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Peroxisomes are single membrane-bound organelles, whose basic enzymatic
constituents are catalase and H2O2-producing flavin oxidases. Previous reports showed
that peroxisome is involved in numerous processes including primary and secondary
metabolism, plant development and abiotic stress responses. However, knowledge on
the function of different peroxisome genes from rice and its regulatory roles in salt and
other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000),
was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic
analysis of OsPEX11 overexpression seedlings demonstrated that they had better
tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared
with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level
of lipid peroxidation, Na+/K+ ratio, higher activities of antioxidant enzymes (SOD,
POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that
OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression
of several well-known rice transporters (OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b,
OsSOS1, OsNHX1, and OsAKT1) involved in Na+/K+ homeostasis in transgenic plants
under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that
they were less sensitive to salt stress than WT and overexpression lines. These results
provide experimental evidence that OsPEX11 is an important gene implicated in Na+

and K+ regulation, and plays a critical role in salt stress tolerance by modulating the
expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be
considered in transgenic breeding for improvement of salt stress tolerance in rice crop.
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INTRODUCTION

The gradual salinization of arable land is a serious constraint in the sustainable development
of crop production. Among the cereals, rice is considered as one of the most salt sensitive
crops (Zhu, 2001; Munns and Tester, 2008). With the development of biotechnology and
genetic engineering, cloning and transferring of salt tolerant genes, could not only increase the
utilization ratio of saline soils, but also supply a number of novel germplasm for breeding and
sustainable food production (Geng et al., 2013; Dinneny, 2015). Thus, it is important to search
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and identify salt tolerant genes for successful development of high
yielding cultivars for rice.

In the past decade, high-throughput transcriptomics and
proteomics studies have provided immense data on gene
function of plant salt tolerance (Zhuang et al., 2014). A few
of important genes and/or proteins for osmolyte synthesis, ion
channels and ROS scavenging enzymes have been founded from
the previous studies (Parker et al., 2006; Jiang et al., 2007;
Witzel et al., 2009; Kishor and Sreenivasulu, 2014), which have
revealed the fundamental functions of the genes/proteins in
crops’ response and adaptation to salinity. These bioinformatics
data offer an integral view of salt-responsive genes in different
plants. However, because of post-translational modifications
and complication in salt response regulated networks, it is of
utmost importance to elucidate exact biological function of these
candidate genes/proteins under saline stress conditions.

Cyclophilins (CYPs), a class of highly conserved molecular
chaperone, possessed peptidyl-prolyl cis-trans isomerase (PPIase)
activity. These ubiquitous proteins are involved in a wide variety
of biological processes such as protein assembly and transporting,
RISC assembly and miRNA activity (Smith et al., 2009; Iki et al.,
2012; Campos et al., 2013). In our previous report, we identified
and characterized a rice cyclophilin (OsCYP2; Os02g0121300)
that confers salt tolerance when overexpressed (Ruan et al., 2011).
Until now, many cyclophilins genes have been discovered in
Glycine max, Arabidopsis thaliana, and O. sativa, and they can be
induced by a serial of abiotic stress, and heterologous expression
confers toward multiple abiotic stresses (Mainali et al., 2014;
Vasudevan et al., 2014; Lee et al., 2015).

Yeast two-hybrid is considered as a powerful tool to allow
the identification of specific protein–protein interactions, which
are more directly related to signal transduction processes under
salt stress. However, the full list of peroxisomal proteins is
not yet completely known (Dixit et al., 2010), which indicates
the functions of peroxisome are still obscure. In this study,
a peroxisomal biogenesis factor 11 family protein (OsPEX11;
Os03g0302000) which interacted with OsCYP2 was screened by
yeast two-hybrid assay in cDNA library of rice. Peroxisomal
proteins are ubiquitous components of eukaryotic cells which
are encoded by nuclear genes, synthesized on free cytosolic
ribosomes and imported post-translationally (Gould and Valle,
2000; Nito et al., 2007; Kumar et al., 2014). They have
been implicated in numerous metabolic processes, ranging
from hydrogen peroxide metabolism to biosynthesis of lipids
(Dixit et al., 2010; Pieuchot and Jedd, 2012; Odendall et al.,
2014). Mutations of peroxisome biogenesis proteins in various
eukaryotes result in serious developmental deficiencies and
stress sensitivities (Aung and Hu, 2011; Burkhart et al., 2013;
Cassin-Ross and Hu, 2014). They had been identified for
involving in lipid catabolism, photorespiration and hormone
biosynthesis in Arabidopsis (Nito et al., 2007). Our work is
the first exploration on the biological functions of OsPEX11.
The phenotype, physiological and expression level of candidate
interacted protein (OsPEX11) were analyzed in overexpression
and RNAi transgenic lines under salt stress. Therefore, these
results will provide peroxisomal biogenesis factor mediated
molecular and physiological responses of crop salt tolerance.

