Tomás et al., 2013; Niinemets and Keenan,
2014) clearly confirm that drought in plants may significantly
limit gm. Nevertheless, it remains unknown which mechanisms
are responsible for the reduction of gm. Any changes in gm during
low soil water availability may potentially play an important role
in the regulation and control of photosynthesis (Flexas et al.,
2014). It is hypothesized that a crop under drought stress should
reach low stomatal conductance (gs), which can reduce water loss
but consequently maintains a high intensity of carbon fixation.
This is only possible when the CO2 concentration in chloroplasts
(Cc) remains high as a result of improved gm (Flexas et al., 2012).

The high sensitivity of gm to different environmental factors
has already been shown with the reactions occurring in a wide
time range, from minutes to hours (Pons and Welchen, 2003;
Flexas et al., 2012). Recent reviews have already highlighted
the effects of environmental conditions, such as increased and
decreased CO2 concentration around leaves (Harley et al.,
1992; Centritto et al., 2003), exogenous application of ABA
and polyethyleneglycol (Flexas et al., 2006), high altitude
(Vitousek et al., 1990), low light (Laisk et al., 2005), low
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nitrogen availability (Warren and Adams, 2006), low and high
temperatures (Bernacchi et al., 2002; Pons and Welchen, 2003;
Yamori et al., 2006), or viral infections (Sampol et al., 2003).
There is also increasing evidence to suggest a significant role
for aquaporins in the control of membrane permeability to CO2,
which are also limiting factors of gm in C3 plants (Heckwolf et al.,
2011; Sade et al., 2014). In particular, gm is also determined by
the variability of leaf structural traits, such as leaf thickness, cell
packing, shape, and wall thickness (Tosens et al., 2012; Tomás
et al., 2013; Muir et al., 2014).

The decrease in AN as a consequence of water stress is
also commonly analyzed in terms of the stomatal and non-
stomatal limitations (Grassi and Magnani, 2005). However, the
dynamics between the stomatal and non-stomatal limitations
during drought remain unclear (Lawlor and Cornic, 2002; Loreto
and Centritto, 2008). In previous decades, valuable studies of
sufficient quantity accumulated on the effect of drought on gm.
Indeed, inter-specific genotypic differences in gm have already
been found for several species, e.g., Vitis vinifera (Tomás et al.,
2013), Hordeum vulgare (Barbour et al., 2010), Castanea sativa,
Solanum lycopersicum (Galmés et al., 2011), Oryza sativa (Gu
et al., 2012), and Triticum aestivum (Jahan et al., 2014).

The aim of this work was to perform an eco-physiological
analysis of the main diffusional limits to leaf photosynthesis in
wheat under a long-term progressive drought by determination
of the dynamics and proportion of mesophyll vs. stomatal
limitation changes and their sensitivity to water scarcity in four
winter wheat genotypes of different geographical proveniences.

MATERIALS AND METHODS

Biological Material and Cultivation
The outdoor pot experiment was conducted in the experimental
cage of the Department of Plant Physiology, Slovak University
of Agriculture in Nitra. Seeds of four winter wheat (T. aestivum
L.) genotypes (Šamorínska from Slovakia, GK Forrás from
Hungary, Pehlivan from Turkey and Piopio-4 fromMexico) were
selected on the basis of their (i) geographical origin (European
genotypes–Middle to South Europe vs. Latin America), (ii)
historical view of wheat breeding (Šamorínska as a landrace
vs. GK Forrás, Pehlivan, and Piopio-4 as modern genotypes)
and (iii) different mechanism of WUE regulation under drought
conditions. They were obtained from the Gene bank in Plant
Production Research Institute in Piestany (Slovakia). The seeds
were sown in plastic pots (15 l volume) filled with a mixture of
horticultural substrate and clay soil in 1:1 ratio. The substrate
of pH 7.3 contained 40.08mg kg−1 Nan, 206.5mg kg−1 P,
590mg kg−1 K, and 3.73% of humus. Plants were grown in a
natural environmental conditions and were regularly irrigated
to maintain the optimum field water capacity during whole
experiment. The foliar application of liquid fertilizers with
macro- and micro-nutrients was carried out in the early spring
time. At the growth stage of inflorescence emergence (BBCH-
51, Zadoks et al., 1974), the progressive dehydration of soil and
plants in pots was induced by a withholding watering for 21
days. The responses of photosynthesis and water status to the
induced water stress were measured simultaneously from gas

exchange and leaf RWC data. The leaf hydration range was used
for differentiation of the water stress level, and the data were
clustered into three groups, e.g., well-watered plants (WW; RWC
= 80–100%), mild water stress (MS; RWC= 60–80%) and severe
(SS; RWC = 40–60%) water stress. After the dehydration period
watering of plants continued optimally. Climatic data (average
daily temperature and daily total precipitation; Figure 1) were
obtained from the meteorological station of Horticulture and
Landscape Engineering Faculty in SUA Nitra, localized in
neighborhood of the experimental site.

Gas Exchange and Chlorophyll a
Fluorescence Measurements
Gas exchange measurements were made daily on fully expanded
flag leaves of control and stressed plants from the beginning of
the dehydration process to its terminal phase when the stomata
were fully closed.

