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The next advance in field crop productivity will likely need to come from improving crop

use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely

linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of

photosynthesis is confounded by uncertainties of consequences at crop level because

of difficulties connecting across scales. Crop growth and development simulation models

that integrate across biological levels of organization and use a gene-to-phenotype

modeling approach may present a way forward. There has been a long history of

development of crop models capable of simulating dynamics of crop physiological

attributes. Many crop models incorporate canopy photosynthesis (source) as a key

driver for crop growth, while others derive crop growth from the balance between

source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical

modeling via light response curves to a more mechanistic basis, having clearer links

to the underlying biochemical processes of photosynthesis. Cross-scale modeling that

connects models at the biochemical and crop levels and utilizes developments in

upscaling leaf-level models to canopy models has the potential to bridge the gap

between photosynthetic manipulation at the biochemical level and its consequences on

crop productivity. Here we review approaches to this emerging cross-scale modeling

framework and reinforce the need for connections across levels of modeling. Further,

we propose strategies for connecting biochemical models of photosynthesis into the

cross-scale modeling framework to support crop improvement through photosynthetic

manipulation.

Keywords: biochemical photosynthesis model, photosynthesis light response, RUE, canopy photosynthesis, crop

model, crop improvement, cross-scale modeling, specific leaf nitrogen

INTRODUCTION

Global crop production needs to approximately double by 2050 to meet the projected demands
from rising population, diet shifts, and increasing needs for biofuels. Current trends in yield
improvement of major field crops (i.e., wheat, rice, maize, and soybean), however, are insufficient
to meet the projected demand (Ray et al., 2013; Fischer et al., 2014). In addition, more frequent
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extreme weather conditions associated with climate change are
likely to have negative impacts on global crop yields (Lobell
and Gourdji, 2012). Yield improvement in the past 50 years has
been achieved through improved genetics via conventional plant
breeding coupled with enhanced agronomy and crop protection
(e.g., maize in the US; Duvick, 2005). Crop yield can be viewed as
the product of resource capture (e.g., light, water, and nitrogen),
the efficiency with which these resources are converted into
biomass, and the extent of partitioning of biomass to harvestable
product (i.e., harvest index). Yield improvement to date has been
largely associated with improved efficiency to capture resources
and with harvest index (Tollenaar and Lee, 2006; Fischer, 2007).
While opportunities remain for improving grain yield through
improved resource capture (e.g., root architecture Singh et al.,
2012) and biomass partitioning (Duvick, 2005; Messina et al.,
2009), these traits may be approaching their biological limits
(Duvick and Cassman, 1999; Long et al., 2015). The one area
in which there is little evidence of improvement is in crop
use efficiency of resources, aspects of which depend on overall
crop photosynthetic efficiency. While there is evidence of genetic
variation in resource use efficiency (Henderson et al., 1998;
Hammer et al., 2010), causal links to yield improvement are
limited (Fischer et al., 1998; Sadras and Lawson, 2011).

Enhancing photosynthesis is becoming one focus for pursuing
greater crop use efficiency of resources (Long et al., 2006; Zhu
et al., 2010). This is made possible by: (1) our understanding of
the photosynthetic pathway, (2) emergence of high-performance
computing for simulating photosynthetic processes across scales
from photosynthetic biochemistry to crop level, and (3) advances
in genetic engineering (Long et al., 2015). There is now a well-
defined agenda for the genetic manipulation of the biochemical
pathway of photosynthesis at the leaf level for crop yield
improvement (see review of Evans, 2013). Examples include
engineering the C4 photosynthetic pathway into rice (http://
c4rice.irri.org/) and improving leaf CO2 capture efficiency and
light energy capture efficiency (http://photosynthesis.org.au).
However, manipulation of photosynthesis at the biochemical
level may not necessarily correlate with crop yield (see reviews
of Sinclair et al., 2004; Long et al., 2006). This is because
the gap between the biochemical and crop level of biological
organizations confounds crop improvement (Sinclair et al.,
2004; Hammer et al., 2006). Integrating to crop level is
complicated by the (photosynthetic) genetic controls, dynamics
of crop growth and development and their interactions with the
environment.