MATERIALS AND METHODS

Construction of cDNA Library
Total RNA which was extracted from mix sample (leave, shoots,
and roots) of 10-day-old wild type (WT) seedlings (O. sativa
L. cv. Aichi-ashahi) was used to synthesize a cDNA library.
The mRNA was purified by Dynabeads mRNA Purification Kit
(Thermo Scientific, 61006). First and second strand synthesis
and size fractionation were conducted according to the method
of cDNA Library Construction Kit (Clontech, 634901) with
minor modification. Then, cDNA library was directly cloned
into the pGADT7AD vector encoding the GAL4 activation
domain with EcoRI and XhoI. The size of inserted fragment
was detected by using specific primers (Supplementary Table
S1).

Yeast Two-Hybrid Assay
Yeast two-hybrid analysis was performed in accordance with the
Matchmaker Gold Yeast Two-Hybrid Kit (Clontech, 630489).
The coding region of OsCYP2 (519 bp) was amplified from
rice leaves (O. sativa L. cv. Aichi-ashahi) by high-fidelity
PCR, restricted and fused in-frame with GAL4 DNA binding
domain into pGBKT7 for constructing bait vector. Then it
was transformed into yeast strain Y2H through the lithium
acetate method. After 3 days, auto-activation and toxicity assays
were confirmed by SD/-Trp, SD/-Trp/X-α-gal, and SD/-Trp/X-
α-gal/AbA selected plates. After that, the yeast two-hybrid
screening between OsCYP2 and previous cDNA library was
done according to the co-transformation protocol of Y2H strain.
The candidate clones (blue) were selected by SD/-Trp/-Leu/X-
α-gal/AbA plate. We patched out all the blue colonies that grew
on SD/-Trp/-Leu/X-α-gal/AbA plate onto higher stringency SD/-
Trp/-Leu/-His/-Ade/X-α-gal/AbA plate using yellow pipette tip.
To increase the chance of rescuing the positive prey plasmid, we
streaked 2–3 times for each selected single blue clone on SD/-
Trp/-Leu/X-α-gal (no Aureobasidin A) plate. Then the candidate
prey plasmid (blue clone) was rescued by using the Easy Yeast
Plasmid Isolation Kit (Clontech, 630467) and sequenced with T7
primer. Co-transform BD or BD-OsCYP2 with rescued AD-prey
plasmids into Y2H strains by small scale yeast transformation
on selective media plates to distinguish positive interaction from
false positive interaction.

SDS-PAGE and GST Pull-down Assays
The genuine positive was further confirmed by GST pull-down
assays. The OsCYP2 and OsPEX11 were cloned into pGEX-4T-1
and pET-28a vectors, respectively, for expressing fusion protein
with glutathione-S-transferase (GST) and histidine (His), in
Escherichia coli strain BL21. The MagneHis Protein Purification
System (Promega, V8500) and MagneGST Pull Down System
(Promega, V8870) were used for fused protein purification and
GST pull-down, respectively. The purified GST, GST-OsCYP2
and His-OsPEX11 proteins were analyzed with 12% SDS-
PAGE and stained by coomassie brilliant blue R-250. Western
blotting signals were detected by Horseradish Peroxidase (HRP)
DAB (3, 3-diaminobenzidine) staining with either the His tag

Frontiers in Plant Science | www.frontiersin.org 2 September 2016 | Volume 7 | Article 1357

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01357 September 13, 2016 Time: 16:25 # 3

Cui et al. OsPEX11 Interacts with OsCYP2 for Salt Tolerance

antibody (Genescript, A00612) or GST tag antibody (Genescript,
A00130).

Plasmid Constructs and Plant
Transformation
The full-length and partial cds of OsPEX11 gene were cloned
into pCAMBIA1300-Ubi and pCAMBIA1300-35S-RNAi vectors,
respectively. The primers which contained different restriction
enzyme sites were listed in Supplementary Table S1. Then, both
of two vectors were transformed into Agrobacterium tumefaciens
strain EHA105. Plant transformation was conducted into O.
sativa L. cv. Aichi-ashahias previously described with minor
modification (Hiei et al., 1994).

