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Plant 14-3-3 proteins act as critical components of various cellular signaling processes

and play an important role in regulating multiple physiological processes. However, less

information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3

genes were identified from the banana genome. Based on the evolutionary analysis,

banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif

analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif.

The gene structure of banana 14-3-3 genes showed distinct class-specific divergence

between the ε group and the non-ε group. Most banana 14-3-3 genes showed

strong transcript accumulation changes during fruit development and postharvest

ripening in two banana varieties, indicating that they might be involved in regulating

fruit development and ripening. Moreover, some 14-3-3 genes also showed great

changes after osmotic, cold, and salt treatments in two banana varieties, suggested

their potential role in regulating banana response to abiotic stress. Taken together, this

systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development,

postharvest ripening, and response to abiotic stress and provides useful information for

understanding the functions of 14-3-3 genes in banana.

Keywords: abiotic stress, banana, gene expression, genome-wide, identification, 14-3-3 proteins

INTRODUCTION

14-3-3 proteins are highly conserved regulatory molecules existing in virtually all multicellular
eukaryotic tissues. They have been recognized as the best characterized and most important
phosphopeptide-binding proteins (Sehnke et al., 2002; Chevalier et al., 2009; Paul et al., 2012;
Cotelle and Leonhardt, 2016). In the model plant Arabidopsis, 14-3-3 proteins were named
as general regulatory factor (GRF) with an Arabic number (Chevalier et al., 2009). Generally,
14-3-3 proteins regulate phosphorylated clients through the specific groove structures formed by
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their homo- or hetero-dimers (Chevalier et al., 2009; de Boer
et al., 2013; Cotelle and Leonhardt, 2016). The interesting
properties of the dimer groove structures make 14-3-3 proteins
function as scaffolding proteins, which can bind to a wide range
of target proteins (Chevalier et al., 2009; de Boer et al., 2013),
such as carbon and nitrogen metabolic enzymes (Comparot
et al., 2003; Diaz et al., 2011), key point enzymes associated
with ion pumps and channels (Bunney et al., 2002; Kanczewska
et al., 2005; Ottmann et al., 2007; Latz et al., 2013; Chen
et al., 2015), various protein kinases, transcription factors and
proteins, or transcription factors associated with hormone signal
transduction (Schoonheim et al., 2007; Jaspert et al., 2011; Ho
et al., 2013; Latz et al., 2013; de Boer et al., 2013; Ito et al., 2014;
Kawamoto et al., 2015). The interaction process between 14-3-3
proteins and their different clients lead to various biochemical
changes in cellular processes, including the stability, activity,
degradation, intracellular localization, and the binding ability
with other client proteins of the protein or enzyme (Chevalier
et al., 2009; Paul et al., 2012; de Boer et al., 2013; Cotelle and
Leonhardt, 2016).

Since the first plant 14-3-3 isoform was isolated from maize
(de Vetten et al., 1992), genome-wide analyses have identified
13 14-3-3s from Arabidopsis (DeLille et al., 2001; Rosenquist
et al., 2001; Chevalier et al., 2009), 8 from rice (Chen et al.,
2006; Yao et al., 2007), 31 from cotton (Sun et al., 2011), 9
from common bean (Tian et al., 2015), 18 from soybean (Li and
Dhaubhadel, 2011), 14 from Populus trichocarpa (Li et al., 2015),
12 from tomato (Xu and Shi, 2006), and 21 from Brassica rapa
(Chandna et al., 2016). Biochemical and genetic analyses have
revealed that the function of 14-3-3 proteins is related to plant
growth and development. Multiple mutant analysis indicated
that Arabidopsis 14-3-3 proteins regulate root growth (van Kleeff
et al., 2014; He et al., 2015), chloroplast division, photosynthesis,
and leaf longevity (Vercruyssen et al., 2015). GsGF14o from
glycine soja was reported to participate in stomatal and root
hair development (Sun et al., 2014). Overexpression of Gh14-3-
3L in cotton promoted fiber elongation and maturation (Zhou
et al., 2015). In addition, expression analyses of the 14-3-3
gene family in various species indicated that its expression is
altered under various abiotic stress, such as drought, salt, or
cold (Li and Dhaubhadel, 2011; Kumar et al., 2015; Li et al.,
2015; Tian et al., 2015; Chandna et al., 2016). Further studies
support that 14-3-3 genes play a role in plant response to abiotic
stress. Overexpression of the Arabidopsis 14-3-3 protein GF14
lambda in cotton could lead to a “stay-green” phenotype and
improved stress tolerance (Yan et al., 2004). Arabidopsis 14-3-3
lambda and kappa were identified as important regulators of salt
tolerance (Tseng et al., 2012; Zhou et al., 2014) while 14-3-3 psi
was involved in freezing tolerance and cold acclimation (Catalá
et al., 2014). Taken together, these studies have shown that the
plant 14-3-3 gene family is involved in regulating plant growth,
development, and response to various stresses.