There is a need to close the gap between the biochemical
and crop levels using modeling to help accelerate progress in
photosynthesis enhancement for crop improvement. A cross-
scale modeling approach connecting these two levels with
each other and with environmental effects provides a valuable
theoretical framework for closing this gap. Crop level growth
and development dynamics and effects of environments can
be simulated with crop models that incorporate both source-
and sink-limited crop growth (Hammer et al., 2010; Gent
and Seginer, 2012; Fatichi et al., 2014). Nonetheless, canopy
photosynthesis is a key driver in crop models. Photosynthesis
models, focused at different levels of modeling, have evolved

from empirical modeling of the photosynthetic light response
(Blackman, 1905) to upscaling to the canopy level (Monsi
and Saeki, 1953), and to connections with crop models (e.g.,
de Wit et al., 1978). At the crop level, canopy Radiation
Use Efficiency (RUE) has been used successfully to determine
the sum of photosynthetic output of individual leaves in the
canopy (Monteith and Moss, 1977; Sinclair and Muchow,
1999) and RUE underpins crop growth prediction in many
crop models (Parent and Tardieu, 2014). This simple approach
avoids the need to connect photosynthesis between biochemical
and canopy levels, although theoretical derivations have shown
the clear connection of RUE with leaf photosynthesis within
crop canopies (Hammer and Wright, 1994). These empirical
canopy photosynthesis modeling approaches have been useful,
but lack the biological functionality to capture canopy level
consequences of genetic modification of photosynthesis at
the biochemical level attributed to their aggregated nature.
Biochemical models of photosynthesis, based on key biochemical
processes of photosynthesis, have been developed at the leaf
level (Farquhar et al., 1980; von Caemmerer and Farquhar,
1981; Farquhar and von Caemmerer, 1982; von Caemmerer and
Furbank, 1999; von Caemmerer, 2000). These more mechanistic
biochemical photosynthesis modeling approaches have been
useful in interpreting gas exchange measurements of steady-
state CO2 assimilation of leaves and in predicting responses
of leaf photosynthesis to genetic and environmental controls
of photosynthesis and have been subsequently upscaled to the
canopy level (Sellers et al., 1992; Leuning et al., 1995; de
Pury and Farquhar, 1997). However, the biochemical models,
by their intrinsic instantaneous nature, lack the integrative
ability to capture interactions with key aspects of crop
growth and development dynamics throughout the crop life
cycle. Cross-scale modeling that connects across scales of
biological organization and utilizes model developments in both
photosynthesis and crop growth and development dynamics
provides a means to capture the dynamics of photosynthesis
manipulation to support crop improvement. In this review we
pursue three objectives to aid the development of cross-scale
modeling. These are to:

1. Summarize the emerging cross-scale modeling framework for
connecting photosynthesis models at canopy and biochemical
levels (Figure 1);

2. Identify avenues to improve connections in the cross-scale
modeling framework with effects of environmental factors and
crop physiological attributes;

3. Propose strategies for connecting biochemical photosynthesis
models into the cross-scale modeling framework.

CROSS-SCALE MODELING FRAMEWORK
FOR CONNECTING PHOTOSYNTHESIS
MODELS AT CANOPY AND BIOCHEMICAL
LEVELS

In crop models, canopy photosynthesis is a key driver of
crop growth (de Wit, 1965; Duncan et al., 1967; Goudriaan
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FIGURE 1 | Schematic diagram of the emerging cross-scale modeling framework connecting biochemical/leaf-level photosynthesis and

canopy/crop-level growth and development dynamics. Crop growth and development is driven by the development of canopy leaf area and canopy biomass

growth, both of which are influenced by the prevailing environment and the photosynthesis output of individual leaves in the canopy. The canopy captures resources

from the environment. Leaf photosynthesis is driven by the attributes of the crop canopy and leaves. LAI, SLN, and crop water status are determined by crop scale

growth and development dynamics, while light, leaf temperature, and CO2 experienced by leaves are influenced by canopy attributes, LAI and k. This two-way

connection between biochemical and crop level (the two thick arrows) is an important consideration in the cross-scale modeling framework. PAR, photosynthetic

active radiation; LAI, leaf area index; k, canopy light extinction coefficient; SLN, specific leaf nitrogen; PCR, photosynthetic carbon reduction cycle; PCO,

photorespiratory carbon oxidation cycle; CHO, carbohydrates synthesized by photosynthesis.

and van laar, 1978; Thornley, 2002; El-Sharkawy, 2011).
Early canopy photosynthesis modeling involved either (i)
integrating photosynthesis of individual leaves in the canopy
(de Wit, 1965; Duncan et al., 1967; Goudriaan and van laar,
1978), or (ii) utilizing the simple linear relationship observed
between accumulated crop canopy biomass and intercepted solar
radiation (Shibles and Weber, 1965, 1966; Williams et al., 1965;
Monteith and Moss, 1977), also known as RUE (g/MJ) (Sinclair
and Muchow, 1999). Depending on the details required for
simulating canopy photosynthesis, either type of model can
be used to drive growth in crop models. For example, crop
models such as GECROS (Yin and van Laar, 2005) use the first
approach, while APSIM (Holzworth et al., 2014) and DSSAT
(Jones et al., 2003) use the second approach, although APSIM
does have the provision to switch between the two approaches by
incorporating an optional module with leaf photosynthesis light
response curves and canopy architecture algorithms (Hammer
et al., 2009).

