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Nucleolar dominance is an epigenetic phenomenon associated with nuclear 35S rRNA

genes and consists in selective suppression of gene loci inherited from one of the

progenitors in the allopolyploid. Our understanding of the exact mechanisms that

determine this process is still fragmentary, especially in case of the grass species.

This study aimed to shed some light on the molecular basis of this genome-specific

inactivation of 35S rDNA loci in an allotetraploidBrachypodium hybridum (2n= 30), which

arose from the interspecific hybridization between two diploid ancestors that were very

similar to modern B. distachyon (2n = 10) and B. stacei (2n = 20). Using fluorescence

in situ hybridization with 25S rDNA and chromosome-specific BAC clones as probes we

revealed that the nucleolar dominance is present not only in meristematic root-tip cells

but also in differentiated cell fraction of B. hybridum. Additionally, the intergenic spacers

(IGSs) from both of the putative ancestors and the allotetraploid were sequenced and

analyzed. The presumptive transcription initiation sites, spacer promoters and repeated

elements were identified within the IGSs. Two different length variants, 2.3 and 3.5 kb, of

IGSs were identified in B. distachyon and B. stacei, respectively, however only the IGS

that had originated from B. distachyon-like ancestor was present in the allotetraploid.

The amplification pattern of B. hybridum IGSs suggests that some genetic changes

occurred in inactive B. stacei-like rDNA loci during the evolution of the allotetraploid.

We hypothesize that their preferential silencing is an effect of structural changes in the

sequence rather than just the result of the sole inactivation at the epigenetic level.

Keywords: 35S rDNA, NOR, allopolyploidy, Brachypodium hybridum, intergenic spacer, nucleolar dominance,

nucleolus, grasses
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INTRODUCTION

Allopolyploidy has long been recognized as one of the most
prominent mechanisms of angiosperm evolution and is often
attributed to the increased genetic diversity which may be
manifested in the novel traits of a polyploid organism that are not
present in its diploid progenitors (Soltis et al., 2015). Although
young allopolyploids can evolve into successful species, in the
short term the combination of two or more distinct genomes in
one nucleus is often associated with various problems, including
intergenomic exchanges, sequence loss, transposon proliferation
and meiotic irregularities (Parisod et al., 2010; Grandont et al.,
2013). The process of allopolyploid stabilization, which is
called diploidization, involves changes at both the genetic and
epigenetic levels that lead to a diploid-like meiotic behavior
and the production of functional gametes as well as a reduced
gene expression level in the allopolyploid to a level comparable
to its diploid progenitors (Ma and Gustafson, 2005). Several
evolutionary scenarios are possible for the homoeologous genes
in allopolyploids. It was shown that both of the homoeologues
that have been inherited from the two ancestors can be
maintained and remain functional in the allopolyploid. It is also
possible that one copy accumulates mutations and either gains a
new function or becomes repressed. The elimination of one gene
variant has also frequently been observed (Tate et al., 2009).

The tandemly repeated 35S rDNA constitutes a molecular and
cytogenetic marker of allopolyploidy (Malinska et al., 2010). Each
rDNA unit is composed of the three rRNA coding sequences,
two internal transcribed spacers (ITSs) and one intergenic spacer
(IGS; Volkov et al., 2004; Poczai andHyvonen, 2010; Shaw, 2013).
In contrast to the highly conserved coding sequences, both the
IGS and ITSs evolve rather rapidly and as a result their lengths
and sequences display considerable variability. The hybrid origin
ofmany plant species that havemaintained both parental variants
of rDNA long after the formation of allopolyploid has been
documented using ITS sequences (O’Kane et al., 1996; Poczai
and Hyvonen, 2010). Nevertheless, many allopolyploids suffer
from various rDNA rearrangements, including locus and repeat
loss as well as interlocus recombination (Wendel et al., 1995;
Bao et al., 2010; Kotseruba et al., 2010). The concerted evolution
of rDNA loci in the context of allopolyploids may lead to
the homogenization of parental units into a single repeat type
(Dobesova et al., 2015). Moreover, there is much evidence that
the number of rDNA loci is reduced to a diploid-like number
during the evolution of an allopolyploid (Kovarik et al., 2008). In
many species, such evolutionary processes hamper the effective
identification of their hybrid origin, based only on the ITS or IGS
sequences (Malinska et al., 2010).

The 35S rRNA genes have also been extensively studied
in allopolyploids because of the enigmatic phenomenon of
nucleolar dominance (ND; Pikaard, 2000). Its presence, which
was originally described as “differential amphiplasty,” was first
observed in the interspecific hybrids of Crepis in which only
the chromosomes that had been inherited from one of the
ancestors carried secondary constrictions, while the 35S rRNA
gene set from the other ancestor was transcriptionally silenced
(Navashin, 1934; Tucker et al., 2010; Ge et al., 2013). To date,