Plant Growth and Quantitative RT-PCR
The seeds of WT, OsPEX11 overexpression and RNAi were
germinated and hydroponically grown in a greenhouse. The
culture was maintained at 32◦C/28◦C, with the photoperiod
of 16 h/8 h (light/dark). After 10 days, seedlings of each
genotype were treated by 200 mM NaCl for 24 h and their
phenotypes were identified. Six plants per treatment were
sampled for the measurement of plant height, root length and
leaves angle. Average values of these six plants were considered
as one replicate. To examine the mRNA expression pattern
of OsPEX11 and seven crucial genes which code Na+ and
K+ transport proteins, fresh leaves from each genotype were
sampled for RNA isolation. Total RNA was extracted using Trizol
(Thermo Scientific, 15596-026) according to the manufacturer’s
instructions. Total RNA was used to synthesize the first strand
cDNA with RevertAidTM First-Strand cDNA Synthesis kit
(Thermo Scientific, K1622). Quantitative real time PCR reactions
were performed using three biological replicates for each different
genotype (three technical replicates as one biological replicate) on
Bio-Rad CFX 96. Primers used in this experiment were listed in
Supplementary Table S1. The expression level of OsPEX11 and
other genes related to salt was calculated following Livak and
Schmittgen (2001).

Determination of Lipid Peroxidation and
Antioxidant Enzyme
Lipid peroxidation was determined by malondialdehyde (MDA)
contents according to the method of Hodges et al. (1999).
Fresh leaves (0.5 g) of 10-day-old seedlings were homogenized
in 10 ml of precooled potassium phosphate buffer (pH 7.0)
by grinding with a mortar and pestle in an ice bath. The
mixture was centrifuged at 4◦C for 20 min at 12000 rpm.
The supernatants were immediately used for the determination
of various antioxidant enzymes. SOD, POD, and CAT activity
were performed according to Dhindsa and Matowe (1981), Aebi
(1984), and Rao et al. (1996), respectively. Moreover, proline
content was measured according to Bates et al. (1973). For the
determination of sodium and potassium ions, leaves were dried
and ground. About 0.1 g of the ground leaf was digested with
H2SO4 and H2O2, and then sodium and potassium contents were
analyzed through atomic absorption spectrophotometry (Munns
et al., 2010).

Transmission Electron Microscopy
For electron-microscopic study, leaf fragments without veins
(about 1 mm2) were fixed in 2.5% (v/v) glutaraldehyde in 0.1 M
sodium phosphate buffer (PBS, pH 7.4) overnight and then
washed three times with PBS. The samples were post fixed in 1%
(m/v) OsO4 for 1 h and washed again three times with PBS. After
that, the samples were dehydrated in a graded series of ethanol
(50, 60, 70, 80, 90, 95, and 100%, v/v) for 15–20 min each and then
in absolute acetone for 20 min. After dehydration, the samples
were embedded in Spurr’s resin overnight. The specimens were
heating at 70◦C for 9 h, the ultra-thin sections (80 nm) were cut
and mounted on copper grids for observation in the transmission
electron microscope (TEM 1230EX, JEOL, Japan) at 60.0 kV.

Statistical Analysis
The results presented here are the means of three replicates.
Treatment means were compared by the analysis of variance
(ANOVA) and using Tukey’s multiple range tests at the 5% level
of significance.

RESULTS

cDNA Library Quality and Yeast
Two-Hybrid Screening
Total RNA and mRNA were extracted and purified from mix
sample (shoot and root), respectively (Supplementary Figure 1).
EcoRI and XhoI was introduced into the double strand cDNA
which was synthesized by reverse transcription. Then, the
synthesized cDNA was size fractionated to removing short
fragments (Supplementary Figure 1). Then, double strand cDNA
library was directional cloned into linearized pGADT7 AD vector
with EcoRI andXhoI digested. The titer of cDNA library was more
than 1.7 × 106 cfu, and the size of inserted fragments were 1 kb
approximately (Supplementary Figure 2).