The AN/Ci response curves of plants from each genotype
were measured on a daily basis using the open gas-exchange
system Li-6400XT (Li-Cor Inc., Lincoln, Nebraska, USA) with
an integrated fluorescence chamber head Li-6400-40 (Li-Cor
Inc.). Gas-exchange and chlorophyll a fluorescence parameters
were measured in light-adapted leaves at saturation PPFD set
up at 1500µmol m−2 s−1 with 10% blue light to maximize
stomatal aperture. Leaf temperature was kept at 21◦C and relative
air humidity was maintained between 60 and 70% during all
measurements. Gas exchange and chlorophyll a fluorescence
were first measured after reaching steady-state at 380µmol
CO2 mol−1 air surrounding the leaf (Ca). Subsequently, Ca

was decreased stepwise until 50µmol mol−1 and then increased
stepwise until 1500µmol CO2 mol−1. The number of different Ca

values used for the AN/Ci response curves was 12, and the time
between the two consecutive measurements at different Ca values
was maximal 4min.

The actual photochemical efficiency of photosystem II (8PSII)
was assessed following the procedures of Genty et al. (1989)
based on the measurements of actual (Fs) and maximal (F′m)
fluorescence during pulse light saturation (intensity 8000µmol
m−2 s−1) and calculated as follows:

8PSII =
(

Fm
′
− Fs

)

/Fm
′

The electron transport rate (Jf) was calculated as:

Jf = 8PSII · PPFD · α · β

where PPFD is the photosynthetically active photon flux density,
α is leaf absorbance (0.85), and β is the partitioning of absorbed
quanta between the PSII and PSI. The method of Valentini
et al. (1995) was used to determine the product of α.β from
the relationship between 8PSII and 8CO2 (8CO2 = (AN +

Rd)/PPFD), where Rd is the daytime respiration rate determined
by the Laisk method (Laisk, 1977) (see next section) obtained
by varying Ca (11 different values) under non-photorespiratory
conditions in an atmosphere containing less than 1% O2, a leaf
temperature of 21◦C, saturation PPFD (1500µmol m−2 s−1) and
a relative humidity of 75%.
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FIGURE 1 | Climatic variables (average daily temperature—(A) and daily total precipitation—(B)) during the grown period of winter wheat. Gray and
dark-gray areas represents time of cultivation period and dehydration, respectively.

Flow of CO2 out and into the leaf cuvette was determined
for the range of Ca values used with photosynthetically inactive
leaves (obtained by heating) of each genotype enclosed in the
chamber; the correction was used for the calculation of CO2

fluxes (Flexas et al., 2007).
Leaf-intrinsicWUEi was calculated as AN to gs ratio from gas-

exchange measurements of Ca at 380µmol CO2 mol−1 air and
saturating light.

Calculation of gm
The mesophyll conductance for CO2 (gm) was estimated
from simultaneously measured gas-exchange and chlorophyll a
fluorescence parameters of varying Ca according to Harley et al.
(1992):

gm =
AN

Ci −
Ŵ∗·[Jf + 8·(AN + Rd)]

Jf − 4·(AN + Rd)

where AN, Jf and Ci were obtained during the dehydration
from gas-exchange measurements of Ca at 380µmol CO2 mol−1

air and saturating light. The chloroplastic CO2 compensation
point (Ŵ∗) and daytime respiration rate (Rd) were estimated
using the method of Laisk (1977). Several AN/Ci response
curves were measured at three different PPFDs (50, 150, and
300µmol m−2 s−1) and six different Ca levels (from 250 to
50µmol mol−1) for each genotype in well-watered plants. The
intersection point of the linear regression of AN/Ci response
curves was used to determine the apparent CO2 compensation
point, C∗

i (x-axis) and Rd (y-axis). C∗
i was used as a proxy for

Ŵ∗ (Warren and Adams, 2006). The measured data of Rd and
Ŵ∗ which were used for the calculation of gm are shown in
Table 1.

Calculation of Vcmax
The maximal in vivo carboxylation activity of Rubisco (Vcmax)
was calculated from the gas exchange measurement by the
data fitting procedure of the initial slope of the AN/Ci curve

TABLE 1 | The CO2 compensation point in the absence of respiration (Ŵ*;
µmol mol−1) and the mitochondrial respiration rate under light (Rd; µmol
m−2 s−1) as measured in four wheat genotypes under well-watered
conditions.

Ŵ
* (µmol mol−1) Rd (µmol m−2 s−1)

GK Forrás 36.38 ± 2.58 2.18 ± 0.07

Pehlivan 34.86 ± 2.61 2.13 ± 0.05

Piopio-4 35.15 ± 1.01 2.14 ± 0.06

Šamorínska 34.08 ± 1.70 2.08 ± 0.04

Data represent the means of set measurements performed by the Laisk method ± S.E.

(n = 3).