ND has been described in the interspecific hybrids of numerous
plant genera and in at least one intergeneric hybrid—triticale
(Lacadena et al., 1984; Pikaard, 2000). The precise mechanisms
that determine which set of rRNA genes is chosen to be
silenced in a genetic hybrid remain unclear. It is widely accepted
that at least two epigenetic processes, i.e., DNA methylation
and histone deacetylation, cooperate in this genome-specific
repression of the 35S rRNA gene loci (Chen and Pikaard, 1997;
Lawrence et al., 2004; Probst et al., 2004). To discover the
exact molecular basis that is responsible for ND, reverse genetics
approaches have been undertaken. As a result, various specific
chromatin modifiers that play crucial roles in NDwere identified,
including HDA6 histone deacetylase, DRM2 cytosine de novo
methyltransferase and two methyl cytosine-binding proteins—
MBD6 and MBD10 (Earley et al., 2006; Preuss et al., 2008).
Although, recent studies confirmed the epigenetic nature of this
phenomenon, the fundamental question of how one set of 35S
rRNA genes can be predestined for transcriptional silencing still
remains unanswered (Tucker et al., 2010). Moreover, most of
the data that is linked with the ND comes from experiments
on the dicot plants of the Brassicaceae family, especially the
allotetraploid Arabidopsis suecica. Despite the studies on cereal
hybrids which employed classical cytogenetic methods (Lacadena
et al., 1984; Vieira et al., 1990; Neves et al., 1995), little is
known about the details of the preferential silencing of rRNA
genes in the economically important Poaceae family. It is
then important to verify whether the molecular mechanisms of
nucleolar dominance in grasses are the same as those in the more
extensively studied dicotyledonous allopolyploids.

In this study, complex molecular and cytogenetic approaches
were used in order to shed some light on the ND phenomenon
in the natural grass allotetraploid, Brachypodium hybridum (2n
= 30). We present the 35S rRNA gene IGS sequence structure
of this allotetraploid and its putative ancestors, a model grass
B. distachyon (2n = 10) and B. stacei (2n = 20). Moreover, the
physical localization of the B. stacei-like IGS in both metaphase
chromosomes and the interphase nuclei that had been isolated
from the roots of the allotetraploid is shown. The occurrence of
genome-specific rRNA gene silencing in the root apical meristem
cells of B. hybridum, which was briefly reported by our group
(Idziak and Hasterok, 2008), was not only confirmed and further
analyzed but was also demonstrated to occur in the differentiated
cell fraction in the roots of this allotetraploid.

MATERIALS AND METHODS

Plant Material and DNA Extraction
Plants used in this study were as follows: diploid B. distachyon
(2n = 10) reference genotype Bd21, diploid B. stacei (2n =

20) genotype ABR114 and three genotypes (ABR113, ABR107
and ABR117) of allotetraploid B. hybridum (2n = 30). All ABR
genotypes were obtained from the collection of the Institute
of Biological, Environmental and Rural Sciences (Aberystwyth
University, UK), while Bd21 line was received from US
Department of Agriculture—National Plant Germplasm System.
All plants were grown at 22◦C with a 16 h photoperiod in
a greenhouse. Total genomic DNA was isolated from young
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leaves of 1-month-old plants. The tissue was ground in liquid
nitrogen and the DNA was extracted using a DNeasy Plant
Mini kit (Qiagen) according to the manufacturer’s protocol. The
quantity and purity of the isolated DNA was determined using
a NanoDrop spectrophotometer and was additionally verified
using 1% agarose gel electrophoresis.

PCR Amplification, Cloning, and
Sequencing of IGSs
The PCR primers that were used to amplify the IGSs were
designed to match the conserved regions of the 18S and 25S
rRNA genes (Chang et al., 2010). The IGS was amplified from
the genomic DNA of both ancestral species and B. hybridum
ABR113. Each 20 µL reaction mixture contained 25 ng of total
genomic DNA, 200 µM of each dNTP, 0.5 µM of each primer, 10
× reaction buffer with 2mMMgCl2 and 1.5U FastStart Taq DNA
polymerase (Roche). The IGS amplification was carried out with
an initial denaturation at 98◦C for 1 min, followed by 35 cycles
of amplification with denaturation at 98◦C for 30 s, annealing
of primers at 58◦C for 15 s and DNA elongation at 72◦C for
1.5 min. PCR products were separated by electrophoresis in 1%
agarose gel and the selected IGS amplicons were cloned into a
pGEM-T Easy Vector System II (Promega). The plasmid DNA
from a single recombinant clone for B. stacei and B. hybridum
was isolated using a Qiaprep Spin Miniprep kit (Qiagen). The
inserts were sequenced using the Sanger method and the primer-
walking strategy (Supplementary Table 1). Since the high repeat
content in the intergenic spacer of B. stacei hampered its effective
sequencing by primer-walking, the B. stacei IGS was sequenced
using the GS Junior sequencing system (Roche 454).

B. distachyon IGS was identified in the entire genome
sequence of Bd21 (http://brachypodium.org) with the
B. hybridum IGS used as a query. Five primer pairs for PCR
reactions (Supplementary Table 2) were designed to amplify the
fragments of B. distachyon IGS and then to resequence the whole
intergenic spacer. Each 25 µL PCR mixture contained 20–30
ng of the total genomic DNA of Bd21, 100 µM of each dNTP,
0.4 µM of each primer, 1.5 mM MgCl2, a 10 × reaction buffer
and 1U Taq DNA polymerase (Promega). The amplification was
done with an initial denaturation at 94◦C for 1 min, followed
by 35 cycles of amplification with denaturation at 94◦C for 40 s,
primer annealing at 52◦C for 40 s and synthesis at 72◦C for 80 s.
All of the products were sequenced using the Sanger method
and assembled into a contig using Geneious software. The
IGS sequences are deposited in GenBank under the following
accession numbers: KX263276, KX263277, and KX263278.

The dot matrix analyses were performed using the Geneious
software. Tandem repeats within all of the studied IGSs were
identified using the Tandem Repeat Finder (Benson, 1999). The
IGS sequences were aligned using the ClustalW2 program.