There was an identical size of Y2H strain on SD/-Trp plate
containing bait vector (pGBKT7-OsCYP2) or not, meanwhile,
pale blue and no clone on SD/-Trp/X-α-gal and SD/-Trp/X-
α-gal/AbA plate, respectively (Supplementary Figure 3). That
means the bait vector containing OsCYP2 without auto-
activation and toxicity, was suitable for yeast two-hybrid cDNA
library screening. Then, 5 µg of bait and 10 µg of prey were
used for yeast two-hybrid library co-transformation. The blue
colonies that grew on DDO (SD/-Trp/-Leu/X-α-gal/AbA) plate
were patched out onto higher stringency QDO (SD/-Trp/-Leu/-
Ade/-His/X-α-gal/AbA) plate to eliminate the false interaction
(Supplementary Figure 4). The result of sequencing and blast
showed that rescued positive prey (No. 2) was a peroxisomal
biogenesis factor 11 family protein (Os03g0302000). This prey
protein was also identified by co-transforming into Y2H with
pGBKT7 or pGBKT7-OsCYP2 on the selective media (Figure 1).

OsCYP2 Directly Interacts with OsPEX11
The GST and GST-OsCYP2 protein were extracted from E.
coli strain BL21 which contained pGEX4T-1 and pGEX4T-1
plus OsCYP2, respectively. Twenty-six kDa (GST) and 45 kDa
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FIGURE 1 | OsCYP2 interacts with OsPEX11 protein by in vivo assay.
Yeast clones were grown on DDO/Xor QDO/X/A plates that contained X-α-gal.
The blue color in the colony co-transformed with BD-OsCYP2 and
AD-OsPEX11 indicates interaction between the two proteins. The empty pAD
vector was used as negative control. DDO/X medium: SD/-Trp-Leu/X-α-gal;
QDO/X/A medium: SD/-Trp-Leu-Ade-His/X-α-gal/AbA; AD-OsPEX11:
pGADT7+OsPEX11; BD: pGBKT7 vector; BD-OsCYP2: pGBKT7+OsCYP2.

FIGURE 2 | Detection of GST (glutathione-S-transferase) and
recombinant GST-OsCYP2. The GST and GST-OsCYP2 proteins were
extracted and purified from E. coli strain BL21 using MagneGST Pull Down
System (Promega). The proteins were analyzed with 12% SDS-PAGE.
(A) SDS-PAGE gel was stained by coomassie brilliant blue R-250.
(B) Horseradish Peroxidase DAB staining was used in western blotting. 1:
GST-OsCYP2. 2: GST. M: Pre-Stained Protein Marker.

(GST-OsCYP2) were showed by SDS-PAGE and coomassie
brilliant blue staining (Figure 2A). We conducted the western
blot to detect the specific signal by using HRP conjugated GST
antibody and DAB staining (Figure 2B). In in vitro GST pull-
down assay, OsCYP2 could directly interact with OsPEX11
(Figure 3).

Phenotypic Characterization of OsPEX11
Transgenic Plants
To evaluate the stress response of transgenic plants, 10-day-
old OsPEX11 overexpression and RNAi seedlings were treated
by 200 mM NaCl. After 24 h, leaves of WT and RNAi lines
showed wilting, especially RNAi lines exhibited even more
chlorosis, whereas the overexpressing plants remained normal
growth condition (Figure 4). Moreover, the plant height was
significantly decreased under 200 mM NaCl treatment in each

FIGURE 3 | Confirmation of interaction between OsCYP2 and OsPEX11
protein using in vitro assay. Recombinant glutathione-S-transferase (GST)
and GST-OsCYP2 was used as bait and incubated with 1 µg of prey protein
(His-OsPEX11), respectively. After incubation, GST and GST-OsCYP2 were
retrieved with glutathione beads, and the pulled-down proteins were detected
on Western blots with antibodies to Histidine. GST: pGEX-4T-1; GST-OsCYP2:
pGEX-4T-1+OsCYP2; His-PEX11: pET28a+OsPEX11.

genotype, however, root length and leave angles were significantly
higher in OsPEX11 overexpression seedlings compared with
WT and OsPEX11 RNAi (Supplementary Table S2). On the
other hand, the transcript level of OsPEX11 gene also showed
significantly higher and lower expression in overexpression and
RNAi lines, respectively, compared to that of WT. During salt
stress treatment, OsPEX11 was significantly induced in WT, and
its expression level was up-regulated in overexpression lines
(Figure 5).

