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Association analysis based on linkage disequilibrium (LD) is an efficient way to dissect

complex traits and to identify gene functions in rice. Although association analysis is

an effective way to construct fine maps for quantitative traits, there are a few issues

which need to be addressed. In this review, we will first summarize type, structure,

and LD level of populations used for association analysis of rice, and then discuss the

genotyping methods and statistical approaches used for association analysis in rice.

Moreover, we will review current shortcomings and benefits of association analysis as well

as specific types of future research to overcome these shortcomings. Furthermore, we

will analyze the reasons for the underutilization of the results within association analysis

in rice breeding.

Keywords: association analysis, genotyping, linkage disequilibrium, marker density, phenotyping, population

structure, Oryza sativa

INTRODUCTION

Rice (Oryza sativa L.) is one of the most important components of the human diet in many regions
of the world and feeds more than 50% of the world’s population. Thus, increasing the yield of
rice through genetic improvement is important to meet the food demands of a growing global
population. After the completion of the rice genome, extensive genetic studies have been conducted
to characterize the biological functions for hundreds of rice genes.

In the early Twentieth century, Jennings (1917) raised the concept of linkage disequilibrium
(LD), which refers to the non-random combinations among different genetic markers. The main
mechanism of LD existence in a population over time is the association between alleles at different
loci. Hence, there is a possibility of detecting quantitative trait loci (QTL) by estimating LD
between loci and potential QTLs. The tightly linked loci that have significant correlation with QTLs
can be detected through genetic markers or loci distributed in the genome or those nearby the
candidate genes. Association analysis (AA) based on LD can overcome the limitations of linkage
mapping (i.e., we can detect only two alleles at any given locus in a bi-parental cross and a low
mapping resolution are major limitations of linkage mapping; Flint-Garcia et al., 2003). Yu and
Buckler (2006) compared AA with other linkage mapping methods in detail, and revealed that AA
could explore most of the recombination events and mutations in a given population with higher
resolution. However, linkage mapping methods are best suited for populations with low genetic
diversity (Flint-Garcia et al., 2005).

In general, linkage mapping is a conventional method for gene mining in rice. To identify
QTLs by linkage mapping, the development of one or several segregating populations through
crossing of two lines/varieties is required (e.g., Recombinant Inbred Lines-RILs, F2, Double
Haploid and Backcross populations). Therefore, the accuracy of QTL detection largely depends
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on the selected lines (Zhang Y. M. et al., 2005). AA can
incorporate a relatively large portion of natural variation in
a species and localize associations to much smaller genomic
regions, because sampling diversity incorporates many more
recombination events than traditional recombinant inbred lines
(Nordborg and Weigel, 2008). AA has two major advantages
compared with linkage mapping: (1) wider genetic variation, and
(2) higher mapping resolution (Remington et al., 2001). AA has
been widely applied in the form of genome-wide association
studies (GWAS) and candidate-gene association studies (CGAS).
GWAS typically focus on associations between single-nucleotide
polymorphisms (SNPs) and major traits, whereas CGAS analyzes
specific variants of a particular gene often selected on the basis
of a biological hypothesis. Moreover, GWAS is often utilized
when we are interested in finding out all the genomic regions
that may control a specific trait. If the information about the
genetics of a target trait is available and CGAS can be predicted
on the basis of available information, we can confirm the genes
that control the trait of interest. Caldwell et al. (2006) defined AA
as “two tiered” in a study on barley, in which a lower resolution
AA based on genome wide scanning was used to detect the
candidate region in elite materials, and a higher resolution AA
was carried out to mine candidate genes in landraces and wild
accessions. The power of AA is largely determined by population
size, the genotype relative risk (only for human diseases), effect
size, marker density, LD decay rate between marker and target
allele as well as errors in phenotypic and genotypic data, and the
desired statistical significance level (Gordon and Finch, 2005).

In plants, AA has been applied efficiently to dissect many
complex quantitative and qualitative traits under biotic and
abiotic stresses in diploid and polyploid plants (rape seed and
bread wheat; Harper et al., 2012; Ling et al., 2013). Large-scale
GWAS have led to the discovery of thousands genetic signals
across the plant genome associated with the quantitative traits of
plants. Moreover, it has been demonstrated that new genes can be
effectively identified on the basis of GWAS data (Si et al., 2016).

Although AA is an effective way in which we can construct
fine maps for quantitative traits, there are a few issues which need

Abbreviations: LD, Linkage disequilibrium; QTL, Quantitative trait loci; AA,

Association analysis; GWAS, Genome-wide association study; CGAS, Candidate-

gene association study; SNPs, Single-nucleotide polymorphisms; MLM, Mixed

linear model; BLUP, Best linear unbiased prediction; USDA, United States

Department of Agriculture; SSR, Simple sequence repeat; r2, Pairwise correlation

coefficient; RFLP, Restriction fragment length polymorphism; InDel, Insertion-

deletion; GBS, Genotyping by sequencing; GLM, Generalized linear model; Q,

Population structure; K, Kinship; LAP, Laplacian eigen functions; GEMMA,

Genome-wide efficient mixed-model association; SUPER, Settlement of MLM

under progressively exclusive relationship; A-D, Anderson-Darling; NAM, Nested

association mapping; RIL, Recombinant inbred lines; MAGIC, Multi-parent

advanced generation intercross; FDR, False discovery rate; MRD, Modified Rogers

distance; NGS, Next generation sequencing; DArT, Diversity array technology;

CNVs, Copy number variations; PAVs, Presence and absence variations; ISBPs,

Insertion-site-based polymorphisms; MTMM, Multi-trait mixed model; TALENs,

Transcription activator-like effector nucleases; CRISPR, Clustered regularly

interspersed short palindromic repeats; GS, Genomic selection; BMI, Body-mass

index; JLAM, Joint-linkage association mapping; LR, Logistic regression; SLM,

Simple linear model; FaST-LMM, Factored spectrally transformed linear mixed

model; CMLM, Compressed mixed linear model; EMMA, Efficient mixed-model

association; EMMAX, Efficient mixed-model association eXpedited.

to be addressed. For instance how to (1) eliminate the influence
of linkage, population structure, and familial relatedness to
reduce the false positives in AA; (2) reduce the false negatives
that can lead to overcompensating for population structure and
relatedness in AA based on amixed linear model (MLM) or other
models, and limited power to detect LD among the populations
with lower genetic diversity (i.e., low frequency of rare alleles and
genetic variants); (3) improve the computational capacity of a
model for AA; (4) improve the repeatability of significant trait-
marker associations in AA; and (5) utilize AA in rice breeding.