As a large annual monocotyledonous herbaceous plant,
banana (Musa acuminata L.) is one of the most popular fresh
fruit. Banana fruit quality is determined by development and
postharvest ripening processes and it plays an important role
in the commodity economy (Raza et al., 2016). Also, banana

production is often threatened by various environmental stresses
such as low temperature, drought, salt damage, and various
diseases (Ravi et al., 2013; Yan et al., 2015; Yang et al.,
2015; Raza et al., 2016). Thus, it is necessary to study the
molecular mechanism underlying banana fruit development,
postharvest ripening, and response to various abiotic stresses.
Considering the importance of 14-3-3 proteins in regulating
plant growth, development, as well as responses to abiotic
stresses, a comprehensive analysis of banana 14-3-3 genes was
conducted. In the study, a total of 25 14-3-3s genes were identified
in banana. Further, their phylogenic relationship, gene structures,
and protein motifs were studied in detail. Finally, the expression
of banana 14-3-3 genes in various organs, different phases of
fruit development and ripening, and responses to various stresses
in Ba Xi Jiao (Musa acuminate L. AAA group cv. Cavendish,
BX) and Fen Jiao (Musa ABB Pisang Awak, FJ) varieties were
comprehensively characterized. The detailed characterization
of the banana 14-3-3 gene family provides a foundation and
useful genetic resources for further functional characterization
of potential targets of 14-3-3 and the genetic improvement of
bananas.

MATERIALS AND METHODS

Plant Materials and Treatments
In this study, 2 banana cultivated varieties, BX and FJ, were
selected because FJ ripened faster and is more tolerant to abiotic
stress than BX. The distinct characteristics between the two
varieties are benefit for performing comparative analyses of
the underlying mechanism. The seedlings of these 2 varieties
at the 5-leaf growth stage were obtained from the banana
tissue culture center (Institute of Banana and Plantain, Chinese
Academy of Tropical Agricultural Sciences, Danzhou, China).
Then, plants of each variety was placed in a growth chamber
(28◦C; 200µmol·m−2·s−1 light intensity; 16-h light/8-h dark
cycle; 70% RH), the others were planted in planting base
(Institute of Tropical Bioscience and Biotechnology, Chinese
Academy of Tropical Agricultural Sciences, Wenchang, China).

Identification and Phylogenetic Analyses of
the 14-3-3 Gene Family in Banana
Banana 14-3-3 genes were obtained from the DH-Pahang (Musa
acuminate, A-genome, 2n= 22) genome database (D’Hont et al.,
2012). The known 14-3-3s was used to search the 14-3-3 proteins
from the banana genome sequence using a hidden markov
model (protein domain code: IPR000308; Finn et al., 2011). To
further identify possible 14-3-3s in the banana database, BLAST
analyses were performed to further query with all 14-3-3s from
Arabidopsis and rice. To further validate all identified banana 14-
3-3 genes, a conserved domain search was conducted by using
the CDD and PFAM databases. Then, the identities of banana
14-3-3s were analyzed based on multiple alignment by Vector
NIT Suite 11.0. Amino acid sequences and genome sequences of
14-3-3s in Arabidopsis and rice were obtained from RGAP, and
UniPort databases, respectively. A bootstrap neighbor-joining
phylogenetic tree with the identified 25 14-3-3s from banana and
all 14-3-3s from Arabidopsis and rice was constructed by using
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Clustal X 2.0 andMEGA 5.0 based on their amino acid sequences
(Larkin et al., 2007; Tamura et al., 2011).

Characterization of Protein Properties and
Sequences
The relative molecular weights (RMW) and isoelectric points (pI)
of the identified banana 14-3-3 proteins were predicted by the
ExPASy proteomics server database (http://expasy.org/). Banana
14-3-3 protein motifs were analyzed with MEME software
(http://meme-suite.org/tools/meme). The optimum width of
motifs ranged from 8 to 50 with the maximum number of motifs
being 10. The predicted motifs of banana 14-3-3 proteins were
further annotated with an InterProScan database search (http://
www.ebi.ac.uk/Tools/pfa/iprscan/). Gene structures of banana
14-3-3 genes were determined with GSDS software (http://gsds.
cbi.pku.edu.cn/) based on their genome and coding sequences.