Sodium/Potassium Accumulation
Plant salt tolerance is mainly associated with the low maintenance
of cytosolic Na+/K+ ratio. Thus, the sodium and potassium
contents in the leaves of WT and transgenic plants were
determined by atomic absorption spectrophotometry. There
were no significant differences among three genotypes under
control conditions, but in the presence of salt (200 mM NaCl),
the Na+/K+ ratio was significantly elevated in OsPEX11-RNAi
seedlings (Figure 6A). Compared with WT, the highest increase
in Na+ concentration (2.5 fold) was observed in OsPEX11-RNAi
plants. Similarly, K+ content maintained relatively higher in
OsPEX11-OE seedlings (1.25 fold) (Supplementary Table S3).
These results suggested that overexpression of OsPEX11 can
enhance salt tolerance and maintain a low Na+/K+ ratio through
selective uptake of K+ over Na+.

Physiological Responses to Saline
Stress of Transformants
To further investigate the role of geneOsPEX11 in plant tolerance
to high salinity, we measured the effect of salt induced oxidative
stress on MDA and ROS-scavenging anti-oxidative enzymes. As
shown in Figures 6B–F, saline stress differentially modulated the
accumulation of MDA and activities of SOD, POD, CAT enzymes
and proline content in each type of seedlings. The MDA level
was significantly lower in OsPEX11 overexpression seedlings OE1
(15.35%) and OE2 (29.14%), while the SOD, POD, CAT enzyme
activities were significantly increased (OE1: 5.00, 1.35, 1.78 fold;
OE2: 6.88, 1.39, and 1.85 fold, respectively) as compared to WT
plants. Accumulation of proline was accompanied by changes
in ROS scavenging enzyme activities. Here, we found that the
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FIGURE 4 | The morphological changes of 10-day-old wild type (WT), OsPEX11 over-expression (OE1) and RNAi (RNAi1) seedlings under control and
salt stress (200 mM NaCl). The seedlings were treated with 200 mM NaCl for 24 h. (A) WT, (B) WT + NaCl, (C) 35S-OsPEX11, (D) 35S-OsPEX11 + NaCl,
(E) RNAi-OsPEX11, and (F) RNAi-OsPEX11 + NaCl.

FIGURE 5 | Relative transcript level of OsPEX11 responses to H2O and
200 mM NaCl stress in 10-day-old WT, overexpression (OE1 and OE2),
and RNA interference (RNAi1 and RNAi2) lines. The seedlings were
treated with 200 mM NaCl for 24 h. Relative expression levels were measured
by qRT-PCR analysis using actin as an internal standard. The relative fold
expression of CK was considered as 1. Values are means of three biological
replicates and significant differences between means, as determined by
Turkey test (P < 0.05), are indicated by different letters.

proline content was significantly elevated in OsPEX11-OE1 and
OE2 seedlings (3.81 and 4.46 fold, respectively) under saline
stress treatment. These results suggested that gene OsPEX11 may
have a better protection against salt induced ROS by dynamic
modulation of antioxidant enzymes (SOD, POD, and CAT) and
proline accumulation, which result in reduced lipid peroxidation
under salt stress condition.

Expression Pattern of Na+/K+

Transporter Proteins
To better understand the mechanisms of underlying Na+/K+
accumulation variation in OsPEX11 transgenic seedlings,

we utilized qRT-PCR to detect the expression level of genes
encoding Na+/K+ transport proteins. The data showed that
except the other five genes, OsHKT2;1 and OsHKT1;5 (Na+
transporters) were significantly up/down-regulated in OsPEX11
overexpression/RNAi lines under control condition. Saline
stress treatment (200 mM NaCl) repressed the expression
of the OsHKT2;1 and OsHKT1;5 (Na+ transporters) in
each genotype (Figures 7A,B), however, OsLti6a, OsLti6b
(two homologous PMP3 genes involved in Na+ excess
entry in plant cells), OsSOS1 (Na+/H+ antiporter salt
overly sensitive1), OsNHX1 (vacuolar Na+, K+, and H+
antiporter) and OsAKT1 (K+ transporter) performed an
opposite effect (Figures 7C–G). In addition, OsNHX1 was
the most strongly induced (>20-fold) under salt stress
overexpression seedlings compared with RNAi and WT
(Figure 7F).