Root Meristem Preparation
Mitotic chromosome preparations were made according to a
previously described procedure (Jenkins and Hasterok, 2007).
In brief, the seeds were grown on filter paper moistened with
tap water for 72 h at room temperature in the dark. Seedlings
with two to three-cm-long roots were treated in ice-cold water

for 24 h, fixed in a 3:1 (v/v) methanol:glacial acetic acid at 4◦C
overnight and stored at −20◦C until use. After washing in a 0.01
mmol/L citric acid-sodium citrate buffer (pH 4.8), the roots were
digested enzymatically for 1.5 h at 37◦C in a mixture of 20% (v/v)
pectinase (Sigma-Aldrich) and 2% (w/v) cellulase “Onozuka R-
10” (Serva). After digestion, the meristems were dissected from
the root tips and squashed in 45% acetic acid. After freezing on
dry ice, the cover slips were removed and the preparations were
air dried.

Nuclei Isolation
Interphase nuclei from 2-cm-long roots were isolated according
to the method described by Lysak et al. (2006). At least 40
seedlings were fixed in 4% formaldehyde in 1 × PBS (pH 7.3)
at 4◦C for 30 min. After fixation, the seedlings were washed twice
in an ice-cold 1× PBS buffer for 5 min. The roots were separated
and washed in a Tris buffer at 4◦C for 20 min and chopped with
a razor blade in a 400 µL LB-01 buffer on ice in Petri dish. The
suspension was filtered through nylon mesh with 30 µm pores
and 20–30 µL of nuclei suspension was dropped on ice-cold
microscopic slides and air-dried.

DNA Probes and Fluorescence In situ

Hybridization
A 2.3 kb fragment of the 25S rDNA coding sequence of
Arabidopsis thaliana, which had been labeled with tetramethyl-
rhodamine-5-dUTP (Roche) using nick translation, was used
to localize the 35S rRNA gene loci in both the chromosomes
and interphase nuclei of the studied species. An amplified IGS
sequence from B. stacei was labeled with digoxigenine-11-dUTP
(Roche) and used as the second probe. Additionally, in order
to discriminate in B. hybridum interphase nuclei the 35S rRNA
gene loci that had been inherited from both ancestors, a 25S
rDNA sequence labeled with tetramethyl-rhodamine-5-dUTP
and B. distachyon-specific low-repeat BAC clones (a0019O20
or a0009O09; Febrer et al., 2010) labeled with digoxigenine-
11-dUTP were used. Their localization in the B. hybridum
chromosomes that bear the 35S rDNA loci is shown in Figure 1B.

The fluorescence in situ hybridization (FISH) procedure was
adopted from Idziak et al. (2011). Two FISH variants were
performed at different stringencies, which reflect the percentage
of nucleotide identity between a probe and a target:

i. a reaction with either the BAC clones and 25S rDNA as probes,
in which the stringency amounted to 79% or Bs IGS (60.5%
GC content) and 25S rDNA with a 70% stringency;

ii. a reaction with the Bs IGS as a probe and more restrictive
conditions (87% stringency).

The 25S rDNA and IGS/BAC DNA probes were pooled,
precipitated and dissolved in a hybridization mixture that
consisted of 50% deionized formamide, 10% dextran sulfate and
a 2 × saline sodium citrate (SSC) buffer. In the kinetically more
restrictive FISH experiment, the precipitated Bs IGS probe was
dissolved in the following hybridization mixture: 60% deionized
formamide, 10% dextran sulfate and a 0.5× saline sodium citrate
(SSC) buffer. The mixture was predenatured at 75◦C for 10
min, applied to the slides with the chromosome and isolated
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FIGURE 1 | The localization of 35S rDNA loci inherited from both ancestral species in the somatic metaphase chromosomes and interphase nuclei of

B. hybridum. (A) Chromosomes carrying the 35S rDNA loci in three B. hybridum genotypes: ABR113, ABR107 and ABR117, subjected to FISH with 25S rDNA probe

(red). (B) Schematic representation of the 35S rDNA-bearing chromosomes of B. hybridum. The 35S rDNA loci are red while the position of B. distachyon-specific

BAC clones (a0019O20 or a0009O09) green. (C,D) Interphase nuclei after FISH with 25S rDNA (red) and a0019O20 (C) or a0009O09 (D) BAC probes. Hybridization

signals were modeled using Imaris (Bitplane) software. The position of the nucleoli (Nu) is indicated by a dotted line. Chromatin stained with DAPI (blue). Bars: 5 µm.

nuclei preparations and then denatured together at 75◦C for
4.5 min. Hybridization was performed overnight at 37◦C in a
humid chamber. Post-hybridization washes were performed in
10% deionized formamide in 0.1 × SSC for 10 min at 42◦C (the
equivalent of 79% stringency). In the kinetically more restrictive
FISH variant with the Bs IGS probe, 30% deionized formamide

in 0.1 × SSC was used at this stage (the equivalent of 86%
stringency). The chromosomes and nuclei were counterstained
with 2.5 mg/ml 4′,6-diamidino-2-phenylindole (DAPI, Serva) in
Vectashield (Vector Laboratories). Photomicrographs were taken
using either an AxioCam HRmmonochromatic camera attached
to a wide-field AxioImager.Z2 epifluorescence microscope
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(Zeiss) or an Olympus FV-1000 confocal microscope and then
processed using MBF ImageJ (NIH, US).