Transcriptome Analysis
To investigate the transcriptional accumulation of 14-3-3 genes
in different organs of the BX and FJ varieties, roots, leaves, and
fruits at different developmental stages and during postharvest
ripening stages were collected as follows. Roots, leaves, and fruits
at 80 days after flowering (DAF) were sampled for expression
analysis of 14-3-3 genes in different tissues. Banana fruits at
distinct development stages, i.e., 0 DAF, 20 DAF, and 80 DAF,
were collected to assess the expression patterns of banana 14-3-
3s during fruit development. As a previous reports, postharvest
ripening processes of banana fruit were classified into FG (full
green), TY (trace yellow), MG (more green than yellow), MY
(more yellow than green), GT (green tip), FY (full yellow), and
YB (yellow flecked with brown spots) stages (Pua et al., 2003). In
this study, to examine the expression of 14-3-3 genes during fruit
postharvest ripening processes, fruits at 8 and 14 days DPH in BX
and at 3 and 6 DPH in FJ were collected. The 5-leaf stage banana
seedlings were treated with 200mMmannitol for 7 days, 300mM
NaCl for 7 days, or low temperature (4◦C) for 22 h, respectively.
All leaf samples were collected and frozen quickly in liquid
nitrogen and stored at −80◦C for RNA extraction. The global
expression patterns of banana genes were determined by using
RNA-seq. Total RNA was extracted using a plant RNA extraction
kit (Tiangen, China) and was converted into cDNA by using
a RevertAid First Strand cDNA Synthesis kit (Ferments). The
cDNA libraries were constructed based on Illumina protocols and
subsequently subjected to sequencing by Illumina GAII following
the Illumina RNA sequencing protocol. Each sample contained
2 biological replicates. The sequencing depth was 5.34X on
average and the coverage was more than 95%. FASTX-toolkit
was used to remove the adapter sequences. Clean reads were
produced by removing low quality sequences and examining
the sequence quality using FastQC. Clean reads were mapped
to the DH-Pahang genome (Musa acuminate, A-genome, 2n =

22) with Tophat v.2.0.10. Cufinks was employed to carry out the
transcriptome assemblies. Gene expression levels were calculated
as FPKM. Differentially expressed genes were identified using
DEGseq. The heat-map was constructed with MeV 4.9 and Java
Treeview softwares according to the manufacturer’s protocol.

qRT-PCR Analysis
Expression of MaGRF genes were detected by quantitative
rea-time polymerase chain reaction (qRT-PCR) analysis using
SYBR R© Premix Ex TaqTM(TaKaRa, Shiga, Japan) chemistry on
a StepOnePlus Real-Time PCR (Applied Biosystems, Foster
City, CA) instrument. Primer pairs that had high specificity
and efficiency were selected to conduct quantification assay
(Table S6). The banana MaUBQ2 (HQ853254) was selected as
internal control to normalize the relative expression of target
genes (Chen et al., 2011). The relative expression levels of the
target genes were assessed based on 2−11Ct method. Each sample
contains three replicates.

RESULTS

Identification and Phylogenetic Analysis of
Banana 14-3-3 Genes
BLAST and the hidden markov model were conducted to
identify all banana 14-3-3 genes with Arabidopsis and rice 14-
3-3 sequences as queries. A total of 25 non-redundant 14-3-
3 (designed as MaGRF1 to 25) genes were identified in the
banana genome, which was supported by conserved domain
and multiple sequence alignment analyses (Figure 1, Table S1).
The 25 predicated banana 14-3-3 proteins ranged from 130
(MaGRF23, MaGRF24) to 344 (MaGRF2) amino acid residues
in length, and their relative molecular mass varied from 14.529
KDa (MaGRF24) to 38.789 KDa (MaGRF2), with the pIs in the
range of 4.31–6.41, suggesting their potentially different roles
in regulating cellular processes under different environments
(Figure 1, Table S2).

Based on the alignments of 14-3-3 proteins from banana,
rice, and Arabidopsis, a phylogenetic tree was constructed
to understand their evolutionary relationships (Figure 2). The
results showed that all identified 14-3-3 proteins from banana
were clearly classified into the ε- and the non-ε group.
According to the phylogenetic relationship, 10 banana 14-3-3
genes (MaGRF2, 6, 3, 7, 8, 9, 12, 5, 4, and 14) together with
Arabidopsis AtGF9, 10, 13, 11, 12, and the rice OsGF14g, h were
classified into the ε group. The other 15 banana 14-3-3 genes, i.e.,
MaGRF1, 11, 10, 13, andMaGRF15-25 together with Arabidopsis
AtGF6, 8, 7, 3, 5, 4, 1, and rice OsGF14a, c, e, b, f, d, belonged to
the non-ε group.