Salinity Induces Ultrastructural Changes
Figure 8 showed the representative TEM images of the
chloroplast ultrastructure of WT and transgenic rice plants
with/without saline stress conditions. In WT and OsPEX11
overexpression plants, chloroplast was elliptical, the granum
and stroma thylakoids were in an orderly arrangement, the
lamellar structure was relatively tight, and the chloroplast
envelope was intact with much larger size of starch grains
under control condition (Figures 8A,B), while the structure
of the chloroplast in PEX11 RNAi plants was integrated, and
the shape was round with swollen mitochondria (Figure 8C).
Under saline stress condition, the shape of chloroplast in
WT plants deformed with fewer thylakoid stacks of grana
and lamella being observed. Additionally, the grana stacks
were irregular and distributed unevenly with larger size of
plastoglobuli, suggesting that the chloroplast structure was
degraded (Figure 8D). The thylakoids of OsPEX11-OE1
plants were loose, the stroma thylakoids were in an orderly
arrangement and chloroplast maintained relatively normal
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FIGURE 6 | Comparison of lipid peroxidation and ROS scavenging in leaves of 10-day-old WT and OsCYP2-transgenic (OE1 and OE2, RNAi1 and
RNAi2) seedlings under control and salt stress. The rice seedlings were treated with 200 mM of NaCl for 24 h. The Na+/K+ ratio (A) and activities of antioxidant
enzymes MDA (B), SOD (C), POD (D), CAT (E), and proline content (F) were assayed. Values are means of three biological replicates followed by the same letter did
not significantly differ at P ≤ 0.05 according to Turkey’s multiple range test.

shape (Figure 8E). The chloroplast shape of OsPEX11-
RNAi plants was round and dilated grana with fewer
and abnormal shapes of mitochondria were also observed
(Figure 8F).

DISCUSSION

Peroxisomes play key role in the regulation of metabolic process
by modulating cellular redox homeostasis in a cell (Yun et al.,
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FIGURE 7 | Relative fold expression of the genes encoding Na+ and K+ transporter proteins. (A) OsHKT2;1; (B) OsHKT1;5; (C) OsLti6a; (D) OsLti6b;
(E) OsSOS1; (F) OsNHX1; (G) OsAKT1 in the leaves of 10-day-old rice seedlings treated with 200 mM of NaCl. The relative fold expression of CK was considered as
1. An actin was used as internal standard. Values are the means of three biological replications ±SD. Variants possessing the same letter are not statistically
significant at P < 0.05.

Frontiers in Plant Science | www.frontiersin.org 7 September 2016 | Volume 7 | Article 1357

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01357 September 13, 2016 Time: 16:25 # 8

Cui et al. OsPEX11 Interacts with OsCYP2 for Salt Tolerance

FIGURE 8 | Electron micrographs of leaf mesophyll cells of 10-day-old hydroponically grown seedlings of O. sativa under control condition and
200 mM NaCl treatment. Under control condition, grana (G), mitochondria (MTC), and plastoglobuli (PG) well developed. TEM micrographs of leaf mesophyll cells
of WT showed that ultrastructure of chloroplast is disrupted with enlarged size PG under 200 mM NaCl treatment (D). Chloroplasts of OsPEX11-OE1 plants
maintained normal shape under salt stress condition with dilated thylakoids arrangement (E), whereas, chloroplasts of OsPEX11-RNAi1 plants were round in shape
with fewer numbers of PG and swollen mitochondria (MTC) as compared to its respective control (F). (A–C) control: WT (Left); OsPEX11-OE1 (Middle);
OsPEX11-RNAi1 (Right); (D–F) 200 mM NaCl: WT (Left); OsPEX11-OE1 (Middle); OsPEX11-RNAi1 (Right).

2012). It has been showed that peroxisomes can rapidly modify
their metabolism and dynamics according to the subsequent ROS
level in the cell. Mutations of peroxisome biogenesis proteins in
various eukaryotes result in serious developmental deficiencies
and stress sensitivities (Aung and Hu, 2011; Burkhart et al.,
2013; Cassin-Ross and Hu, 2014). Under stress conditions,
coordinated functioning of peroxisomal proteins provides highly
dynamic responses of peroxisomal metabolism to adjust its
redox metabolism at steady-state. In the present study, the
overexpression of OsPEX11 enhanced the growth and survival
of transgenic plants under higher saline stress conditions, which
further clarify it important role in reducing Na+ induced toxicity
that protect the plants against saline stress.