RESULTS

Localization of the 35S rDNA Loci in the
B. hybridum Metaphase Spreads and
Interphase Nuclei
The number and position of the 35S rRNA gene loci were
verified by in situ hybridization with 25S rDNA in the mitotic
chromosome complements of three different genotypes of B.
hybridum (ABR113, ABR107, and ABR117). It was confirmed
that the genotype ABR113 had two chromosome pairs that bear
35S rDNA loci that had been inherited from both ancestral
species (Figure 1A).We demonstrated that the genotype ABR107
also had the sum of the 35S rDNA loci that had been
expected from the numbers present in the ancestors (Figure 1A);
however, the 25S rDNA FISH signals in the B. stacei-inherited
chromosome pair were significantly smaller than in ABR113. As
was shown by Hasterok et al. (2004), a reduction in the number
of the 35S rDNA loci occurred in ABR117 (Figure 1A). Only the
terminally located 35S rRNA gene loci in the B. distachyon-like
chromosomes were present in this genotype.

The location of 35S rDNA in the interphase cell spreads
of B. hybridum ABR113 was determined by FISH with 25S
rDNA and chromosome-specific BACs, which preferentially
hybridized to the short arm of the NOR-bearing chromosome
Bd5 of B. distachyon (Figure 1B). The BAC clones used in
the study selectively marked only B. distachyon-like 35S rDNA
loci in both the mitotic metaphase chromosomes and the
interphase nuclei that had been isolated from B. hybridum roots
(Figures 1C,D), thus providing valuable markers that enabled
the intergenomic distinction of these loci in the allotetraploid.
Noticeably, in all of the studied nuclei, the 25S rDNA loci
that had been inherited from B. stacei were distributed in
the DAPI-positive chromocenters at the nuclear periphery
(Supplementary Figure 1). Moreover, these loci were unable
to form nucleolus/nucleoli, which was indirect evidence of
their transcriptional repression. In contrast, the hybridization
signals corresponding to the 25S rDNA loci that had been
inherited from the second ancestor tended to be located either
within the nucleolus and adjacent to the nucleolus in the
chromocenters (Figure 1C; Supplementary Figure 1) or were
present only at the nucleolar periphery in the chromocenters
(Figure 1D; Supplementary Figure 2). The signals observed
within the nucleolus appeared to be more diffused compared to
the signals that were present in the chromocenters that adjoined
the nucleolus.

Amplification and Sequencing of the IGSs
PCR with the primers anchored in the highly conserved
regions of 25S and 18S rDNA (Supplementary Table 1) was
used to amplify the IGSs from B. hybridum and its putative
ancestors. The amplification with specific, hot-start FastStart
DNA polymerase (Roche) produced a clearly defined, single
product for all of the species (Figure 2A). In the case of intergenic

spacers of B. distachyon (Bd IGS) and B. hybridum (Bh IGS),
PCR products were observed at approximately 2.5 kb while
the presence of an ∼3.5 kb-long product was identified for B.
stacei (Bs IGS). Surprisingly, the Bs IGS length variant was not
amplified from the gDNA of the allotetraploid (Figure 2A). The
lack of Bs IGS strongly suggests that some changes took place at
the genetic level in the transcriptionally inactive B. stacei-like 35S
rDNA loci during the evolution of B. hybridum. Such changes
most probably involved the primer binding sites.

Intergenic spacers from both modern relatives of the ancestral
species (Bd and Bs IGSs) as well as the shorter length variant of
the IGS from B. hybridum were sequenced and analyzed. The
length of the Bh, Bd, and Bs IGSs was 2305, 2282, and 3456
bp, respectively. All of the studied IGSs were characterized by
a high guanine-cytosine (GC) content that averaged between
60 and 63%. A sequence comparison between the Bd and Bh
IGSs revealed a 95% identity, which further confirmed that
the Bh IGS was inherited from B. distachyon (Figure 3A). A
comparison with an intergenic spacer of B. distachyon using
the blastn algorithm revealed 41 transitions in the Bh IGS,
among which 30 involved changes between pyrimidines and
the remaining 11 between purines (Supplementary Figure 3).
Moreover, the presence of four transversions, four indels and four
gaps that encompassed at least 7 bp was confirmed in the Bh IGS
(Supplementary Figure 3).

The intergenic spacer from the second ancestor (Bs IGS)
was compared with the Bh IGS (Figure 3B) and the Bd
IGS (Figure 3C) on dot matrix plots. In both cases, the
only similar region was the 500 bp fragment of the external
transcribed spacer (ETS) located at the 3′ end of the IGSs
(Figures 3B,C). Blastn analysis of the studied IGSs confirmed
that the ETS is conserved among different Brachypodium species
(Supplementary Tables 3–5). However, this analysis did not
reveal any homology to the IGS sequences from other grass
representatives that do not belong to the genus Brachypodium.

Structure and Functional Domains of the
IGSs
A 17 bp pyrimidine-rich sequence was identified at the 5′ end
of all of the analyzed intergenic spacers. Similar sequences have
been denoted in the IGSs of many other plants from different
genera, including Quercus (Bauer et al., 2009; Inácio et al., 2014),
Solanum (Borisjuk andHemleben, 1993),Arabidopsis (Gruendler
et al., 1991), Brassica (Yang et al., 2015), and Chenopodium
(Maughan et al., 2006), which suggests that they may be involved
in the termination of 35S rDNA transcription (Inácio et al., 2014).