A review about rice AA will be very useful for AA applications
in other plants because rice is considered as a monocot cereal
model plant. In this review, we first describe the population
type, population structure, LD level and the genotyping methods
and statistical approaches used for rice AA. Then, we review
the benefits of association analysis, shortcomings, and the
possible types of future research to overcome these shortcomings.
Furthermore, we also discuss the reasons for the underutilization
of AA in rice breeding.

POPULATION TYPES IN RICE AA

GWAS in crops usually requires a permanent resource—a
population of diverse (and preferably homozygous) landraces or
cultivars that could be re-phenotyped for many traits (Huang and
Han, 2014). Rice landraces and cultivars selected from different
germplasm resources were used in previous rice AA (Table 1).
Rice landraces contain greater genetic diversity than cultivars
and represent an intermediate stage in domestication between
wild and elite cultivars (Londo et al., 2006). Mining the elite
genes within these rice landrace is of particular importance for
the genetic improvement of cultivated rice. Rice landraces have
more elite genes or variations for biotic stress, abiotic stress, high-
quality, and yield than varieties. Here, we recommend that the
sampling population (e.g., core collection, mini core collection)
should be created from rice landraces to use for rice AA.

It is very hard to mine and utilize the exotic genes existing
in rice accessions (i.e., 7.75 × 105) in the world (FAO, 2010)
by either linkage mapping or AA. The maximum population
size used for rice AA was 1495 rice accessions in a previous
study (Huang et al., 2015). One of the methods to utilize the
huge germplasm with AA is to construct the core collection.
A core collection is a subset chosen to represent the abundant
genetic diversity of a collection with a minimum of redundancies
(Frankel, 1984; Frankel and Brown, 1984a,b). Construction of
core collection has been widely applied in rice as well as in other
crops (Yu et al., 2003; Liu W. et al., 2015). A rice core collection
consisting of 150 accessions based on 48 morphological traits
from 2262 accessions of Ting’s collection has been constructed
and used in AA (Li X. L. et al., 2011; Zhang et al., 2011, 2014). The
abundant genetic variations in the rice core collection provide an
important reservoir of genetic diversity and potential sources of
beneficial alleles for rice breeding. Furthermore, the United States
Department of Agriculture (USDA) also constructed different
mini-core collections and core collections of rice with different
sampling sizes, and AA was conducted within these collections
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(Yan et al., 2009; Bryant et al., 2011; Li X. L. et al., 2011; Li et al.,
2012; Jia et al., 2012). Moreover, a salt tolerant European rice core
collection consisting of 180 accessions was constructed for AA
(Ahmadi et al., 2011).

In addition, family-based populations can also be used for
AA and improve the power of AA because there is less
population stratification in family-based populations (Gupta
et al., 2014). For instance, nested association mapping (NAM)
population, consisting of 25 RILs, was successfully created by
crossing a diverse range of 25 important breeding lines with
one common and well-characterized parent through AA in
maize (Yu et al., 2008). Moreover, the multi-parent advanced
generation intercross (MAGIC) populations, originally proposed
for animals AA (Mott et al., 2000) and later used in Arabidopsis
thaliana (Kover et al., 2009) and Zea mays (Chintamanani et al.,
2010), were developed. The NAM and MAGIC populations have
abundant recombinations or variants for gene identification.
These populations could be used for rice AA and it could increase
the detection power of traditional association mapping to detect
rare alleles. A list of software that can be used for family-based
AA is freely available (Ott et al., 2011).

The populations used for AA should possess as many
phenotypes as possible (Flint-Garcia et al., 2005). The choice of
appropriate germplasm resources to maximize the number of
historical recombination and mutation events (and thus reduce
LD) within and around the gene of interest is critical for the
success of AA (Long and Langley, 1999; Gordon and Finch, 2005;
Yan et al., 2011). There are many advantages of QTL mapping
with AA in rice landraces or different germplasm resources, such
as (1) Genotypes remain constant from generation to generation;
(2) Each phenotype can be observed repeatedly in different
environments, which can reduce the measurement errors and
environmental effects; (3) Accumulated recombination events
can be applied to locate a fine scale QTL; (4) There is no need
to test hybrids and their segregating offsprings, and (5) After the
identification of QTL location, the effect of each QTL can be
estimated by the best linear unbiased prediction (BLUP), and the
breeders can select excellent lines in the most convenient way.

GENETIC DIVERSITY AND GENOMIC
VARIATION IN RICE AA POPULATIONS

AA cannot be performed in the absence of measurable
polymorphisms, so abundant differences at the phenotypic level
and a high density of polymorphisms at the DNA sequence
level are essential (Yan et al., 2011). Abundant genetic diversity
and genomic variation in the rice gene pool improves the
mapping power of AA. For instance, a GWAS was carried
out in 446 O. rufipogon accessions for leaf sheath color and
tiller angle, which would have stronger mapping power owing
to higher levels of genetic diversity in the wild species than
that in O. sativa (Huang et al., 2012a). The previous studies
found that the genetic diversity of modern cultivars had been
reduced compared to the landraces and wild progenitors owing
to human and natural selection in rice (Huang et al., 2012a),
maize (Hufford et al., 2012), and foxtail millet (Jia et al.,

2013), which had been summarized in review of Huang and
Han (2014). Based on above studies, the genetic diversity of
natural populations in rice AAwhich were constructed fromwild
progenitors and landraces might be larger than from modern
cultivars. Furthermore, Huang et al. (2012b) and Zhang et al.
(2011) found that the genetic diversity of indica rice were more
abundant than japonica rice. And there are studies using only
indica and japonica rice populations for AA where robust trait-
marker associations were identified in studies of Lu et al. (2015),
Feng et al. (2016), and Yano et al. (2016), respectively. In addition,
the genetic diversity and genomic variation as well as mapping
resolution of family-based populations might be lower than those
in natural populations used in AA due to limited recombination
and allele variations. However, the mapping power, especially
the power to detect minor effect loci and epistatic interactions
within family-based populations might be higher than using
natural populations because the genetic backgrounds of family-
based populations are much simpler and clearer than natural
populations (Wen et al., 2016).