Gene Structure and Conserved Motifs of
14-3-3 Genes in Banana
Exon-intron structural divergence within families plays a key role
in the evolution of gene families. To understand the structural
diversity of banana 14-3-3 genes, exon-intron organization
among the coding sequence of 46 14-3-3s (25 from banana,
13 from Arabidopsis and 8 from rice) was conducted using the
Gene Structure Display Server (GSDS, http://gsds.cbi.pku.edu.
cn/) based on an evolutionary analysis. The results showed that
banana 14-3-3 genes contained 2-7 exons (Figure 3). Non-ε
group banana 14-3-3 genes contained 2-6 exons, whereas ε group
genes had 5–7 exons. The exon-intron organization was different
between the ε group and the non-ε group 14-3-3 genes of the
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FIGURE 1 | Amino acid alignment of the deduced banana 14-3-3 proteins. Multiple alignments of the amino acid sequences of 25 banana 14-3-3 genes were

analyzed by Vector NIT Suite 11.0, amino acids with high identities were shown in black or gray background.
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FIGURE 2 | Phylogenetic analysis of 14-3-3s from Arabidopsis, rice, and banana using Neighbor-joining method. The Phylogenetic tree was constructed

by using ClustalX 2.0 and MEGA5.0 software with pair-wise deletion option. Tree reliability was assessed using 1000 bootstraps replicates. The numbers indicated for

each clade represent bootstrap support values given as percentages. Two groups were shown as ε group and the non-ε group. Solid round, 25 14-3-3 proteins from

banana; Solid Square, 12 14-3-3 proteins from Arabidopsis; Solid triangle, 8 14-3-3 proteins from rice.

3 species, indicating the diversity of expansion and evolution
between the ε group and the non-ε group plant 14-3-3 genes
(Figure 3).

To explore the structural diversity and predict the function of
banana 14-3-3 proteins, a total of 10 conserved motifs in banana
14-3-3 genes were identified by MEME software and further
annotated with InterPro Scan 5 (Figure 4, Figure S1). The results
suggested that 6 motifs (motifs 1–6) were annotated as 14-3-3
protein domains, which are basic characteristics of the 14-3-3
gene family. According to the motif analysis, all identified banana
14-3-3 proteins contained the typical 14-3-3 domain motifs. All
ε group banana 14-3-3 proteins contain the motifs 1, 2, 3, 4, 5,
whereas all non-ε group banana 14-3-3 proteins share the motifs
1, 2, 3, 5, 7. Most ε group banana 14-3-3 proteins had motif
3 and motif 4 at the N terminal and C terminal, respectively.
In contrast, most non-ε group banana 14-3-3 proteins showed
motif 8 and motif 2 at the N terminal and C terminal,

respectively. The motif structure conservation and divergence
might indicate their group and function specific to banana
14-3-3s.

Expression Analysis of 14-3-3 Genes in
Different Tissues of Two Banana Varieties
To investigate the role of 14-3-3 genes in banana growth and
development, expression patterns of 14-3-3 genes in different
organs, including roots, leaves, and fruits, were tested in 2
cultivated banana varieties, BX and FJ. The transcripts of 21
banana 14-3-3 genes (exceptMaGRF4, 20, 21, and 17) in different
tissues of 2 varieties were obtained based on transcript data
(Figure 5, Table S3).

In BX, 19 (90.5%) genes (exceptMaGRF8 and 14) expressed in
all tissues examined, among which 17 (MaGRF1, 2, 3, 5, 6, 7, 10,
11, 13, 15, 16, 18, 19, 22, 23, 24, and 25), 14 (MaGRF1, 2, 3, 6, 7,
10, 13, 15, 18, 19, 22, 23, 24, and 25), and 13 (MaGRF1, 2, 3, 5, 10,
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FIGURE 3 | The Phylogenetic relationship and exon-intron structure analyses of 14-3-3s from banana, Arabidopsis, and rice. The neighbor-joining tree

was created using ClustalX 2.0 and MEGA5.0 with amino acid sequences of 14-3-3s from banana, Arabidopsis and rice. Two groups are indicated with different color

backgrounds. Exon-intron structure analyses were conducted using the GSDS database. Lengths of exons and introns of each 14-3-3 gene were exhibited

proportionally.

11, 13, 18, 19, 22, 23, 24, and 25) genes had high transcriptional
abundance (value>10) in roots, leaves, and fruits, respectively. In
addition, there were 11 (MaGRF1, 2, 3, 10, 13, 18, 19, 22, 23, 24,
and 25) genes with high transcriptional abundance (value>10) in
all organs tested.