Sequence analysis with both dot matrix plot and Tandem
Repeats Finder software revealed that all of the studied
IGSs contained repetitive motifs (Figures 2B–G). The detailed
description of the identified repeats is shown in Table 1.
It is worth noting that some of the repeated sequences
contained a TATA box. In the repeats Bh.B and Bd.B for
instance, the TATA sequence was identified at the end of
each repeated motif (Figures 2B,C). The alignment between the
corresponding copies of the Bd.B and Bh.B using ClustalW2
revealed the presence of two substitutions in the first motifs;
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FIGURE 2 | Structural organization of 35S rDNA intergenic spacers of B. hybridum (Bh IGS) and the modern relatives of ancestral species

B. distachyon (Bd IGS) and B. stacei (Bs IGS). (A) PCR profiles of the intergenic spacers. The position of primers that were used for PCR is indicated below the

diagram of the 18S-5.8S-25S rDNA unit. Bright bands in the marker line reflect 6 kb (upper band) and 3 kb (lower band). (B,C) Schematic representation of Bh IGS

(B), Bd IGS (C) and Bs IGS (D). Repetitive sequences in each intergenic spacer are denoted as pentagons with different colors. Putative transcription initiation sites

(TISs) are marked as arrows over the diagrams. (E–G) Dot matrix plots of the intergenic spacers. Self-comparisons of Bh IGS (E), Bd IGS (F), and Bs IGS (G). Position

of the repetitive sequences is indicated by rectangles.

however, these changes did not involve the TATA sequence
(Supplementary Figure 4A). A self-comparison analysis on the
dot matrix plots of the Bh and Bd IGSs revealed the presence
of additional, long repeat types, which were denoted as Bh.D
(Figure 2E) and Bd.D (Figure 2F), respectively. Both identified
repeats also contained a TATA box near the 3′ end of each
repeated motif. A ClustalW2 alignment of the Bh.D and
Bd.D repeats is presented in Supplementary Figure 4B. Several
substitutions were detected in the corresponding copies of Bh.D,
but none of them involved the TATA sequences. Interestingly,
the flanking region of the TATA sequences that were identified
in both the Bh and Bd IGSs was conserved and denoted as REPs
within the B and D repeat types (Figures 2B,C). In the case of
Bs IGS, the TATA box was identified in all of the Bs.D motifs.
The TATA box in the second Bs.D copy was identical to the
putative transcription initiation sites (TISs) in the Bd and Bh

IGSs; however, a single substitution was found in the TATA box
from the first copy (Figure 4).

The alignment of the putative TIS that was present in the
IGSs of the Brachypodium species with the available rRNA
gene promoter sequences of the other plants revealed a high
sequence conservation around the transcription initiation sites,
not only between closely related species but even between
monocots and dicots as well (Figure 5). The putative TIS from
the Brachypodium IGSs showed the highest identity with its
counterparts from other Poaceae representatives such as wheat,
rye and rice (Figure 5).

Chromosomal and Nuclear Distribution of
the IGSs
The location of the B. stacei intergenic spacer in the metaphase
chromosomes and nuclei of two B. hybridum genotypes (ABR113
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FIGURE 3 | Comparison of the 35S rRNA gene intergenic spacers between Brachypodium species on dot matrix plots. (A) Comparison of Bd IGS vs. Bh

IGS (B) Comparison of Bh IGS vs. Bs IGS. (C) Comparison of Bd IGS vs. Bs IGS.

and ABR117) was determined using FISH with 25S rDNA and
the Bs IGS as probes. FISH on the mitotic metaphase spreads
of B. distachyon and B. stacei constituted the negative and
positive control, respectively. As was expected, two bright signals
corresponding with the Bs IGS were present in the B. stacei NOR

chromosomes (Figures 6A1–A3). In the case of B. distachyon,
two weak Bs IGS hybridization signals were colocalized with 25S
rDNA on chromosome Bd5. The presence of the Bs IGS signals
on the B. distachyonNOR chromosomes may be attributed to the
partial homology of the 3′-ETS sequence, which is present in both
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TABLE 1 | Characterization of the repetitive motifs present in the 35S rDNA IGSs of the studied Brachypodium species.

Sequence ID Nucleotide position Motif length [bp] Copy Interval sequence Identity between consecutive Presence of Counterpart in

number [bp] motifs [%] TATA box Bh IGS

Bh IGS

Bh.A 120–180 26 2.3 − 78 −

Bh.B 489–720 124 1.9 − 85 +

Bh.C 804–834 8 4.0 − 91 −

Bh.D 887–1479 302 2.0 − 91 +

Bd IGS

Bd.A 120–180 26 2.3 − 73 Bh.A

Bd.B 489–731 125 1.9 10 85 + Bh.B

Bd.C 822–852 8 4.0 − 95 − Bh.C

Bh.D 905–1479 303 2.0 − 90 + Bh.D

Bs IGS

Bs.A 127–308 26 6.8 − 81 − −

Bs.B 2441–3060 156 3.9 − 86 − −

Bs.D 1071–1574; 2013–2543 531 2.0 439 90 + −

The colors in the table reflect the colors of pentagrams representing different repetitive elements in Figures 2B–D.

the Bd and Bs IGSs. In the metaphase chromosome complement
of B. hybridum ABR113, four Bs IGS signals of different sizes
were detected. A pair of strong hybridization signals, which
were colocalized with 25S rDNA, was revealed on the B. stacei-
like chromosomes, while another and relatively weak signal pair
was present on the NOR chromosomes that had been inherited
from a B. distachyon-like ancestor (Figures 6B1–B3). A similar
FISH experiment was performed on the metaphase plates of the
genotype ABR117 in which only one chromosome pair, which
had been inherited from B. distachyon, bore 35S rDNA loci.
Two weak hybridization signals, which corresponded with the Bs
IGS, were observed in the NOR chromosomes of this genotype
(Figures 6C1–C3), thus indicating that the Bs IGS variant is
absent in ABR117.