The genomic variations in rice were highly abundant
according to the genomic sequences of thousands of rice
accessions or cultivars through genotyping by sequencing (GBS)
and re-sequencing. High-throughput loci or markers were
developed for genotyping the individuals among AA populations
based on the genomic variations. The AA methods in model
species (i.e., rice, maize, and Arabidopsis) will guide and push
forward the development of the other plants AA.

POPULATION STRUCTURE AND LD IN
RICE AA

Information about the population structure and extent of
LD within the population is of fundamental importance for
association mapping (Stich et al., 2005). Population structure
depends on various factors such as adaptation or domestication
and is an important component for association mapping analysis
because it can reduce both type I (false positive) and II (false
negative) errors between molecular markers and traits of interest
in inbreeding species (Goldstein and Weale, 2001; Yu et al.,
2006). The presence of subpopulations can result in spurious
associations due to confounding of unlinked markers with
phenotypic variation (Buckler and Thornsberry, 2002). Genetic
loci that do not have any effect on a trait may demonstrate
statistical significance for their co-segregations with the trait of
interest due to population stratification caused by the genetic
drift, domestication, or background selection. The decay of LD
over physical distance in a population determines the required
marker density and the level of resolution that could be achieved
in an association study. If LD decays too fast within a region, then
a large number of markers would be required to scan the whole
genome or one gene region.

Population Structure in Rice AA
The number of identified population structure varied greatly
and is summarized in Table 1. There are some studies that were
specifically conducted for population structure analysis. Five
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major groups, i.e., indica, aus, aromatic, temperate japonica, and
tropical japonica were detected in a sample of 234 rice varieties
(Garris et al., 2005). A similar population was detected by re-
sequencing of 50 accessions of cultivated and wild rice accessions
(Caicedo et al., 2007; Huang et al., 2012b; Xu et al., 2012). Seven
subpopulations were detected within rice landraces (Zhang et al.,
2007). Two subgroups, including indica and japonica as well
as six sub-subgroups, were found within a primary rice core
collection (Zhang D. et al., 2009). Three subgroups (japonica,
Aus, and indica) were identified within 20 rice varieties/landraces
(McNally et al., 2009). Two distinct subgroups (indica and
japonica) were detected within the entire population by different
statistical methods, and SG 1 was divided into four sub-
subgroups, including intermediate seasonal indica, sub-tropical
indica, late seasonal indica, and early seasonal indica (Zhang
et al., 2011). Three subgroups were detected in a population
comprising of 446 wild rice accessions (Huang et al., 2012a). The
varied number of subgroups might be due to different methods,
different markers number, different rice populations used for
population structure analysis, and that needs to be further
studied. In general, the subpopulation’s information identified
in rice population structure studies reflect the history of genetic
drift, domestication, or background selection that can effectively
reduce the false positive induced by population structure.

When a population structure was assessed by markers or loci,
the information regarding subpopulations were considered as
covariates in rice AA. For instance, in the study of Famoso et al.
(2011), AA was performed within the entire population and all
subpopulations, and different significant loci associating with
aluminum tolerance were detected in the entire population and
sub-populations.

LD Level in Rice AA
Marker density is one of the most important factors for an
accurate identification of LD level within AA population. Some
previous studies suggested that the true LD could be detected
by using a modest number of SNPs and SSRs. For instance,
Yonemaru et al. (2014) revealed that 20% (1152 SNPs, the marker
density is only one marker per 325.10 kb) of 5760 SNPs could
detect the LD with high accuracy as that detected by whole
markers. Apparently, it is unlikely that a modest number of
markers could saturate the whole genome. The marker density
ranged from one SNP per 0.06–325.10 kb when rice landraces
and diverse collections were used for GWAS of rice. The marker
density might be higher than this; however, balanced populations
were used for GWAS of rice.

LD varies greatly among different genomic regions and rice
populations. Low level of LD would lead to impractical whole-
genome scanning because of the excessive number of markers
required for whole-genome studies (Kruglyak, 1999). Moreover,
the resolution of AA in a population depends on the structure of
LD across the whole genome (Remington et al., 2001). The LD
decay rate of the population was measured as the chromosomal
distance at which the average pairwise correlation coefficient
(r2) dropped to half of its maximum value. Significant LD
surrounding the Xa5 locus of rice was observed between the sites

up to 100 kb apart (Garris et al., 2003). LD was observed to
decay at 1 cM or less in rice investigated with DNA sequences
(Olsen et al., 2006; Mather et al., 2007; Rakshit et al., 2007),
while LD decayed at 20–30 cM using SSR markers (Agrama et al.,
2007; Agrama and Eizenga, 2008). LD extends to ∼200 kb for
the indica group, but there were only 8 indica varieties (McNally
et al., 2009). Intra-chromosomal LD decayed at an average of
25–50 cM in different subgroups (Jin et al., 2010). Genome-wide
LD decay rates of indica and japonica were estimated at ∼123
and 167 kb, where the r2 drops to 0.25 and 0.28, respectively
(Huang et al., 2010). The LD decay distance was in the region
of 40–50 cM in a rice core collection (Zhang et al., 2011). The
LD decay was faster in the indica subpanel (r2 below 0.2 at 101
kb) than in the japonica subpanel (r2 below 0.2 at 425 kb; Phung
et al., 2014). Theminimum distance of LD decay for POP1–POP7
was 60.2, 13.0, 85.4, 70.8, 29.8, 72.9, and 61.8 cM, respectively
(Dang et al., 2014). The average LD maximum distance (∼125
kb) was observed for chromosomes 8 and 12, while minimum
distance (∼69 kb) was observed for chromosome 3 (Kumar et al.,
2015). These studies suggest that the extent of LD varies greatly
among different genomic regions and rice populations. Thus, the
marker density used for scanning the whole genome or one gene
region depends on the LD decay across the genome or a gene
identified in rice by AA.