(Ci < 300µmol mol−1):

A =
Vcmax · (Ci − Ŵ∗)

Ci + Kc ·

(

1 +
O
Ko

)

where A is the net assimilation rate limited by Rubisco activity,
and Kc and Ko are the Michaelis-Menten constants of Rubisco
activity for RuBP carboxylation and oxygenation, respectively.
Kc and Ko are assumed to be 404.9µmol mol−1 and 278.4mmol
mol−1 at 25◦C, respectively, according to Bernacchi et al. (2001).
Oxygen concentration in chloroplasts (O) was assumed to be
210mmol mol−1.

Estimation of Relative Limitation to
Photosynthesis
The limitation of photosynthesis based on gs and gm was
estimated as potential rate of photosynthesis assuming these
conductance values were infinite or measured, respectively
(Farquhar and Sharkey, 1982). AN/Ci curves were used to
separate and estimate the stomatal and non-stomatal limitations
to photosynthesis. To assess an effect of dehydration on CO2

assimilation, the photosynthetic limitations were partitioned into
the components related to stomatal and mesophyll conductance
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according to Warren et al. (2003) and calculated as follows:

LS = 100 ·
ACi − ACa

ACi

LM = 100 ·
ACc − ACa

ACc

where LS and LM are the relative stomatal and mesophyll
limitation of AN, respectively, ACa is the light-saturated rate
of photosynthesis at Ca = 380µmol mol−1 (gs and gm as
measured), ACi is the light-saturated rate of photosynthesis at
Ci = 380µmol mol−1 (assuming gs was infinite and gm was
measured), and ACc is the light-saturated rate of photosynthesis
at Cc = Ci (assuming gm was infinite and gs was measured).

Relative Water Content
The leaf relative water content (RWC) was determined as:

RWC =
(FW − DW)

(TW − DW)
· 100

The leaf disc was cut out from the central part of a measured
leaf. Fresh weight (FW) was determined immediately after the gas
exchange measurement. Turgid weight (TW) was obtained after
12 h of hydration, when a leaf disc was kept in distilled water at
4◦C in the dark. Dry weight (DW) was measured after drying the
leaf disc at 80◦C for 24 h.

Statistical Analyses
The experiment with wheat plants in pots was established
by block method with a completely randomized design of
experimental plots. All analyses were performed using the
Statistica v. 10 software (StatSoft Inc., Tulsa, Oklahoma, USA)
and the graphics software SigmaPlot version 11.0 (Systat Software
Inc., San Jose, California, USA). Analysis of variance was
performed between the different levels of drought (well-watered,
mild and severe water stress) at a significance level of 0.05,
and Duncan’s post hoc test was used. The variability between
investigated genotypes was tested by the HSD test.

RESULTS

Climatic conditions at the experimental site are shown in
Figure 1. Average daily temperature during the growing season
(October 5, 2010 to July 4, 2011) was 7.4◦C with the sum of
precipitation of 373.9mm. The sum of active daily temperatures
(above 10◦C) per growing season was 1658◦C. The average daily
temperature during the drought treatment was 20.03◦C.

Significant differences among the investigated wheat
genotypes grown in WW conditions were found for AN, gs,
gm, and Vcmax. The AN and gs varied from 26.39 to 28.64µmol
m−2 s−1 and 0.50 to 0.43 mol m−2 s−1, respectively. Differences
among wheat genotypes for WUEi were non-significant
(p > 0.05) and varied from 56.87 to 64.52µmol CO2 mol−1

H2O. Genotype Pehlivan reached the highest value for these
parameters (Table 2). Genotypic variation in gs (c.v. 12%)
explained 7% of the observed variability in AN under WW
conditions (Table 3). Mesophyll conductance (gm) inWWplants

varied nearly 3-fold among all genotypes, from 0.24 to 0.73 mol
m−2 s−1 (p < 0.001). The highest value for gm was observed in
the genotype Pehlivan.

Significant reductions in AN, gs, and gm were observed
under progressive dehydration from WW conditions (Figure 2,
Tables 2, 3). Under the MS conditions, significant genotypic
differences were found in AN and gs, which varied from 16.01 to
19.35µmol m−2 s−1 and 0.29 to 0.42 mol m−2 s−1, respectively.
Thus, the average 1.5-fold reduction of AN was accompanied
by an almost 20% reduction of gs and a 3.5-fold reduction of
gm. The highest stomatal sensitivity to the decline in RWC was
observed in genotype Šamorínska, while the highest sensitivity of
gm to RWC was found in genotype Pehlivan. Under severe water
stress (SS) conditions, gs declined below 0.15mol m−2 s−1 in all
genotypes, with the most pronounced reduction in GK Forrás.
However, we should be noted that in genotypes Piopio-4 and
Šamorínska originating from Mexico and Slovakia (Šamorínska
is a Slovakian landrace), respectively, the dehydration cycle was
faster (11 days), causing the gs to drop below 0.08 mol m−2

s−1, while in genotypes Pehlivan and GK Forrás from Turkey
and Hungary, similar gs values (0.09 and 0.15 mol m−2 s−1)
were reached after 15 and 16 days of dehydration, respectively.
The reduction of leaf RWC resulted in the decline of gm (0.05–
0.06 mol m−2 s−1) with non-significant (p > 0.05) genotypic
differences. The gs and gm reductions resulted in the reduction
of AN (Table 2). Then, the reduction of gs relative to AN

in genotype GK Forrás under drought condition significantly
(p < 0.001) increased WUEi. Finally, under SS conditions,
the genotypic variation in gs (c.v. 49%) explained 12% of the
observed variability in AN (Table 3).