In the interphase nuclei of B. hybridum (genotype ABR113),
only a faint pair of the Bs IGS signals was found next to
the nucleolus. Strong FISH signals of the B. stacei-like rDNA
loci were located at the nuclear periphery (Figures 6D1,D2

and Supplementary Figure 5). In the FISH experiment with
the stringency increased to 87%, only two bright hybridization
signals, which corresponded with the Bs IGS, were detected in the
B. stacei-like 35S rDNA bearing chromosomes (Figures 6E1,E2).

DISCUSSION

Nucleolar Dominance in B. hybridum

Roots?
It is assumed that B. hybridum arose from the interspecific cross
between B. distachyon and B. stacei about 1 Mya (Catalan et al.,
2012). In 2008, Idziak and Hasterok revealed the presence of
ND in the root apical meristems of six B. hybridum genotypes

for the first time. In all of the analyzed allotetraploid lines, four
35S rDNA loci were observed: two were distributed terminally
in the B. distachyon-inherited chromosome pair and two smaller
ones, which were located in the proximal parts of the B. stacei-
like chromosomes. It was confirmed that only the B. distachyon-
like 35S rDNA loci were transcriptionally active in B. hybridum,
while the loci that had originated from the second ancestor
were consistently suppressed (Idziak and Hasterok, 2008). In the
present work, the position of the 35S rDNA loci in the interphase
nuclei isolated from B. hybridum roots was determined. It was
found that only the rDNA loci that had originated from the
B. distachyon-like genome were associated with the nucleolus,
while the loci that had been inherited from another parental
species were present at the nuclear periphery and were not able
to form a nucleolus. The association of the 18S-5.8S-25S rRNA
gene loci with a nucleolus/nucleoli provides indirect evidence
of their transcriptional activity and that the position of the
nucleolus/nucleoli is determined by the location of competent,
transcriptionally active rDNA loci (Shaw, 2013). This correlation,
which was initially observed by McClintock (1934), was later
confirmed by a number of studies on different plant species
such as wheat (Leitch et al., 1992), A. suecica (Earley et al.,
2006), Quercus robur, and triticale (Bockor et al., 2014). Since the
distribution of 35S rDNA was also analyzed in the nuclei from
differentiated cells in the present study, we can assume that the
preferential silencing of the B. stacei-like rDNA loci is present in
the differentiated cell fraction of B. hybridum roots as well.

Interestingly, the FISH signals that corresponded with the B.
distachyon-inherited rDNA loci were not only situated within
the nucleolus, but also in the highly condensed, DAPI-positive
chromocenters that adjoined the nucleolus (Figure 1C). Such a
distribution of hybridization signals suggests the separation of
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FIGURE 4 | Blastn alignment of the consecutive motifs of the Bs.D repeat class from B. stacei IGS. The TATA sequences are shown in black frames, while

TIS flanking regions are highlighted in gray. The substitution within the TATA box sequences is denoted by white print on a black background.

the transcriptionally active and silenced 35S rRNA gene copies
that had originated from a common locus. Although, French
et al. (2003) revealed that actively transcribed and silenced rDNA
copies in yeast NORs are interspersed with one another, studies
on plants proved that active and suppressed rRNA genes can
occupy distinct NOR portions (Caperta et al., 2002; Pontvianne
et al., 2013). It was found, for instance, that silver-stained,
decondensed regions do not encompass the entire NOR in rye
chromosomes. The condensed, transcriptionally inactive NOR
fractions are located next to the secondary constriction of the
chromosome in this species (Caperta et al., 2002). In case of
the interphase nuclei, it was shown that a single NOR can be
composed of both condensed, silent rRNA genes that are situated
externally to the nucleolus as well as actively transcribed rRNA
genes that are dispersed within the nucleolus (Pontvianne et al.,
2013). The rDNA copies in A. suecica and Q. robur, which
are excluded from nucleolus, are enriched by heterochromatic
histone modifications (Lawrence et al., 2004; Earley et al., 2006;
Bockor et al., 2014). Both the epigenetic and transcriptional states

of particular rDNA copies are reversible and depend on the needs
of the cell.

It has been proven that NDmay be developmentally regulated.
Chen and Pikaard (1997) revealed that the 35S rRNA genes that
were not expressed in the vegetative tissues of Brassica napus
were transcriptionally active in all of the floral organs of this
allotetraploid, including the petals and sepals. The transition of
inflorescence to the floral meristem led to the transcriptional
activation of previously silenced rRNA genes (Chen and Pikaard,
1997). Interestingly, in contrast to B. hybridum in which ND
is present in the root apical meristems (Idziak and Hasterok,
2008), the absence of this phenomenon in root meristematic
cells was observed in Brassica allotetraploids (Hasterok and
Maluszynska, 2000). The question of whether or not the ND
pattern in B. hybridum is developmentally regulated is worth
consideration, although the presence of this phenomenon in both
the meristematic and differentiated cells of B. hybridum roots
suggests that this genome-specific silencing may not be reversible
in this species.
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FIGURE 5 | Comparison of the putative transcription initiation sites (TIS) of different plant species. The presumptive +1 nucleotide position is indicated in

gray, while the experimentally confirmed +1 position are underlined in bold. The asterisks denote positions at which all query sequences have the same residue.