GENOTYPING METHODS IN RICE AA

SSRs and SNPs markers have been widely used for rice AA,
while amplified fragment length polymorphism (AFLP) markers,
restriction fragment length polymorphism (RFLP) markers, inter
simple sequence repeat (ISSR), insertion-deletion (InDel), and
diversity arrays technology (DArT) markers were not used so
frequently (Table 1). For CGAS, AA based haplotype (not based
on single SNP locus) might be a good method to find natural
allelic variation in traits, and some CGAS studies had used this
method (Table 1). For GWAS, higher mapping resolution for
AA can be obtained through high marker density, because low
marker density considerably reduced the QTL mapping power
(Emma et al., 2013). SSR markers have been used for rice genetic
maps because of their abundance in rice genome, co-dominance,
and a high polymorphism rate (Powell et al., 1996). In the last 10
years, rapid development of the bioinformatics and the completed
rice genome has eased the process of SSR markers designing,
thus more than 18,830 SSR markers have been developed
for rice genome (IRGSP, 2005). Several studies have found low
resolution by using SSRmarkers for AA.With the development of
sequencing technology, many complex QTLs or genes have been
discovered by re-sequencing thewhole genome forAA in the last 4
years (Table 1). SNPs represent the existence of single nucleotide
variation in different DNA sequences for a given species. The
greatest advantage of SNP is that there are rich polymorphisms
in the genome. Genes associated with specific biological
traits can be identified using the SNPs marker and LD mapping.

The technique of GBS has recently been successfully utilized
for AA studies in maize (Lipka et al., 2013), sorghum (Morris
et al., 2013), and wheat (Saintenac et al., 2013). Moreover, GBS
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is also used for the identification of genes or QTLs that underlie
traits of particular interest for breeders such as yield, flowering
time as well as plant height, and has been successfully utilized for
AA studies in rice (Huang et al., 2012b, 2015; Han and Huang,
2013).

PHENOTYPING IN RICE AA

AA has been proved that it could be an efficient strategy for
dissecting many complicated traits in rice. In most of rice AA
researches, agronomic and quality traits that link closely with
production were often dissected, while biotic stress resistance,
abiotic stress resistance and metabolic traits were also studied
using AA (Table 1). However, many trait-marker associations
proposed to date have not been consistently replicated across
different populations in all AA. The percentage of significant
associations identical with previously mapped loci ranged from
20 to 75% when SSR markers were used in rice AA. Furthermore,
the significant associations identified in rice AA are hard to
be repeated in different AA populations (Zhang et al., 2014).
While SNP markers were used in rice GWAS, there may be
smaller proportions (<20%) of significant associations identical
with previously mapped loci but most of the identical significant
loci located at the region of cloned genes. Non-replication often
reflects false positives in the original claims and it may due
to different parents/populations/markers used in AA as well
as heterogeneity caused by biases or even genuine diversity
of the genetic effects in different populations (Moonesinghe
et al., 2008). However, we think that non-replication in rice
AA is likely due to incorrect phenotyping, especially for field
phenotyping (agronomic and quality traits of rice are very
complicated) in rice AA. Identifying phenotype correctly is one
of the key points for a successful AA. For correct identification
of phenotype, the assay should be arranged in several years
and locations as well as set replications, especially for complex
traits.

In addition, high-throughput GWAS corresponding to
high-throughput phenotyping could be an extremely effective
approach for dissecting complex traits. With high-throughput
sequencing techniques rapidly developing, traditional plant
phenotyping lags far behind. However, studies on high-
throughput phenotyping are being on emergence. For instance,
Yang W. et al. (2014) combined high-throughput phenotyping
and GWAS to monitor 13 traditional agronomic traits and 2
newly defined traits during the rice growth period. Moreover, the
development of multiple omics technology and its combination
in AA will be an effective way for dissecting traits such as
metabolic traits. For example, Matsuda et al. (2015) performed
GWAS to investigate the genetic architecture behind the natural
variation of rice secondary metabolites.

Furthermore, agronomic and quality traits as well as rice food
safety under fluctuating environment of earth may be the hotspot
for future rice AA. It was found that chronic ozone exposure
significantly decreased seed weight, culm length, number of
primary rachis branch, and number of spikelets per panicle in
an indica rice Habataki (Tsukahara et al., 2013). Similarly, Ueda

et al. (2015) reported a GWAS in rice (Oryza sativa L.), which
determined candidate loci associated with ozone tolerance.

STATISTICAL METHODS IN RICE AA

Nucleotide diversity measure, discriminant analysis, elliptic
fourier analysis, nested clade analysis, principle component
analysis, generalized linear model (GLM), MLM, logistic
regression (LR), and simple linear model (SLM) were used for
rice AA (Table 1). There was no consideration for population
structure and relatedness in previous rice AA until Yu et al.
(2006) indicated that population structure and relatedness may
cause false positives in AA. To overcome the false positive
caused by population structure and relatedness, an approach
using MLM that takes both population structure (Q) and kinship
(K) into account for the reduction of false positives was proposed
for association mapping (Yu et al., 2006; Kang et al., 2010;
Listgarten et al., 2010; Price et al., 2010; Zhang et al., 2010).
In recent years, comparisons of different statistical models
e.g., Q, Q+K, and P+K conducted for Arabidopsis (Zhu and
Yu, 2009), sweet sorghum (Wang et al., 2009), maize (Yang
et al., 2010), and rice (Table 1) indicated that MLM is one
of the most appropriate and popular methods used for AA.
However, MLM should be improved for the detection of rare
alleles.