There was a clear polynomial decline in gs induced by stomatal
closure in the plant response to progressive drought, showing
the same trends for genotypes GK Forrás, Pehlivan, and Piopio-
4 (Figures 2A–C), with the exception of genotype Šamorínska
(Figure 2D), which showed almost linear decline of gs. This result
indicates a high stomatal sensitivity of landrace genotype to water
stress, confirming that stomata were completely closed after 11
days of dehydration.

As shown in Figure 3, the AN was positively correlated with
gm under progressive dehydration in all genotypes (r2 from 0.890
for Pehlivan to 0.924 for Šamorínska; p < 0.001). A significant
decline in AN in response to reduced gm was observed under
the transition fromWW to MS conditions. Under SS conditions,
a strong reduction of gm (below 0.15mol m−2 s−1) resulted in
a progressive decline of AN; however, this was still above the
CO2 compensation point in all genotypes. The largest slope of
the AN/gm relationship was observed in the Piopio-4 genotype,
where we conclude that the drought stress had a greater impact
on gm compared to AN.

Analysis of the in vivo maximal carboxylation activity of
Rubisco (Vcmax) revealed the genotypic variability (p < 0.05)
only under well-watered conditions (Figure 4), with the changes
ranging from 88.14 ± 6.3 to 108.44 ± 8.2µmol m−2 s−1 for
genotypes Šamorínska and Pehlivan, respectively. Water stress
(MS and SS) significantly (p < 0.01) reduced Vcmax, but without
any genotypic difference. The mean level of Vcmax was 74.8
± 5.4 and 39.12 ± 1.2µmol m−2 s−1 both in MS and SS,
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TABLE 2 | The net CO2 assimilation rate (AN; µmol m−2 s−1), stomatal conductance to H2O (gs; mol H2O m−2 s−1), mesophyll conductance to CO2 (gm;
mol CO2 m−2 s−1) and leaf-intrinsic water use efficiency (WUEi calculated as AN/gs ratio; µmol CO2 mol−1 H2O) in flag leaves of four wheat genotypes
under well-watered (WW; RWC = 80–100%), mild stressed (MS; RWC = 60–80%) and severe stressed (SS; RWC = 40–60%) conditions.

AN gs gm WUE

GK Forrás WW 27.61± 1.67Aa 0.43±0.06Ba 0.45± 0.04Ba 64.52± 8.45Ab

MS 16.01± 2.25Bb 0.39±0.08ABb 0.16± 0.06Ab 42.18± 5.51Bc

SS 7.12± 2.11ABc 0.09±0.06Bc 0.06± 0.02Ac 124.22± 30.79Aa

Pehlivan WW 28.64± 1.82Aa 0.50±0.04Aa 0.73± 0.09Aa 56.87± 6.32Aa

MS 19.35± 3.38Ab 0.42±0.04Ab 0.16± 0.08Ab 48.63± 9.83Ba

SS 4.98± 2.19Cc 0.15±0.04Ac 0.06± 0.03Ac 52.61± 18.67Ba

Piopio-4 WW 25.85± 1.74Ba 0.46±0.06Ba 0.24± 0.03Ca 57.00± 3.79Aa

MS 16.16± 2.25Bb 0.37±0.04Bb 0.09± 0.02Bb 46.26± 9.01Ba

SS 5.65± 2.32BCc 0.11±0.08ABc 0.05± 0.01Ac 33.88± 6.45Cb

Šamorínska WW 26.39± 1.10Ba 0.45±0.06Ba 0.44± 0.07Ba 58.79± 6.72Aa

MS 17.00± 2.43ABb 0.29±0.08Cb 0.12± 0.03ABb 64.11± 18.00Aa

SS 8.44± 2.11Ac 0.13±0.04ABc 0.06± 0.01Ac 61.42± 11.97Ba

The data are the means ± S.E. (n = 12–20).

S.E.–standard error. Superscript: large letters (A,B,C) denote significant differences at p < 0.05 obtained by Duncan’s post hoc test among all wheat genotypes at a given stress level

(WW, MS or SS), and small letters (a,b,c) indicate statistical differences among all stress levels for a given genotype.

TABLE 3 | Genotypic variability of the net CO2 assimilation rate (AN; µmol
m−2 s−1), stomatal conductance to H2O (gs; mol H2O m−2 s−1), and
mesophyll conductance to CO2 (gm; mol CO2 m−2 s−1) in four wheat
genotypes under well-watered (RWC = 80–100%), mild stress (RWC =

60–80%), and severe stress (RWC = 40–60%) conditions.