In FJ, 18 (85.7%), 19 (90.5%), and 15 (71.4%) of them
expressed in roots, leaves, and fruits, respectively, in which
11 (MaGRF2, 3, 7, 10, 11, 13, 16, 18, 22, 23, and 25), 8
(MaGRF2, 3, 7, 11, 15, 22, 23, and 25), and 10 (MaGRF2,
3, 11, 12, 13, 16, 19, 22, 23, and 25) genes had high
transcriptional abundance (value>10) in roots, leaves, and fruits,
respectively. There were 6 genes (MaGRF2, 3, 11, 22, 23,
and 25) with high expression levels (value>10) in all tissues
examined.

To compare the expression patterns of banana 14-3-3s in
various organs of BX and FJ, 19 (90.5%) genes expressed in all
BX organs examined, only 15 (71.4%) of them expressed in all

organs of FJ. The number of genes with high expression levels
(value>10) was more in BX than in FJ in roots, leaves, and fruits.
Some genes showed similar expression profiles in BX and FJ,
including MaGRF11, 3, 12, 22, 7, 9, 14, 18, 23, 13, 8, and 25,
indicating that these genes had similar functions in regulating
organs development of BX and FJ. However, some genes
exhibited deferential expression profiles between BX and FJ. For
example, MaGRF10 and MaGRF24 showed strong expression
(value>67) in the 3 tissues of BX, whereas low expression
(value<13) in the 3 tissues of FJ. On the contrary, MaGRF16
had abundant transcripts (value>34) in roots and fruits of FJ,
whereas low transcripts (value<11) in roots and fruits of BX.
This indicates thatsome 14-3-3 genes may play distinct roles for
organs development in different banana varieties. Additionally, 5
genes (MaGRF2, 3, 22, 23, and 25) showed high expression levels
(value>10) in all tissues of BX and FJ examined, indicating their
important roles in regulating organ development. Overall, tissue
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FIGURE 4 | The phylogenetic relationship and motif analyses of banana 14-3-3s. The neighbor-joining tree was created using ClustalX 2.0 and MEGA5.0 with

amino acid sequences of banana 14-3-3s. Two groups are indicated with different color backgrounds. All motifs were identified by the MEME database with complete

amino acid sequences of banana 14-3-3s. Lengths of motifs for each banana 14-3-3 protein were exhibited proportionally.

FIGURE 5 | Expression analysis of banana 14-3-3 genes in roots,

leaves, and fruits of two cultivated banana varieties. Banana leaves and

roots at the five-leaf stage and fruits at 80 DAF in the BX and FJ varieties were

sampled to detect the expression profiles of 14-3-3s in various tissues. The

heat-map was created based on the transcriptomic data of 14-3-3s from two

independent experiments. The scale represents relative signal intensity values.

expression profiles of banana 14-3-3 genes in different varieties
may provide insight for future studies on tissue development and
function.

Expression Analysis of Banana 14-3-3
Genes in Different Stages of Fruit
Development and Ripening of Two Banana
Varieties
To investigate the functions of 14-3-3 genes in regulating banana
fruit development and postharvest ripening, changes in banana
14-3-3 genes expression at 0, 20, and 80 DAF in BX and FJ, 8 and
14 DPH in BX, and 3 and 6 DPH in FJ were analyzed according
to transcriptomic data. There were 21 14-3-3 genes expressed at
different phases of fruit development and postharvest ripening in
2 varieties (Figure 6, Table S4).

In BX, 19 (no MaGRF8 and 14), 21, 20 (no MaGRF8), 19 (no
MaGRF8 and 14), and 20 (no MaGRF8) 14-3-3 genes expressed
at 0, 20, 80 DAF, as well as 8 and 14 DPH, respectively. There
were 15 (71.4%), 14 (66.67%), 8 (MaGRF1, 3, 10, 13, 22, 23,
24, and 25), 8 (MaGRF3, 5, 10, 13, 19, 22, 24 and 25), and 6
(MaGRF2, 3, 5, 15, 22 and 24) banana 14-3-3 genes with high
transcriptional abundance (value>30) at 0, 20, 80 DAF, and 8
and 14 DPH, respectively. Notably, MaGRF22, 24 and 3 genes
had high transcriptional accumulation (value>30) at all phases
of fruit development and postharvest ripening.