It is important to point out more explicitly that GWAS is
likely to identify associations of common alleles, but are not
suitable for the analysis of rare alleles/haplotypes due to statistical
significance issues unless the use of specifically designed balanced
population. Almost all of the statistical methods used for rice
AA could filter the variants or loci with minor allele frequency
(<0.05), and this leads to missing of some functional rare alleles.
Therefore, a new statistical method, called as Anderson-Darling
(A-D) test, which could control rare alleles in GWAS, was
reported. Moreover, the A-D test is one of the useful complement
for GWAS analysis of complex quantitative traits in rice AA. The
A-D test balances the false positives and statistical power (Yang
N. et al., 2014).

The statistical level (P-value) cut-off for significance in rice
AA ranged from 10−8 to 0.05 (Table 1). The most stringent
significant level was P < 10−4 (Wen et al., 2009) for AA in rice
until SNP markers were reported in the study of Huang et al.
(2010). Moreover, the significant level was set more stringent
than P< 10−4 when SNPmarkers were used in rice AA (Table 1).
In general, the more stringent significant level is set, the less
false positives will be identified, while the more false negatives
will be created. However, setting less stringent significant level
may be due to the lower marker density when using limited
number of SSR markers. Therefore, the significant trait-marker
associations identified under less stringent significant level might
be true significant associations. For instance, the percentage of
significant associations identical with the previously mapped loci
were 68% (Agrama et al., 2007) and 75% (Wen et al., 2009)
corresponding to 0.05 as well as 10−4 of P-value, respectively.
We conclude that the statistical significance level should be set
according to the marker density used for AA in rice. The higher
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the marker density, the more stringent significant level should
be set.

PROVEN BENEFITS OF RICE AA

Since rice landraces with abundant natural variations were first
used in AA, especially in GWAS, the approach has revealed
that it is an efficient strategy for dissecting many complicated
traits in rice. For instance, in the GWAS study of Huang
et al. (2010), association signals for apiculus color, pericarp
color, gelatinization temperature, amylose content, grain width,
and grain length were located close to known genes that
have previously been identified using mutants or recombinant
populations in studies of Saitoh et al. (2004), Sweeney et al.
(2006), Gao et al. (2003), Wang et al. (1995), Shomura et al.
(2008), and Fan et al. (2006), respectively.

In most of the rice AA studies, agronomic and qualitative
traits that tightly linked with production/yield were dissected
(Table 1), resistance to biotic stress (Zhao et al., 2011; Jia et al.,
2012; Wang C. et al., 2014), abiotic stress (Ahmadi et al.,
2011; Famoso et al., 2011; Norton et al., 2014; Kumar et al.,
2015; Ueda et al., 2015), and metabolic traits were also studied
using AA (Chen et al., 2014; Matsuda et al., 2015). Large-scale
AA (GWAS) has led to the discovery of thousands of genetic
signals across the rice genome associated with plant quantitative
traits.

MAJOR SHORTCOMINGS AND POSSIBLE
SOLUTIONS IN RICE AA

Although AA is an effective way to construct fine maps for
quantitative traits, there are some problems to be solved in the
future to improve the efficiency of AA. For instance, the results
of AA studies are hardly being used in rice breeding. Gupta et al.
(2014) indicated that underutilization in plant breeding is partly
due to high false discovery rate (FDR), and partly due to the
difficulty in using markers with rare alleles that may be associated
with missing and desirable heritability for the traits of interest.
These problems and possible solutions are discussed below in
detail and a schematic presentation showing the problems and
possible solutions in each steps during AA is given in Figure 1.

There is no previous report about the existence of false
positives existed in rice AA because the focus of rice AA is only
to detect significant trait-loci, and few studies have conducted
follow-up tests of rice AA candidate genes. False positives in rice
AA are possible due to linkage, population structure, familial
relatedness, and low repeatability.

The False Positives due to Linkage
Linkage between causal and non-causal sites as well as
epistasis can induce false positives and true genes or loci
cannot be identified because very large linkage complexes
are hard to resolve into small fragments. This problem has
been demonstrated by the two studies: Dickson et al. (2010)
used simulations to demonstrate the presence of two or
more rare causal variants in disequilibrium that cannot be

detected due to the lack of statistical power and can produce
spurious associations that are distantly linked to the causal
polymorphisms; and Atwell et al. (2010) revealed that negative
disequilibrium between two causal polymorphisms in the gene
FRIGIDA interfered with the ability to find either of them
but created strong signals at several distantly linked markers
in a genome-wide association study in Arabidopsis thaliana.
These false positives caused by linkage cannot be eliminated
by increasing the sample size or number of markers and this
problem was always found in pleiotropy (Platt et al., 2010).
However, constructing the haplotypes withmultiple traits by GBS
might be a possible way to reduce the rate of false positives
by linkage. For instance, Larsson et al. (2013) and Morris
et al. (2013) have shown that association and linkage mapping
combined with haplotype diversity can produce more robust
results.

The False Positives due to Population
Structure and Familial Relatedness
The presence of subpopulations and kinship can result in
spurious associations due to confounding of unlinked markers
with phenotypic variation (Buckler and Thornsberry, 2002). For
instance, Dwarf 8 associations reported by Thornsberry et al.
(2001) was generally accepted as the first plant association
mapping study, but these associations are likely false positives
which resulted from insufficient correction of population
structure (Larsson et al., 2013).

Scientists have always tried to control the effects of population
structure and kinship in AA studies. Three statistical methods
(i.e., genomic control, structured association method, and the
unified mixed model approach) are often recommended to
control the effects of population structure in association studies,
and these three methods are well-summarized in review of
Gupta et al. (2014). However, population structure identified
by Laplacian Eigen functions (LAP; Zhang J. et al., 2009) and
MCLUST (Fraley and Raftery, 2007) as well as morphological
markers were not described by Gupta et al. (2014). Furthermore,
the Cheng’s index method could discriminate between indica and
japonica rice cultivars based on six morphological traits, i.e., hair,
phenol reaction, length of 1st–2nd rachis internode, glume color
at heading, leaf hair, and grain length/width ratio (Xu et al., 2005;
Zhu et al., 2007).