Mean S.E. c.v. F P

WW AN 27.26 1.93 0.07 26.33 0.000

gs 0.47 0.06 0.12 5.728 0.002

gm 0.49 0.19 0.39 167.7 0.000

MS AN 17.22 3.10 0.18 3.763 0.016

gs 0.37 0.08 0.21 9.683 0.000

gm 0.14 0.06 0.41 4.708 0.006

SS AN 6.57 2.60 0.12 6.170 0.002

gs 0.12 0.06 0.49 3.000 0.042

gm 0.06 0.02 0.34 0.302 0.824

S.E.,standard error; c.v., coefficient of variability; F, F ratio, p, probability.

which constituted ∼0.5-fold and 2.5-fold decline for MS and SS,
respectively.

Analysis of the fast AN–Ci response curve showed that the
gm calculated via the method of Harley et al. (1992) was not
constant along the range of Ci values employed in this study
(Figure 5).We observed the obviously known three-phase course
of gm changes to varied Ci values. A strong sensitivity of gm at low
Ci concentrations was observed in the first part of the response
curve (Ci from ∼80 to 200µmol mol−1 air). After reaching an
inflection peak of gm at Ci concentrations from 200 to 400µmol
mol−1 air, the gm values declined exponentially under the value
of 0.1 mol m−2 s−1 at high Ci. The maximal sensitivity of gm to

increased Ci was observed in Pehlivan (Figure 5B) with a 16-fold
reduction of gm observed until the steady-state level was reached.
The weak sensitivity of gm to increased Ci (only∼4-fold decline)
was observed in the Piopio-4 genotype (Figure 5C). The highest
genotypic differences in the sensitivity of gm to Ci variations were
observed at low Ci concentrations (GK Forrás and Pehlivan with
relatively lower gm and Piopio-4 and Šamorínska with relatively
higher gm). Water stress reduced the sensitivity of gm to Ci

changes in all of the investigated genotypes. During the transition
from the mild to severe water stress, the mechanism responsible
for the gm reaction was clearly inhibited, and gm did not react as
fast as in the case of well-watered plants. The gm was negatively
affected under SS conditions in all genotypes when the response
to altered Ci was inhibited. Our results support the suggestions
of others that mild to severe drought strongly influences the
mechanism of gm regulation (Figure 5).

As shown in Figure 6, a close relationship between gm and
gs was observed in all genotypes and stress levels (r2 = 0.77;
p < 0.001). During the transition state from WW to MS
conditions, the 1.5-fold reduction of gs was accompanied by
a 3-fold decline of gm. A further increase in water stress up
to SS conditions resulted in progressive stomatal closure and
a reduction of gs accompanied by only small changes in gm.
However, the transition from WW to MS affected both gs
and gm in approximately the same measure. Thus, the final
gm/gs relationship was linear. The highest slope of gm/gs was
identified for genotype Pehlivan, while the lowest was identified
for Piopio-4.

Based on the analyses of the AN/Ci response curves measured
on a daily basis during the experiment, the stomatal and
mesophyll limitation ratio was calculated (Figure 7). After the
determination of both limitations in all genotypes, genotypic
differences in the limitations were evaluated. The observed
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FIGURE 2 | Responses of stomatal conductance to H2O (gs; mol H2O m−2 s−1) and mesophyll conductance to CO2 (gm; mol CO2 m−2 s−1) to the
relative water content (RWC; %) of flag leaves in four wheat genotypes (A, E) GK Forrás, (B, F) Pehlivan, (C, G) Piopio-4 and (D, H) Šamorínska. The
points represent individual measurements of leaves. Symbols: square-GK Forrás, circle-Pehlivan, up-triangle-Pio, down-triangle–Šamorínska; empty
symbols–well-watered (RWC 80–100%) plants, gray symbols-mild stress (RWC 60–80%) and black symbols-severe stress (RWC 40–60%). The coefficients of
determination (r2) and significance level (p) as well as the lines of polynomial quadratic (A–D) and polynomial cubic (E–H) regressions are shown.

differences could tell us more about drought response reactions
and could also help determine which limitation is more crucial
for the regulation of photosynthesis during drought.

From the first day of the experiment, we assessed the initial
values of stomatal (LS) and mesophyll (LM) limitations as a
percentage (Figure 7). As drought progressed and leaf water
deficit increased, both LS and LM increased simultaneously, but
the dynamics of the increase became uneven. LS began to increase
to a less extent than LM. The maximal value of LS (22.53%) was
reached in stressed plants of the old Slovak genotype Šamorínska.
However, this is not a crucial value that limits leaf photosynthesis.
Therefore, we suggest that LS did not play as important a role
in comparison with LM in dehydrated plants of all selected
genotypes. LM predominated in three genotypes (Šamorínska,
GK Forrás and Piopio-4). Although the LS of Pehlivan was higher
than LM in the first period of dehydration, it changed after LM
dominated over LS. In genotype Piopio-4, LM wasmostly disabled
by drought in comparison with other genotypes. It obtained very
high initial values (31.91%) and increased even further with a

culmination at 69.2% as the drought progressed. Additionally, a
great impact of water deficit caused a significant increase in LM
and was found in dehydrated plants of Pehlivan (76.2%) and GK
Forrás (77.6%).