In FJ, 20 (no MaGRF14), 18 (no MaGRF8, 9, 14), 16 (no
MaGRF6, 8, 9, 14, 15, 24), 17 (no MaGRF8, 9, 14, 15, 24),
and 17 (no MaGRF1, 8, 9, 14, 24) 14-3-3 genes had expression
at 0, 20, and 80 DAF, as well as 8 and 14 DPH, respectively.
Furthermore, 16 (76.2%), 8 (MaGRF2, 3, 11, 12, 16, 22, 23, and
25), 7 (MaGRF2, 3, 11, 16, 22, 23, and 25), 8 (MaGRF2, 3, 11,
13, 16, 22, 23, and 25), and 2 (MaGRF22 and 11) genes showed
high transcrips (value>30) at 0, 20, 80 DAF, and 3 and 6 DPH,
respectively. NotablyMaGRF22 and 11 displayed high transcripts
(value>30) at all phases of fruit development and postharvest
ripening.
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FIGURE 6 | Expression analysis of 14-3-3s in different stages of fruit

development and ripening in two banana varieties. Fruits of 0, 20, and 80

DAF in BX and FJ varieties were sampled to assess the expression patterns of

14-3-3 genes during fruit development. Fruits at 8 and 14 DPH in BX and at 3

and 6 DPH in FJ were sampled to examine the expression patterns of 14-3-3s

during postharvest ripening process. The heat-map was created based on

transcriptomic data of 14-3-3s from two independent experiments. The scale

represents relative signal intensity values.

By comparing the expression paterns of banana 14-3-3
genes at distinct phases of fruit development and postharvest
ripening in BX and FJ, 19 banana 14-3-3 genes (∼90.5%)
showed expression at all stages tested in BX, whereas only 14
of them (∼66.7%) showed expression at all stages examined
in FJ. Similar expression patterns could be observed at 0 DAF
in BX and FJ, indicating that banana 14-3-3 genes played a
similar role during early fruit development stages of the two
varieties. However, 10 genes (MaGRF1, 5, 6, 9, 10, 13, 15, 19,
and 24) had higher expression levels at subsequent stages in
BX compared to those in FJ, whereas only 2 genes showed
higher expression levels in FJ than in BX. These findings imply
a significant transcriptional response ofMaGRFs during BX fruit
development and postharvest ripening processes. In addition,
MaGRF22 displayed high transcriptional abundance (value>80)
at all phases in BX and FJ.

Expression Analysis of Banana 14-3-3
Genes Responding to Cold, Salt, and
Osmotic Stresses of Two Banana Varieties
Much evidence had indicated that 14-3-3 genes participated in
plant response to various stresses, including drought, cold, and
salt. To better understand 14-3-3 genes in response to these 3
stresses, expression of 14-3-3 genes in leaves of BX and FJ was
examined under salt, cold, and osmotic treatments. A heat-map
representing the expression profile of 21 banana 14-3-3 genes was
created using transcriptomic data (Figure 7, Table S5).

For BX, 9 (42.9%), 13 (61.9%), and 12 (57.1%) MaGRF
genes were upregulated after cold, salt, and osmotic treatments,
respectively, whereas 10 (47.6%), 6 (28.5%), and 7 (33.3%) banana

FIGURE 7 | Expression analysis of 14-3-3s in response to cold, salt,

and osmotic treatments in two banana varieties. For osmotic and salt

treatments, banana seedlings at the five-leaf stage grown in soil were irrigated

with 200mM mannitol or 300mM NaCl for 7 days, respectively. For cold

treatment, banana seedlings were cultured in a growth chamber with a

temperature that was maintained at 4◦C for 22 h. Log2-based values were

used to create the heat-map based on transcriptomic data of 14-3-3s from

two independent experiments. The scale represents relative signal intensity

values.

14-3-3 genes were downregulated under the treatment of cold,
salt, and osmotic, respectively. Expression of MaGRF9, 15, and
18were strongly upregulated (value>1) by cold, salt, and osmotic
stress, respectively. Four genes (MaGRF12, 16, 15, and 24) were
upregulated after each of the stress treatments, and 2 genes
(MaGRF1 and 10) were downregulated after each of the stress
treatments.

In FJ, 6 (MaGRF1, 6, 7, 8, 11, and 12), 7 (MaGRF1, 2, 6,
7, 11, 13, and 15), and 11 (MaGRF2, 3, 6, 7, 10, 11, 12, 13,
18, 22, and 25) banana 14-3-3 genes showed induction under
cold, salt, and osmotic treatments, respectively. Conversely,
expression of 57.1% (12/21), 47.6% (10/21), and 28.6% (6/21)
banana 14-3-3 genes were inhibited after cold, salt, and osmotic
stress, respectively. MaGRF6 and 12 were significantly induced
(value>1) by cold and osmotic treatments.