Genetic Changes May Be behind
Genome-Specific Silencing of the
B. stacei-Inherited rDNA Loci in
B. hybridum
In order to verify whether the preferential silencing of the
B. stacei-inherited rRNA genes in the studied allopolyploid is
connected with some genetic changes within the ribosomal
DNA loci, we amplified and further analyzed the 25S-18S rDNA
IGSs of B. hybridum and its putative ancestors. The complete
IGS sequences of Brachypodium species and their structural
organization were deciphered for the first time.

Interestingly, only one length variant of the IGS, which

corresponds with the B. distachyon-like rDNA locus, was

amplified in B. hybridum, thus suggesting that the conserved

primer binding sites that are located within the conserved

regions of 18S and 25S rRNA genes had mutated. Such an

IGS amplification pattern in B. hybridum suggests either a

homogenization process of rRNA genes in the hybrid or an
accumulation of mutations in the B. stacei-inherited rDNA,
which results in the loss of its function. There is evidence

that the homogenization of rDNA units in allopolyploids is not
accompanied by nucleolar dominance (Kovarik et al., 2008).

Studies on two Nicotiana allotetraploids, N. rustica and N.
tabacum, revealed that the rDNA units, which did not undergo
gene conversion, were transcriptionally silenced (Dadejová
et al., 2007). It is well known that repressed rRNA genes are
highly methylated, especially at the promoter regions and are
enriched by the histone modifications that are characteristic
of heterochromatin, e.g. H3K9me2 (Lawrence et al., 2004).

Kovarik et al. (2008) postulated that the silenced rDNA loci
that are present in heterochromatin are characterized by a lower
susceptibility to the homogenization process. Such loci may have
been lost during the evolution of an allopolyploid. Taking into
account these findings, the conversion of the B. stacei-inherited
rDNA units appears to be less likely than an accumulation of
mutations in the repressed rDNA loci. We can speculate that the
process of the deactivation of the B. stacei-inherited rDNA during
the evolution of B. hybridum may have consisted of several
distinct stages. The first one, which is the “nucleolar dominance”
stage, is characterized by the reversible, epigenetic silencing of
the B. stacei-like rDNA after the formation of the allotetraploid.

In the next “genetic changes” stage, a gradual accumulation of
mutations in the repressed rDNA loci leads to the loss of their

function. Finally, at the “elimination” stage, the physical loss of

inactive B. stacei-inherited rDNA might occur.

This hypothesis is supported by the fact that there is at

least one B. hybridum genotype (ABR117) that exists in which
the diploid-like number of the 35S rDNA loci was revealed

(Figure 1A). In 2004, Hasterok et al. showed that the B.
stacei-inherited 35S rDNA loci were completely undetectable in
the chromosomes of this genotype. In the present paper, we
also indicated that the Bs IGS variant is absent in ABR117
(Figures 6C1–C3). Interestingly, a significant disproportion in
the size and intensity of 25S rDNA FISH signals was observed
between B. distachyon-like and B. stacei-like chromosomes in two
other genotypes of B. hybridum, ABR100 (Hasterok et al., 2004)
andABR107 (Figure 1A). Moreover, the 25S rDNAhybridization
signals in the B. stacei-inherited chromosomes in both ABR100
and ABR107 were apparently smaller and weaker compared with
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FIGURE 6 | FISH mapping of B. stacei IGS (green) and 25S rDNA (red) probes in the metaphase chromosome complements of B. stacei (A1–A3) and B.

hybridum ABR113 (B1–B3, E1,E2) and ABR117 (C1–C3) as well as in the interphase nuclei that were isolated from B. hybridum roots (D1,D2). Stringency

of the FISH experiments: 70% (A1–A3, B1–B3, C1–C3, D1,D2) or 87% (E1,E2). Chromatin stained with DAPI. Bars: 5 µm.
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the corresponding signals in the chromosomes of the genotype
ABR113, which may corroborate the hypothesis of the gradual
elimination of the inactive ribosomal DNA loci in B. hybridum.
The reduction of the rDNA loci to a diploid-like number was
also confirmed in the allopolyploid Nicotiana species from the
sections Polydicliae and Repandae, which are estimated to be ∼1
Myr and 4.5 Myr old, respectively (Clarkson et al., 2005; Kovarik
et al., 2008).

Putative TIS Regions in IGSs Seem to Be
Evolutionary Conserved among Grasses
The length of the IGSs of all of the studied Brachypodium
species averaged between 2.3 and 3.5 kb. The main culprit that
is responsible for the length (from 1 to 13 kb) heterogeneity of
the IGS is the different copy number of the subrepeats that are
present within the spacer (Rogers and Bendich, 1987b; Polanco
and De La Vega, 1997; Maughan et al., 2006). For instance,
interspecific IGS diversity was found for different representatives
of Fabaceae, including Phaseolus (Schiebel et al., 1989; Maggini
et al., 1992), Vicia faba (Yakura et al., 1984; Rogers and Bendich,
1987a; Kato et al., 1990), and Pisum sativum (Polans et al.,
1986; Piller et al., 1990). In contrast, comparative studies of
different Lens species revealed that some motifs, which are
attributed as functional sequences, are conserved in both the
sequence and position context (Fernandez et al., 2000; Fernández
et al., 2005). Taking this data into account, only the 500 bp
sequence, which represents the ETS region, is shared between
Bd and Bs IGSs. When the Bs IGS was used as the FISH probe
on either the metaphase chromosomes or interphase nuclei of
B. hybridum, two additional weak hybridization signals were
observed in the B. distachyon-inherited NOR chromosomes
(Figures 6B1–B3,D1,D2), which most probably indicates the
presence of a common ETS. The application of more restrictive
stringency of the reaction led to the hybridization of this probe
only with the B. stacei-inherited chromosomes.