DISCUSSION

Soil water scarcity is the main limiting factor for crop growth
and yield worldwide. Despite the increased knowledge over the
past decade on the effects of water stress on photosynthesis,
there is still a controversial debate whether water stress limits AN

primarily by stomata closure (stomata limitation) or mesophyll
limitation (diffusional and metabolic). A general response of
plant tissues to soil water deficit is the decline of relative water
content (RWC). This depends on the strength and duration
of drought stress (Chaves et al., 2009). The withholding of
water resulted in the reduction of stomatal conductance (gs)
as a consequence of stomatal closure (Table 2; Figure 2) with
significant genotypic differences (Table 3). The higher stomata
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FIGURE 3 | The net CO2 assimilation rate (AN, µmol CO2 m−2 s−1) response to mesophyll conductance (gm, mol CO2 m−2 s−1) in (A) GK Forrás, (B)
Pehlivan, (C) Piopio-4 and (D) Šamorínska genotypes under progressive drought conditions. The points represent individual measurements of leaves. The
symbols are the same as in Figure 2. The coefficients of determination (r2) and significance level (p) as well as the line of logarithmic regressions are shown in the plot.

FIGURE 4 | The maximum rate of carboxylation of Rubisco (Vcmax;
µmol CO2 m−2 s−1) calculated from the gas-exchange data measured
in the leaves of four wheat genotypes at different levels of drought
stress. Vertical bars are the means of 9–20 individual measurements per
treatment ± S.E. Different letters indicate significant differences among
genotypes (p < 0.05) based on Duncan’s post hoc test at one stress level;
**Indicates significant differences among stress treatments (p < 0.01) based
on the HSD test in one genotype.

sensitivity to RWC decline found in the genotype Šamorínska is
the result of rapid water loss from leaf tissues (Figure 2D). As
observed from our experimental data, modern genotypes reacted
to drought by a slow reduction of gs at the initial phase of
dehydration, probably due to better osmotic adjustment and/or
a deeper and more efficient root system (Wasson et al., 2012).

The reduction in AN resulting from decreased RWC was
significantly correlated with a decline in gs. This response is
similar to those observed in many studies, and it is thought

to be the general acclimation response of plants to drought
(Cornic et al., 1989; Chaves, 1991; Cornic, 2000; Flexas et al.,
2006). Under the gradual dehydration induced by withholding
watering in plants, a highly significant relationship (r2 = 0.93;
data not shown) between the RWC decline and the reduction
in AN was observed. Flexas et al. (2006) summarized their own
results and compared them with others to reach a compromise
in order to determine what limits AN more, stomata closure or
metabolic impairments in the mesophyll. They noted that the
reduction of CO2 supply from the atmosphere to chloroplasts
was the main factor that decreased AN under drought conditions.
However, metabolic impairments occurred as well, but only
during stronger water stress when gs dropped below 0.10 mol
H2Om−2 s−1.

In our study with well-watered wheat plants, the observed
gm corresponded to the gm level for wheat as found in many
published works (Tazoe et al., 2009, 2011; Jahan et al., 2014;
Sun et al., 2015). Interestingly, a wide interval and significant
genotypic differences in gm (from 0.24 to 0.73 mol m−2 s−1)
(Tables 2, 3) may be the result of both the differences in Rubisco
activity and the anatomical properties of leaves, respectively
(Evans et al., 1994, 2009; Medrano et al., 2002; Parry et al., 2002;
Flexas et al., 2006; Niinemets et al., 2009; Tomás et al., 2013; Muir
et al., 2014). The role of aquaporins in the transport of CO2 and
thus the regulation of gm are also essential (Hanba et al., 2004).
Inter-specific variations in gm were also previously reported in a
number of publications (Ethier and Livingston, 2004; Niinemets
et al., 2009; Tomás et al., 2013; Niinemets and Keenan, 2014).

Based on the data analyses, a strong relationship was observed
in our measurements between AN and gm (Figure 3). The gm
decreased simultaneously as AN declined, which was caused
by enhanced water scarcity. This trend was found for each of
the studied wheat genotypes. This observed strong correlation
demonstrates a well-known fact about the substantial regulation
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FIGURE 5 | The response of mesophyll conductance (gm, mol CO2 m−2 s−1) to rapid changes in the CO2 concentration within intercellular spaces
(Ci, µmol CO2 mol−1 air) in (A) GK Forrás, (B) Pehlivan, (C) Piopio-4, and (D) Šamorínska. The points represent means from 9 to 20 individual measurements
per treatment ± S.E. The symbols correspond to those presented in Figure 2.

FIGURE 6 | The relationship between the stomatal conductance to H2O
(gs, mol H2O m−2 s−1) and mesophyll conductance to CO2 (gm, mol
CO2 m−2 s−1) in the leaves of four wheat genotypes under
progressive drought. The symbols are the same as in Figure 2. Data were
fitted by a non-linear regression (full line). The equation is gm = 0.426 gs −

2.129 g2s + 6.189 g3s , and the coefficient of determination (r2) and significance
(p) are shown (n = 161) in the plot.

of gm that is directly connected to AN and thus represents the
main factor underlying diffusive limitation for CO2 from the
internal sub-stomatal cavities to the site of carboxylation (Tezara
et al., 1999). Ultimately, due to this significant relationship,
we could also consider gm as the main factor that limits
photosynthesis (Lawlor and Cornic, 2002) and plays a crucial role
in the entire metabolism within the leaf mesophyll (Flexas et al.,
2012).