Previous studies reported that enhanced activities of
antioxidant enzymes (SOD, POD, and CAT) act as a coping
strategy to scavenge ROS (Munns and Gilliham, 2015).
Overexpression of genes involved ROS detoxification resulted in
lower cellular damage, and the maintenance of photosynthetic
energy capture under saline conditions (Roy et al., 2014).
Similarly, OsPEX11 gene substantially increased the antioxidant
enzymes activities. It is likely that the peroxisome protein can
suppress glycolate oxidase (Sousa et al., 2015) or harbor
enzymes that can breakdown ROS (Antonenkov et al.,
2010), and therefore led to decreased MDA contents as
well as less damage to organelles membranes (Guan et al.,
2015; Camejo et al., 2016). Proline is not only compatible
osmolyte and osmoprotectant but also acts as a signaling
molecule to modulate ion balance, protect enzyme activity
and trigger the expression of specific genes, which are

essential for plant recovery from stresses (Liu et al., 2015).
In the present study, we found enhanced accumulation of proline
in overexpression plants compared to RNAi plants (Figure 6).
The increased content of proline may help to decrease Na+
toxicity in overexpression plant as compared to the RNAi plants
(Islam et al., 2015, 2016). Therefore, OsPEX11 overexpression
could alleviate ion toxicity and oxidant damage in transgenic
plants by enhancing proline accumulation and antioxidant
defense.

The accumulation of K+ and Na+ in plants is important
parameter to understand salt tolerance mechanisms (Noreen
et al., 2010). In the present investigation, overexpression plants
accumulated high K+ and maintained lower Na+/K+ ratio and
Na+ accumulation under stress conditions as compared to RNAi
plants. The higher accumulation of Na+ in RNAi plant might
be due to enhanced accumulation of Na+ in roots, passive
diffusion of sodium ions from damaged membranes and reduced
efficient mechanism of sodium diffusion (Islam et al., 2015).
Thus, OsPEX11 overexpression could improve the growth of rice
seedlings by reducing Na+ uptake under saline stress condition
as compared to the RNAi plants. Furthermore, the ability of the
plants to restrict the transportation and accumulation of Na+ is
considered as a critical aspect of plant salt tolerance/adaptation
(Apel and Hirt, 2004; Foyer and Noctor, 2005; Munns and Tester,
2008). To understand the salt-tolerant mechanism in OsPEX11
overexpression plants, we compared the transcript levels of
marker genes related to Na+ and K+ regulation under control
and stress conditions (Figure 7). The OsPEX11 overexpression
plants exhibit lower leaf Na+ concentration showed better

Frontiers in Plant Science | www.frontiersin.org 8 September 2016 | Volume 7 | Article 1357

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01357 September 13, 2016 Time: 16:25 # 9

Cui et al. OsPEX11 Interacts with OsCYP2 for Salt Tolerance

adaptation to the salinity. This controlled entry of Na+ to the leaf
is often associated with the lowered Na+/K+ ratio (Figure 6A),
which is vital for the normal functioning of a cell under saline
stress conditions (Su et al., 2015). Na+ exclusion/restriction is
usually under the control of different Na+ transport proteins.
Such as, high affinity potassium transporter (HKT) genes encode
Na+ selective transporter proteins which demonstrated essential
salinity tolerance mechanism in different crop plants including
rice (Hamamoto et al., 2015). To understand underlying
mechanism of restricted Na+ transport in the leaves of transgenic
and WT plants, we analyzed the expression of OsHKT1;5 both
under control and salt stress conditions. OsPEX11 overexpression
plants showed considerable induction in transcript level of
OsHKT1;5 as compared to the RNAi plants, which may suggest
that downregulation of OsHKT1;5 expression in RNAi plants
may be the reason of higher accumulation of Na+ in leaves
as compared to the overexpressed plants, that restricted the
unregulated Na+ transport to the leaves and protect the plants
from growth impairment due to Na+ toxicity (Figure 7).
Previously, decreased expression of HKT1;5 through RNAi in
bread wheat was linked with increased Na+ accumulation in the
leaves, which suggest a critical role of HKT1;5 transporter in the
restriction of Na+ transport from root to leaves in saline stress
plants (Byrt et al., 2014).