The IGSs that separate adjacent rRNA genes contain both
the transcription initiation site (TIS) and termination site (TTS),
and therefore they play an important role in the transcriptional
regulation of the downstream genes. The TISs in some (though
not all) rRNA gene promoters are similar in the sequence
context and contain a TATA box (Cordesse et al., 1993; Chang
et al., 2010). Comparison of the putative TISs for Pol I of
the studied Brachypodium species revealed the highest identity
with the corresponding regions of other Poaceae representatives.
In both the Bd and Bh IGSs, three spacer promoters, which
were similar in sequence to the gene promoter, were found. In
the corresponding region of B. stacei, only one putative spacer
promoter was observed. Similar to rice (Cordesse et al., 1993),
all of the putative TISs were placed within repetitive sequences
in Brachypodium species. Spacer promoters that have blocks of
tandemly repeated sequences represent putative transcription
enhancers (Schlögelhofer et al., 2002; Castiglione et al., 2013).
Their role in establishing ND was revealed in Xenopus hybrids,
in which the 35S rDNA loci that had longer IGS and contained
more subrepeats upstream to the TIS, dominate over the loci
with a lower number of subrepeats. According to this hypothesis,
subrepeats together with spacer promoters act as enhancers that

have a different transcription factor binding affinity (Reeder and
Roan, 1984; Reeder, 1985; Caudy and Pikaard, 2002). In plants,
differences in the type and number of IGS repeats have also been
proposed to control the activity of the rRNA genes in the hybrids
of Triticum and representatives of related genera (Martini et al.,
1982; Gustafson et al., 1988; Houchins et al., 1997). However, the
preferential suppression of the 35S rRNA genes in allopolyploids
does not always correlate with the presence of a lower number of
putative enhancers within the IGS of the under-dominant genes,
as was shown for Brassica allotetraploids (Chen and Pikaard,
1997). Collectively, a comparison of the data obtained for cereal
hybrids and Brassicaceae allopolyploids showed that the exact
molecular mechanism of ND is still unclear and the role of the
IGS repeats should be taken into consideration in the different
organisms which exhibit this phenomenon.

Despite the fact that our studies strongly support the
hypothesis of the inactivation of B. stacei-inherited rRNA gene
loci at the genetic level, the involvement of other factors cannot
be ruled out. The verification of the presence of ND in the floral
organs should raise the question of whether this genome-specific
inactivation of ribosomal DNA is a reversible, epigenetically
regulated process or not. Moreover, the upcoming data about the
whole genome sequence of B. hybridum should shed more light
on the fine-scale organization of the silenced rDNA loci in this
allotetraploid.
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Supplementary Figure 1 | Confocal sections through the interphase

nucleus of B. hybridum that is presented in Figure 1C. (A1–A6) DAPI

counterstained nucleus. (B1–B6) Hybridization signals corresponding with 25S

rDNA. B. stacei-like loci (Bs’ and Bs”) are pointed out by yellow arrows. (C1–C6)

Hybridization signals corresponding with BAC clone a0019O20. Bar: 5 µm.

Supplementary Figure 2 | Confocal sections through the interphase

nucleus of B. hybridum that is presented in Figure 1D. (A1–A6) DAPI
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counterstained nucleus. (B1–B6) Hybridization signals corresponding with 25S

rDNA. B. stacei-like loci (Bs’ and Bs”) are pointed out by yellow arrows. (C1–C6)

Hybridization signals corresponding with BAC clone a0009O09. Bar: 5 µm.

Supplementary Figure 3 | Alignment of B. hybridum and B. distachyon

IGSs. Transitions are highlighted in red and transversions in orange. InDels are

visualized in blue, gaps in bolded letters.

Supplementary Figure 4 | ClustalW2 sequence alignment of the repetitive

motifs Bd.B-Bh.B (A) and Bd.D-Bh.D (B) that are present in B. distachyon

and B. hybridum IGSs. Substitutions between corresponding repeat copies are

highlighted in bright gray. REP motifs that have a TATA box (black frame) are

highlighted in dark gray.

Supplementary Figure 5 | Confocal sections through the interphase

nucleus of B. hybridum that is presented in Figures 6D1,D2. (A1–A8) DAPI

counterstained nucleus. (B1–B8) Hybridization signals corresponding with Bs IGS.

Bar: 5 µm.

Supplementary Table 1 | Primer sequences used to amplify and sequence

intergenic spacers.

Supplementary Table 2 | Primer pairs used for the amplification of

B. distachyon IGS fragments.

Supplementary Table 3 | Blastn (megablast) analysis for B. hybridum IGS

as a query.

Supplementary Table 4 | Blastn (megablast) analysis for B. distachyon IGS

as a query.

Supplementary Table 5 | Blastn (megablast) analysis for B. stacei IGS as a

query.
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