Previously, one group of researchers argued that the decline
in AN occurs as a direct consequence of stomata closure, which

restricts further CO2 diffusion from the intercellular spaces to
the sites of carboxylation (Sharkey, 1990; Chaves, 1991; Cornic,
2000). On the other hand, Tezara et al. (1999) suggested that
the decline of AN is due to the impairment of ATP and RuBP
synthesis and low ATP content, rather than stomata limitation.
Another factor could be any of the processes of the Calvin cycle,
although it is still not clear which of these might be involved.
Moreover, drought is able to damage and influence processes
involved in RuBP regeneration, e.g., activities of key enzymes of
the Calvin cycle, such as fructose-1,6-bisphosphate phosphatase,
NADP:glyceraldehyde-3-phosphate dehydrogenase, ribulose-5-
phospho kinase, or 3-phosphoglycerate kinase (Flexas et al.,
2004a).

It has been established that gm is a finite variable (Niinemets
et al., 2009). By simultaneously measuring gas exchange and
chlorophyll a fluorescence, we exposed a substantial inhibition
of gm during the development of water stress. It has been
shown that gm is extremely sensitive to drought; photosynthesis
in water-stressed conditions is considerably reduced (Grassi
and Magnani, 2005; Flexas et al., 2006, 2007). In accordance
with this, our results confirmed the differences in the kinetics
of mesophyll limitation during photosynthesis (Figure 3). The
genotypes Pehlivan and Piopio-4 differed the most in this regard
(Figures 3B,C).

It is also well-known that gm controls the metabolic and
anatomical properties of leaves during photosynthesis. Both
the amount and activity of Rubisco are crucial in the control
of gm (Niinemets et al., 2009). Therefore, we would expect a
large inhibition of the maximal in vivo carboxylation activity
of Rubisco (Vcmax) due to prolonged dehydration, which
has already been established. During mild and severe stress
conditions, drought induced a significant (2.5-fold) decline in
Vcmax in all genotypes (Figure 4). However, the Vcmax decline
should be more pronounced than was found in our experiment.
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FIGURE 7 | The stomatal (LS; black) and mesophyll (LM; gray)
limitations to the AN calculated as the % of the maximum
(well-watered) values in (A) GK Forrás, (B) Pehlivan, (C) Piopio-4, and
(D) Šamorínska genotypes under progressive drought. Each value
represents the mean of four replicates.

Flexas et al. (2006) achieved 94% decrease in the Vcmax of
Nicotiana tabacum plants resulting from inhibition of Rubisco
activity as was also confirmed by other works (Medrano et al.,
1997; Parry et al., 2002). Lawlor and Tezara (2009) studied the
problem of Rubisco inhibition under drought in more detail and
concluded that a key for the response was a decline in the Rubisco
activase enzyme activity. Similarly, Lawlor and Cornic (2002) also
reported that decreased Rubisco activase activity resulted from
progressive water stress.

During our experiment, the dependence between gm and Ci

was clearly demonstrated (Figure 5). Plants also differed in their
gm sensitivity to changing Ci. Previously, a rapid response of

gm as found in our study has also been reported by Centritto
et al. (2003), Flexas et al. (2007, 2014), Bunce et al. (Bunce, 2009)
and Tazoe et al. (2011). However, such a deep analysis has not
been presented for wheat. But, as seen from the work of Flexas
et al. (2007), the relationship was established for many different
plant species, such as Arabidopsis thaliana, Limonium gibertii, N.
tabacum, Vitis berlandieri × Vitis rupestris, Cucumis sativus, and
Olea europaea var. europaea. These studies show that gm rapidly
responds to changing Ci ranging from 50 to 1200µmolmol−1 air.
At high CO2 concentrations in sub-stomatal cavities where CO2

is limited by insufficient available energy, gm sharply decreases.
Irrespectively to current knowledge about the function and

regulation of gm, the mechanism leading to the photosynthetic
response to varying Ci remains unclear. Even less is known about
the intra-species variations in gm at changing Ci. It has been
assumed that the genotypic divergence could be the result of
different structural characteristics and features of leaves as well
as the activity of membrane aquaporins (von Caemmerer and
Evans, 1991; Kjellbom et al., 1999). Another possible mechanism
clearly affecting gm, but not linked to the function of aquaporins,
is chloroplast swelling and movement (Flexas et al., 2007).