Moreover, the population structure identified by principal
component analysis (PCA), principal coordinate analysis
(PCoA), and LAP is highly related to the known germplasm
type information as well as the STRUCTURE subgroups (Zhang
et al., 2011). These methods have neither computation burden
nor assuming any population genetic model. However, they
don’t provide the information on the number of subgroups
and assignment of individuals to subgroups. STRUCTURE and
MCLUST could provide the information of subgroups by a
detail membership probabilities threshold that could be used as
covariant in AA. Population structure was constructed by using
the morphological traits and the data of both morphological
and molecular markers was also compared, and it was found
that MCLUST based on the morphological markers might be the
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FIGURE 1 | Schematic representation of various steps involved in association analysis (AA). NAM, nested association mapping. MAGIC, multi-parent

advanced generation intercross. RFLP, restriction fragment length polymorphism. SSR, simple sequence repeat. InDel, insertion-deletion. SNP, single nucleotide

polymorphisms. DArT, diversity array technology. CNVs, copy number variations. PAVs, presence and absence variations. ISBPs, insertion-site-based polymorphisms.

PCA, principal component analysis. PCoA, principal coordinate analysis. LAP, laplacian eigenfunctions. LR, logistic regression. GLM, generalized linear model. MLM,

mixed linear model. CMLM, compressed mixed linear model. FaST-LMM, factored spectrally transformed linear mixed model. EMMA, efficient mixed model

association. EMMAX, EMMA eXpedited. MLMM, multi-locus mixed model. MTMM, multi-trait mixed model. A-D, Anderson-Darling test. SUPER, settlement of MLM

under progressively exclusive relationship. G, genotype. E, environment. JLAM, joint linkage association mapping. GWAS, genome wide association study. GS,

genomic selection. Plus sign (Red) represents the performance which should be improved in future rice association analysis.

cheapest method to detect population structure (Zhang et al.,
2011).

MLM is one of the most popular methods for controlling
population structure and familial relatedness in rice AA.
However, Segura et al. (2012) showed that MLM could not
always account for a locus with larger effects. Furthermore, Zhou
and Stephens (2012) showed that existing methods for exact
computation of standard statistical tests were computationally
impractical for even moderate-sized genome-wide association
studies. The consensus until now has been that all available SNPs
should be used to determine population structure and familial
relatedness using MLM (Listgarten et al., 2012). Therefore,

MLM’s intensive computational burden is prohibitive in practice,
especially for large samples (Wang Q. et al., 2014). To date,
a few strategies have been used to improve MLM. The newly
developed algorithm, FaST-LMM, solved the computational
problem, but requires fewer number of SNPs than the number of
individuals to derive a rank-reduced relationship (Lippert et al.,
2011). This restriction potentially leads to less statistical power
compared to using all SNPs. A small number of SNPs (called
factored spectrally transformed linear mixed model, FaST-LMM-
Select) systematically increase power, improve calibration and
reduce computational cost to structured populations (Listgarten
et al., 2012). Moreover, an efficient method that was named as
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genome-wide efficient mixed-model association (GEMMA) was
presented, which makes approximations unnecessary in many
contexts (Zhou and Stephens, 2012). A multi-locus mixed model
as a general method was proposed for mapping complex traits in
structured populations (Segura et al., 2012).Wang Q. et al. (2014)
developed a SUPER (Settlement of MLM Under Progressively
Exclusive Relationship) powerful method that dramatically
reduces the number of genetic markers in defining individual
relationships and remarkably increases statistical power.

Computational burden is mainly due to the use of too many
markers for GWAS. All the above strategies which require
fewer markers could improveMLM computational efficiency and
identify population structure and individual relatedness correctly
by newly developed algorithms. Meanwhile, in our previous
study (Zhang et al., 2011), studies of Li J. et al. (2011) and Van
Inghelandt et al. (2010), 25∼30% of all markers were required to
determine the same population structure as the whole markers,
and similar precision was found in the population by both
numbers of markers. The ideal results may be achieved with
MLM if a small number of markers (e.g., hundreds or thousands
of markers) will be used for AA, while FaST-LMM, GEMMA,
MLMM, and SUPER should be used, especially for complex
traits, if a huge number of markers (e.g., millions of markers) are
available for AA.

The False Negatives due to
Overcompensation
False negatives (missed significant signals) caused by
overcompensating corrections of multiple testing for significant
associations and problems with rare alleles.

There are many corrections that have been suggested to
overcome the problem of false positive and negative associations
due to multiple testing and some of the commonly used
corrections are as follow: (1) Bonferroni correction (Moran,
2003); (2) Holm correction (Holm, 1979); (3) FDR (Benjamini
and Hochberg, 1995); 4) q-value (Storey, 2002); and (5) step-
up adaptive method (Benjamini et al., 2006). Gupta et al. (2014)
has explained these five corrections in detail and made an
excellent comparison of statistical methods used for corrections
to overcome the multiple testing problems (genome-wide error
rate and FDR). They concluded that the reasonable choice of
corrections would be to compare the results obtained by using
different methods, and to evaluate the differences in the number
of QTLs identified with biological significance. We fully agree
with the above mentioned conclusions of Gupta et al. (2014).

Furthermore, GWAS has low power for rare alleles, which
makes a substantial proportion of natural variations. The sites
with weaker effects may play an important role in evaluation
of traits like the sites with stronger effects. Some studies
about the detection of rare alleles have been performed. For
instance, several statistical models for rare alleles in AA have
been summarized (Gibson, 2011). Moreover, Sur et al. (2013)
indicated that the next step in the genetic epidemiology of breast
cancer needed to include the assessment of variants with lower
frequencies and smaller effect sizes.

About 44% of the SNPs are of low frequency (minor allele
frequency < 0.05) in rice. It has been concluded that the use of a
large sample size or the construction of multiple bi-parental cross

populations (e.g., NAMorMAGIC)may be helpful in rice GWAS
for rare alleles (Huang and Han, 2014). To detect rare marker
alleles from the analysis, linkage mapping and LDmapping could
be combined for conducting joint-linkage association mapping
(JLAM; Gupta et al., 2014).