Overall, the number of upregulated banana 14-3-3 genes by
cold, salt, and osmotic stress was more in BX than that in FJ.
Three genes (MaGRF2, 3, and 25) presented similar expression
patterns after salt, cold, and osmotic treatments, respectively,
indicating that their similar functions in BX and FJ under
the cold, salt, and osmotic treatments. However, there were 6
(MaGRF1, 5, 6, 15, 16, and 23), 10 (MaGRF1, 5, 6, 7, 12, 16,
18, 19, 22, and 23), and 6 (MaGRF10, 11, 13, 15, 16, and 19)
genes showing differential expression patterns between BX and
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FJ under cold, salt, and osmotic treatments, respectively. Notably,
MaGRF24 was induced after cold, salt, and osmotic stress in BX,
but it has no detection expression after these three treatments
in FJ.

Validation of the Differentially Expressed
14-3-3 Genes by qRT-PCR Analysis
According to the RNA-seq data, MaGRF3, MaGRF16, and
MaGRF25 showed high expression levels in different organs, or
abundant transcripts during most stages of fruit development
and ripening, or upregulation after abiotic stress treatments in
BX or FJ. These differentially expressed MaGRF genes were
selected for qRT-PCR analysis to validate the RNA-seq data. After
normalization, the majority of selected MaGRF genes, except
for MaGRF16 in BX 14 DPH, FJ fruits, and FJ 80 DAF, and
MaGRF25 in BX leaves and FJ roots, had the same trend and
consistent results between transcriptomic data and qRT-PCR
data (Figure S2). These results indicate that transcriptomic data
are suitable for analyzing the expression patterns of 14-3-3 genes
in two banana varieties.

DISCUSSION

Bananas are an important and popular fresh fruit worldwide
and play a key role in the economy of tropical and subtropical
areas as a food commodity. To manipulate banana breeding,
it is essential to explore the mechanisms underlying banana
fruit development, postharvest ripening, and responses to abiotic
stresses. Plant 14-3-3 proteins play key roles in regulating
plant growth, development, and the response to abiotic stresses
and are considered crucial mediators in many biological and
physiological signal processes. However, less information is
known about the 14-3-3 gene family in banana. In this
study, we performed genome-wide identification and molecular
characterization of the 14-3-3 gene family during development,
ripening, and response to cold, salt, and osmotic stresses in
banana.

Identification and Evolutionary Analysis of
Banana 14-3-3 Genes
In this study, genome-wide analysis identified 25 14-3-3 protein
genes in the DH-Pahang (Musa acuminate, A-genome, 2n = 22)
genome database. The finding indicated that the banana 14-3-
3 gene family had expanded compared to that in Arabidopsis
(Rosenquist et al., 2001; Chevalier et al., 2009) and rice (Chen
et al., 2006; Yao et al., 2007). Based on phylogenetic analysis,
they are classified as either the ε group or the non-ε group,
which is in accordance with previous phylogenic classification
of 14-3-3s in rice (Chen et al., 2006), Arabidopsis (Chevalier
et al., 2009), soybean (Li and Dhaubhadel, 2011), cotton (Sun
et al., 2011), common bean (Tian et al., 2015), Populus (Li
et al., 2015), Medicago truncatula (Qin et al., 2016), and B.
rapa (Chandna et al., 2016). Gene structure analysis indicated
that the number of exons and introns of ε group 14-3-3 genes
from banana is more than non-ε group genes (Figure 3) which
was also found in Arabidopsis, rice, common bean (Tian et al.,

2015), M. truncatula (Qin et al., 2016), and B. rapa (Chandna
et al., 2016). Thus, the exon numbers of 14-3-3 genes in each
group among 6 species supports their evolutionary classification.
Additionally, the exons number of most 14-3-3 genes (except for
MaGRF14) from banana (2–7) and rice (4–6) is more than that
from Arabidopsis (3–6), implying that the banana 14-3-3 genes
changed greatly during evolution. Conserved motif analysis
showed that all identified banana 14-3-3s had the typical 14-3-3
domain. Moreover, the ε group and non-ε group banana 14-3-
3s had special signature motifs, respectively, further supporting
the classification of 14-3-3s. The conservation and divergence
in the protein sequence might be an evolutionary consequence.
Together, the identification and classification of the banana 14-3-
3 gene family was supported by evolutionary, genetic structure,
and conserved motif analyses.