Plasma membranes proteins 3 (PMP3) are conserved
hydrophobic proteins induced in wide range of abiotic stress
conditions, suggesting their significant role in membranes
stability under stress conditions (Chidambaram et al., 2015). The
overexpression of PMP3 homolog proteins in Arabidopsis and
Avicennia marina plants show lowered shoot Na+ levels and
enhanced plant performance under stress conditions (Mitsuya
et al., 2006; Chidambaram et al., 2015). In the present study,
the expression level of two rice homologous PMP3 genes,
OsLti6a and OsLti6b was downregulated under saline stress
condition in RNAi plants as compared to the overexpression
and WT plants, which clearly indicate the involvement of these
genes in Na+ entry in the RNAi plants (Figure 7). Such as,
a loss of function of PMP3 in yeast mutants resulted in Na+
accumulation, salt sensitivity and membrane hyperpolarization
(Nylander et al., 2001). Additionally, Mekawy et al. (2015)
suggested that reduction in the expression levels of PMP3
genes may facilitate Na+ entry in sensitive rice cultivar as
compared to the resistant one. The enhanced activation of PMP3
proteins in OsPEX11 overexpression plants may be due to the
induction of other Na+ transporter proteins, because PMP3
proteins contribute indirectly to cation homeostasis within cells
by interaction with other ion transporters (Fu et al., 2012). Plasma
membrane Na+/H+ exchanger (SOS 1) and tonoplast Na+/H+
exchanger (NHX) are considered as main transporters mediating
the efflux and compartmentalization of Na+ under saline stress
conditions (de la Garma et al., 2015).

Both antiporters are ubiquitous membrane proteins that
catalyze the electroneutral exchange of Na+ or for H+ across the
membrane, thereby playing important roles in cellular Na+/K+
homeostasis. SOS1 is not only involved in Na+ exclusion from
cytoplasm but also maintain optimum level of Na+ by xylem
loading under low salt stress, while Na+ removal from xylem

under saline stress conditions. In the present investigation,
upregulation of OsSOS1 in overexpression plants as compared
to the RNAi and WT plants probably facilitated exclusion of
toxic Na+ into root apoplast and thus resulted in higher K+/Na+
ratio of leaves (Figure 6A). Additionally, Na+/ K+/H+ antiporter
NHX1 is involved in the intracellular Na+/K+ sequestration
in vacuoles, depending on the salt concentration in the cell.
We observed that NHX1 gene expression levels were more
upregulated in overexpression plants which may be the reason
of higher accumulation of K+ uptake into the vacuole and
lower Na+ concentration in cytoplasm, which relieves the toxic
effect on cytosolic enzymes, maintaining turgor pressure and cell
expansion under saline stress conditions (Cao et al., 2016).

Moreover, ultrastructural observations of leaf mesophyll cells
were also conducted to confirm the salt tolerance of OsPEX11
gene. Because, chloroplast and mitochondria are sensitive to the
salinity. Salinity may change the functionality and integrity of
chloroplast, that can affect energy metabolism of the mesophyll
cells. The ultrastructural alternations in the chloroplast and
mitochondrial structures in our study are consistent with the
previous reports (Tripathy et al., 2015), suggesting that the
accumulation of excess Na+ in RNAi and WT plants damaged
the chloroplasts ultimately causing decreased photosynthesis
efficiency at the whole plant level and thereby reduced growth
and biomass production. Because, productivity and maintenance
of the structural integrity of chloroplast is directly linked with
the conversion of light energy during photosynthesis. Taken
together, the overexpression of OsPEX11 gene enhanced the
growth and survival of plants under salinity but further research
is needed to explore the relationship between OsPEX11 and
salt stress tolerance using advanced physiological and molecular
technologies.

CONCLUSION

In our present study, a novel prey protein (OsPEX11) was
screened and identified using in vivo (yeast two-hybrid) and
in vitro (GST pull-down) assays. Under saline stress, leaves
of OsPEX11-RNAi lines showed wilting and exhibited even
more chlorosis compared to OsPEX11 overexpressing plants.
OsPEX11 gene may have a better protection against salt
induced ROS by dynamic modulation of antioxidant enzymes
(SOD, POD, and CAT) and proline accumulation, which can
reduce lipid peroxidation under salt stress condition. We
also demonstrated that OsPEX11 overexpression can better
protect plants from saline stress by restricting the entry of
excess Na+ through dynamic regulation of Na+/K+ transporter
proteins and its subsequent sequestration through NHX1 in
vacuoles. Moreover, ultrastructural observations of OsPEX11
overexpression seedlings demonstrated that they had better
tolerance to salt stress than RNAi and WT plants.
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