Computational Capacity for Identifying
Population Structure
A dataset with large sample size and plenty of markers creates a
demand for heavy computational capacity in the MLM approach
(compared with GLM; Zhang et al., 2010). We have summarized
the methods to improve the computational capacity based on
previous and emerging studies in the section entitled “The False
Positives due to Population Structure and Familial Relatedness”
of this review and have also been discussed by Gupta et al.
(2014). However, all of the above improvements are performed
in the process of trait-marker association, which might be a
more efficient way to reduce the computational demand before
the association is done. For instance, identifying population
structure, especially using software such as STRUCTURE, also
creates a heavy computational demand.

The consensus until now has been that all available SNPs
should be used to determine population structure and familial
relatedness using MLM (Listgarten et al., 2012). However, using
359 SSRs and 8244 SNPs for detecting the population structure
of 1537 maize accessions, Van Inghelandt et al. (2010) showed
that the population structure was consistent based on SSRs and
SNPs. Furthermore, SSR markers have their own advantages as
compared to SNP markers with respect to population genetics
(Van Inghelandt et al., 2010). Abundant SSR and SNP markers
can provide an important technology to support further research
on LD structure, gene fine mapping and association analysis
of crop germplasm resources. Furthermore, in our previous
study, Zhang et al. (2011) indicated that about 72 SSR markers
(26% of the total markers) were required to determine the
same population structure as the whole 274 SSR markers, and
a similar precision was found in the rice core collection using
both numbers of markers. These results were consistent with the
research of: (1) Li J. et al. (2011), who reported that 100 out of 328
SNPs (30%) were required to examine the population structure
of sugar beet with similar accuracy as detected by the whole data
set; (2) Van Inghelandt et al. (2010), who revealed that 25% of the
SSRs (90 out of 359 SSRs) could detect the population structure
with similar accuracy as the whole SSR markers did by modified
Rogers distance (MRD) estimates. Moreover, we recommend
that population structure identified with MCLUST based on
the morphological markers may be a convenient method to
reduce the computational demand before AA is undertaken—a
conclusion indicated in our previous study (Zhang et al., 2011).

Low Repeatability and Underutilization
of AA
Large-scale GWAS has led to the discovery of thousands of
genetic signals across the rice genome associated with rice
quantitative traits (Table 1). However, as GWAS is a relatively
new approach, there are few studies that have conducted follow-
up tests of candidate genes. Furthermore, both the results
of linkage mapping and association mapping are hard to
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repeat due to different parents/populations/markers used in
linkage or association mapping. Moreover, there are hardly any
documented examples where results of AA studies have been
used in rice breeding, though some undocumented examplesmay
be available. This is partly due to the high FDR (Gupta et al.,
2014).

To improve repeatability, there is a requirement to carefully
perform each step of rice AA as follows: (1) choose large
sampling populations. Large sampling populations may contain
more genetic recombinations and could be helpful in reducing
false negatives (Huang and Han, 2014). We suggest that one
convenient way to increase recombinations is by selecting large
populations and to construct a core collection by the weighted
pair-group average method combined with stepwise clustering
with preferred sampling based on taxonomic, geographical,
morphological, and agronomic data. This method was reported
in detail in the previous research of Li X. L. et al. (2011). Another
method is to develop NAM population by crossing a diverse
range of landraces or varieties from diverse populations or core
collections with one common and well-characterized parent, but
it requires time. It is not always “the more, the better” when
sampling (especially in plant samples), because the diversity and
the individual relationship can greatly increase the population
stratification and that may have a strong influence on GWAS
(Han and Huang, 2013). The population size used for rice AA
ranged from 50 to 1495 accessions in previous studies (Table 1);
(2) genotyping of populations. Besides markers like RFLP, SSRs,
InDels, SNPs, based on next generation sequencing (NGS), GBS,
and DArT used in rice AA (Table 1), other newer approaches
can also be designed using copy number variations (CNVs),
presence and absence variations (PAVs), and insertion-site-based
polymorphisms (ISBPs), which are now being discovered in a
number of crops (Edwards and Gupta, 2013); (3) phenotypic
measurement of populations. First, the identification of traits
by multi-year and multi-locus can efficiently reduce the effect
of environment and genetic background (Vilhjalmsson and
Nordborg, 2013). In most of the rice AA studies, agronomic and
qualitative traits were dissected by multi-year. Second, Gupta
et al. (2014) indicated that the popular AA model involving
MLM association of a single locus with a single trait leads to
misspecification and leads to biased results—we fully agree with
this statement. To solve the above problem, the model combining
all traits as cofactors, called multi-trait mixed model (MTMM)
has been developed in the study of Korte et al. (2012) and has
been used in maize (Liu et al., 2013). Furthermore, an approach
using MLM, especially for complex quantitative traits, controlled
by major effect loci and with normal phenotype distribution
(Yang N. et al., 2014), was proposed for association mapping.
In most of the rice AA studies, the most popular AA model
is MLM. However, there are some other models used in rice
AA. For instance, LR, SLM, FaST-LMM, and compressed mixed
linear model (CMLM; Table 1). Thirdly, Gupta et al. (2014)
also indicated that several developmental traits such as plant
height are dynamic in nature, and any two genotypes may have
the same plant height but different growth trajectories during
development. For this purpose, the data recorded at different
developmental stages may be used either independently (data

for the same stage) or jointly (data for different stages together).
The developmental traits which are dynamic in nature have been
detected in rice AA.