Co-regulation between gm and gs is currently debated by
many scientists. This is still a complicated question because CO2

diffusion from the ambient air directly into the chloroplasts is
defined by gs and gm together, which could vary either over the
long-term periods of leaf morphological changes or over short-
term changes in chloroplast membrane permeability (Evans et al.,
2009; Tosens et al., 2012). However, a verdict on the co-regulation
of both remains to be presented. Centritto et al. (2003) and
Warren (2008) argued that a linear relationship between gm
and gs is not ubiquitous but rather differs among species and
levels of water stress. On the other hand, studies by Loreto et al.
(1992), Flexas et al. (2002, 2008), Ethier et al. (2006), and Perez-
Martin et al. (2009) show a strong co-regulation between gm and
gs. The results from our experiment confirmed a co-regulation
of both limiting components of the CO2 diffusion pathway
(Figure 6). An interesting finding was additionally observed
if plant sensitivity studied under drought. The current works
highlighted that both gm and gs operate sequentially rather than
in parallel, and that the mechanisms of their co-regulation in
wheat are still not fully clear. However, the responses of gm and gs
to environmental stimuli have recently been studied intensively
(Barbour et al., 2010; Easlon et al., 2014).

The gm in our experiment responded more rapidly than gs, as
also suggested by Flexas et al. (2008), Bunce et al. (Bunce, 2009),
and Keenan et al. (2010), and their mutual dependence was found
to be statistically significant (r2 = 0.77). Based on our results, we
support the suggestions of Flexas et al. (2006, 2007) and Warren
et al. (Warren, 2008) in that these two parameters of the CO2

diffusion pathway in photosynthesizing leaves are dependent on
each other. This work has also shown that the relationship is
highly variable in many species and could be affected by a variety
of environmental factors.

Although the increase in stomatal (LS) and mesophyll (LM)
limitations to photosynthesis as a result of water scarcity is quite
well-documented, processes linked to these phenomena are still
a matter of debate (Flexas and Medrano, 2002). Restricted CO2
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diffusion from the surrounding atmosphere to chloroplasts is
a common response to water deficit and is caused by limiting
factors to photosynthesis even under mild stress conditions
(Roupsard et al., 1996; Grassi and Magnani, 2005; Chaves et al.,
2009). To study the impact of drought and to demonstrate
which limits of photosynthesis dominate, AN–Ci response curve
analyses are often used (Ni and Pallardy, 2009).

In our analysis of LS and LM under progressive drought
stress (Figure 7), genotype differences in these parameters
were observed. A variety of differences could be dependent
on both the intensity and duration of stress, as well as
different abilities to respond to water shortage (Grassi and
Magnani, 2005). Under the initial water stress, LS dominated
over LM in the Pehlivan genotype (Figure 6). Furthermore,
as the water stress developed, LM increased and became
crucial. The reason was simply the decline of gm, which was
caused by the reduced CO2 concentration within chloroplasts.
However, LS has not yet been distinguished at this point
in comparison with LM. This was caused by only a slight
change in the intercellular CO2 concentration (Ci), as also
found by Lawlor and Cornic (2002). Of course, LS increased
as well. However, its development was less sufficient compared
to LM. The same result for the function of LM was reported
in the studies by Galmés et al. (2007) and Tosens et al.
(2012).

Our photosynthesis limitation analysis showed that the
dynamics of the changes in LS and LM were different in
genotypes GK Forrás, Piopi-4 and Šamorínska (Figures 7A,C,D).
Since the beginning of dehydration, LM and LS have increased
concurrently, as was also observed by Martin-Ruiz and Torres
(1992). However, LM began to dominate immediately from the
first day of dehydration, as was also observed in the work of
Delfine et al. (2001). They argued that the high values of LM
indicate the reduction of gm and that the increase in LM is
responsible for the impairment of plant metabolism. LM values
above 80% were also demonstrated by Gallé et al. (2009) in
tobacco plants. Other studies (Escalona et al., 1999) observed
significant increases in LS and LM at the same time of a stress.
Finally, we obtained similar results as documented in the studies
of Flexas et al. (2014), Limousin et al. (2010), Misson et al.
(2010), and StPaul et al. (2012), which stated that LS is a more
important factor during early drought events; however, under
severe water stress, LM dominates over LS and primarily limits
wheat photosynthesis.

CONCLUSIONS

The present results show a significant inter-genotypic variability
in wheat photosynthetic responses to a long-term progressive
drought, as studied in four selected wheat genotypes of different
geographical origins and breeding chronology. Our study
demonstrated the effect of low water availability in plants on
gm inhibition. Drought clearly reduced gm during long-term
progressive dehydration in all wheat genotypes. The results
show that gm is co-regulated with gs with their strong effect
on AN regulation. Interestingly, gm is a genotypic variable
not only for the conditions of drought but also for well-
watered plant conditions. Therefore, we offer reliable evidence
of a crucial role for gm in the regulation of CO2 assimilation
under both well-watered and drought conditions. We also
demonstrated a rapid response of gm to short-term Ci changes
with significant genotypic variability under WW conditions.
However, this response is significantly reduced without any
genotypic effect during prolonged drought. For future research,
we suggest the study of leaf anatomical traits linked to the
limitations of photosynthesis together with an evaluation of plant
photosynthetic parameters. It has been hypothetized, and in some
individual works already demonstrated, that the differences in
leaf anatomy may have a rather significant influence on the
CO2 diffusion within the leaf mesophyll and on the whole leaf
photosynthetic performance. In summary, the present results
with wheat are statistically remarkable, and they contribute to the
general knowledge of the regulation of leaf photosynthesis under
periods of water scarcity by the mesophyll and stomata.
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