Involvement of 14-3-3 Genes in Fruit
Development, Postharvest Ripening, and
Abiotic Stress Response of Banana
Banana fruit quality and shelf life are determined by fruit
development and the postharvest ripening process. Thus, it is
essential to understand the mechanisms involved in banana
fruit development and postharvest ripening. In this study,
we studied the expression profiles of banana 14-3-3s in
fruit development and postharvest ripening processes. Results
indicated that most banana 14-3-3s showed great expression
changes. Moreover, many genes showed robust transcriptional
abundance (value>30) during the developmental and ripening
stages (Figure 6, Table S4). Much evidence had demonstrated
that plant 14-3-3 proteins could be involved in fruit development
and ripening processes. The distinct transcript accumulation of 2
tomato 14-3-3 homologs suggested their potential involvement
in fruit development (Laughner et al., 1995). The Pp14-3-3a
gene was involved in regulating fruit development (Shi and
Zhang, 2014). Expression of mango 14-3-3 genes increased
during fruit development and decreased during fruit ripening
(Pandit et al., 2010). In Arabidopsis, expression of GF14 chi
was exclusively detected in mature siliques and immature seeds
(Daugherty et al., 1996). In maize, expression of 2 14-3-3
proteins changed significantly during seed development (Dou
et al., 2014). Based on the evidence above, 14-3-3 genes showed
potential involvement in regulating banana fruit development
and postharvest ripening processes.

Interestingly, the number of 14-3-3 genes with high
transcriptional abundance (value>30) at 0 DAF in BX and FJ
is greater than at other stages, suggesting that 14-3-3 genes
play a crucial role in early banana fruit development (Figure 6,
Table S4). Previous evidences have revealed the importance of
14-3-3 genes during early fruit development (Taoka et al., 2011;
Niemenak et al., 2015). Expression of a cacao 14-3-3 protein
was detected exclusively in fruit tissues, which is in accordance
with fruit development (Niemenak et al., 2015). The rice 14-
3-3 protein GF14c was perfectly demonstrated as intracellular
receptors that induce flowering and play a crucial role in early
seed development (Taoka et al., 2011). Overall, these results
suggested the key roles of 14-3-3 genes in regulating early
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fruit development. During the postharvest ripening processes,
numerous physiological, biochemical, and molecular changes
occur (Roy Choudhury et al., 2009; Shiga et al., 2011; Moser et al.,
2012; Etienne et al., 2015) which influence the quality of banana
fruit. Thus, postharvest ripening is critical to improving fruit
quality and extending fruit shelf life in banana. Notably, 9 genes
(MaGRF1, 5, 6, 9, 10, 13, 15, 19, and 24) had higher expression
levels at postharvest ripening stages in BX compared to those in
FJ, indicating a significant response at the transcriptional levels
in the postharvest ripening of BX (Figure 6, Table S4). BX is a
more widely cultivated strain than FJ in tropical and subtropical
areas because of its high fruit quality (Cruz-Cárdenas et al.,
2015). Plant 14-3-3 proteins have been extensively demonstrated
as key regulator of primary metabolism and can interact with
a wide range of metabolic enzymes (Lu et al., 2016). The
robust expression of these MaGRFs in BX during the banana
fruit ripening process implies their potential involvement in
mediating primary metabolism and formation of banana fruit
quality.

Increasing evidences have suggested that 14-3-3 genes could
transcriptionally respond to abiotic stress in many species (Chen
et al., 2006; Xu and Shi, 2006; Sun et al., 2011; Li et al., 2015;
Tian et al., 2015; Chandna et al., 2016). Further biochemical and
genetic evidences have demonstrated that plant 14-3-3 proteins,
acting as signal moderators, positively regulate plants responseto
abiotic stress (Campo et al., 2012; He et al., 2015). In this study,
many 14-3-3 genes showed great changes after osmotic, cold, and
salt treatments in two banana varieties, suggested their potential
role in regulating banana response to abiotic stress. Additionally,
we noticed that the number of upregulated 14-3-3 genes was
greater in BX than in FJ after salt, cold, and osmotic treatments
(Figure 7, Table S5). The more upregulated 14-3-3 genes in BX
suggested the strong signaling responses of BX plants to abiotic
stresses. It is known that BX is sensitive to abiotic stresses relative
to FJ (Ravi et al., 2013). Thus, compared with FJ, BX needed
to strongly activate 14-3-3 proteins-mediated signaling pathways
to combat abiotic stresses. Collectively, it is concluded that 14-
3-3 genes might play an essential role in regulating resistance
to environmental stresses in banana. These findings established
a solid foundation for further studies of the 14-3-3 protein-
mediated abiotic stresses signal response in banana.

In conclusion, this study identified 25 banana 14-3-3 genes
and established the classification and evolutionary relationship
of these genes using phylogenetic, gene structure, and conserved
proteinmotif analyses. Further expression analyses demonstrated
that banana 14-3-3 genes were involved in regulating fruit
development, postharvest ripening and abiotic stress responses.

These data bring new insight to the control of 14-3-3 gene
expression, which provides new clues for further functional
characterization of potential targets of 14-3-3 and the genetic
improvement of bananas.
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