How best to utilize the results of rice AA? Many strategies
have been suggested to conquer the limitations which have
plagued AA are outlined in the review of Gupta et al. (2014).
Furthermore, there is a need to undertake efforts to better utilize
AA results: (1) identify true significant trait-marker associations,
especially for GWAS and the function of candidate genes or loci.
GWAS has led to the discovery of thousands of genetic signals
across the plant genome associated with plant quantitative traits.
However, there might be plenty of false positives. Therefore,
more studies should be conducted to test candidate genes or
loci detected by AA. Firstly, one effective way is GWAS—
guided reverse genetics. The combination of GWAS and reverse
genetics can be used to identify new genes efficiently, especially
applicable for complex traits that are difficult to analyze by
other genetic screening methods. For instance, T-DNA mutants
were used to explore regions with strong significant SNPs
which were identified with GWAS by Verslues et al. (2014),
who identified several new proline effector genes. Moreover,
other reverse genetics, like genome editing using transcription
activator-like effector nucleases (TALENs) and CRISPR/Cas9
systems may be an effective method for testing candidate
genes. Secondly, meta-analysis combining information from AA.
We could detect loci near the genes with known functions
through meta-analysis, and these loci may be good candidates
as functionally relevant genes (Sur et al., 2013). Numerous
studies involving GWAS meta-analysis have been published for
humans (Evangelou and Ioannidis, 2013). Thirdly, subsequent
CGAS based on the results of GWAS may be an efficient way
to dissect the function of candidate genes or loci. Fourthly,
false positives may not be avoided through the aforementioned
models. To avoid them, it is necessary to make sure that the
significant associations identified within one population should
be present in another population (Wray et al., 2013). There
is only one study undertaking AA in rice that has verified
significant associations of a panel (population) in two other
panels (Zhang et al., 2014); (2) combinations of genomic selection
(GS) and AA could also be used to avoid false positives. GS
is a new breeding method in which genome-wide markers are
used to predict the breeding value of individuals in a breeding
population. GS has significantly improved the breeding efficiency
in dairy cattle (Hayes et al., 2009) and several crop plant species
(Heffner et al., 2009). A combination of GS and GWAS in rice
breeding program at the International Rice Research Institute
(Philippines) has shown that GS can result in more accurate
predictions of breeding line performance than pedigree data
alone, and GWAS results can facilitate the results of GS (Spindel
et al., 2015); (3) construction of a high quality haplotype map.
A genome-wide haplotype map of SNP variation will accelerate
molecular breeding by expanding the diversity of germplasm
accessible to crop improvement programs and will increase the
resolution of GWAS, marker-assisted selection and GS (Morrell
et al., 2011). High quality haplotype map can provide an extinct
demonstration about varieties corresponding to elite alleles
which could be used as the donor of elite genes in crop breeding.
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Moreover, functional markers can be designed for mining the
elite varieties through haplotype map.

CONCLUSIONS

Prospects of Rice AA
Population for Rice AA
AA is a complementary of linkage mapping, and fine mapping
or map-based cloning, and it can give a definite dissection for
loci or genes through linkage that have shown significant effect
within AA. NAM is another strategy for mapping, which based
on both linkage and AA (Yu et al., 2008). Both family-based
population and JLAM had proved that they could improve the
power of AA, but only two studies have used JLAM approach
(Hu et al., 2010; Famoso et al., 2011), while no one has used
family-based population for rice AA. We strongly recommend
that family-based population (e.g., NAM or MAGIC) and JLAM
should be included in future rice AA. Our research group has
developed two rice NAM populations, consisting of 15 RILs that
were generated by crossing a diverse range of 15 Ting’s core
collection (landraces) with Nipponbare and 93-11.

Phenotyping in Rice AA
Identification of a correct phenotype is one of the key points
for a successful AA. High-throughput GWAS corresponded
to high-throughput phenotyping, which can be an extremely
effective approach for dissecting complex traits. With the
rapid development of high-throughput sequencing techniques,
traditional plant phenotyping lags are far behind. Studies on
high-throughput phenotyping are rapidly emerging.

Furthermore, traits at cellular and gene expression level
as well as traits based on omics may be one of the focuses in
rice AA. For instance, Meijon et al. (2014) used the model
organism Arabidopsis thaliana to combine high-throughput
confocal microscopy imaging of traits at the cellular level, GWAS
and expression analyses to identify genomic regions that are
associated with developmental cell-type traits. Dick et al. (2014)
performed GWAS between methylation levels and body-mass
index (BMI) and found that increased BMI in adults of European
origin is associated with increased methylation at the HIF3A

locus in blood cells and in adipose tissue. Therefore, phenotyping
or phenomics integrating with omics such as genomics,
proteomics, metabolomics, transcriptomics, lipidomics,
immunomics, glycomics, RNomics will be more useful for
dissecting complicated traits in rice or other species AA.

Epistatic and Genotype (G) × Environment (E)

Interactions
Many important agronomic traits of crops, such as yield and
its related traits, plant type, growth period, and resistance to

biotic and abiotic stresses, are all complex quantitative traits. It
is hard to investigate these characters because of their polygenic
control, interactions of multiple loci and effect of environment.
In the past few years, the establishment of new statistical methods
has enabled us to explore the epistatic interactions between loci
and LD between related loci caused by epistatic interactions—
this offers new insights to study the epistatic effect and G ×

E interaction. Gupta et al. (2014) have discussed in detail the
necessity and the way QTL interactions (epistasis and G× E) are
involved in AA. Moreover, existing models that could consider
epistasis and G × E as cofactors should be improved for future
rice AA. To date, there is no study about rice AA that has
discussed epistasis and G× E.

Post-rice AA
Large-scale AA (GWAS) have led to the discovery of thousands
of genetic signals across the rice genome associated with plant
quantitative traits. However, as GWAS is a relatively new
approach, there are few studies that have conducted follow-up
tests of candidate genes. It is time to slow down the pace of GWAS
and think about how we can conduct analyses post-GWAS. Our
opinion about post-GWAS is as follow: we should concentrate
on the identification of true significant trait-marker associations,
especially those loci that have not been detected in previous
linkage mapping, and dissecting the function of candidate
genes or loci by using reverse genetics and bioinformatic tools,
including meta-analysis as well as a combination of CGAS and
GWAS. Si et al. (2016) identified thatOsSPL13 controls grain size
in cultivated rice using their previous GWAS results, which gives
a direct example of post-GWAS research.
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