Leaf Photosynthesis Light Response
Modeling
Radiation (or light) intensity (I) is the key environmental factor
for photosynthesis. Hence, the explicit modeling of the response
of leaf photosynthesis (A) to I, or the A/I curve, has been a
key focus since the beginning of leaf photosynthesis modeling.
Modeling of leaf A/I curves, referred to as photosynthetic
light-response (PLR) modeling, has a long history. Blackman
(1905) describes a response of photosynthesis to light that
increases linearly with I with a slope α (maximum quantum
yield) until the maximum rate of photosynthesis (Amax), where
CO2 supply becomes limiting (Table 1). α is the maximum
efficiency with which light can be converted to chemical energy
by photosynthesis (assimilated CO2 per quantum of absorbed
light). It is known to be similar across a wide range of C3

species when expressed on the basis of absorbed light (Ogren,
1993) and does not depend on either irradiance or leaf nitrogen
content per unit leaf area (Thornley, 1998). The two parts of
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TABLE 1 | List of major photosynthetic light-response models of leaf photosynthesis (A) response to light intensity (I).

Model type Generic function Parameter definition References

Linear model A =







αI, I ≤ Amax/α

Amax, I > Amax/α
Amax, maximum rate of photosynthesis; I, light intensity; α,

maximum quantum yield.

Blackman, 1905

Rectangular hyperbola A =
aIAmax

aI + Amax
Same as the linear model. Maskell, 1928

Non-rectangular hyperbola θA2 − (αI + Amax)A + αIAmax = 0 θ , empirical convexity factor for the A/I curve; others, same as

the linear model.

Thornley, 1976

Exponential equation A = Amax[1− e−αI/Amax ] Same as the linear model. Hammer and Wright, 1994

Modified rectangular hyperbola A = δ
1 − β I
1 + γ I

(I− Ic) δ, β, and γ are empirical coefficients; Ic, compensation

irradiance; others, some as the linear model.

Ye, 2007

the photosynthesis light response curve are described as light-
and CO2-limited, respectively. This approach is plausible, but is
restricted by the sharp discontinuity at the transition between the
two limiting factors.

To overcome this issue, responses using rectangular hyperbola
type functions (Table 1) were developed (Maskell, 1928). This
type of function, based on Michaelis and Menten’s equation,
reproduces the curvilinear trend of A/I curves. However, it
poorly describes A/I curves at saturating levels of CO2 and
overestimates Amax, α and dark respiration (Rd), because the
limitation on photosynthesis of the physical diffusion of CO2

from the atmosphere to the site of carboxylation in leaves has not
been taken into account (Akhkha, 2010).

Rabinowitch (1951) combined a simplified description of
biochemical reactions of photosynthesis and the physical
diffusion of CO2 and generated the non-rectangular hyperbola
type function (Table 1). Modeling of A/I curve using this
function type has since been pursued by many authors with
numerous variations (Ogren, 1993; Thornley, 1998, 2002; Xu
et al., 2014). In addition to Amax and α, the non-rectangular
hyperbola type function has an additional parameter θ (the
curvature factor), which governs the “convexity” of the A/I
curve. Ogren (1993) concluded that the A/I curve is usually
truncated at the transition from electron-transport limitation to
a limitation by ribulose-1,5-bisphosphate carboxylase-oxygenase
(Rubisco); the convexity changes with CO2 levels as the transition
shifts, with respect to I, in the A/I curve. Marshall and Biscoe
(1980) subsequently extended the function to include Rd. The
rectangular hyperbola function is a special case of the non-
rectangular hyperbola function (Thornley, 1998). Exponential
functions (Table 1) have also been used to model A/I curves of
C3 and C4 species based on experimental observations (Hammer
and Wright, 1994).

Ye (2007) developed a modified rectangular hyperbola
function with empirical coefficients (Table 1), which has
improved fit to A/I curves of Oryza sativa. The derivative of the
modified rectangular hyperbola (at I = 0) gives the maximum
quantum yield. In subsequent work, Ye et al. (2013) developed
a mechanistic A/I model based on the modified rectangular
hyperbola function and ascribed the then empirical coefficients

to light-harvesting characteristics and associated biophysical
parameters of photosynthetic pigment molecule—mechanisms
that underpin photosynthetic electron transport via photosystem
II. This model is applicable for both C3 and C4 species, and
demonstrated excellent levels of correspondence with observed
responses (Ye et al., 2013).

Besides the key environmental factor of light, physiological
attributes of the plants have significant effects on photosynthesis
(Evans, 1989; Sinclair and Horie, 1989). Hence, their
incorporation in PLR models is important. The PLR models
have also evolved to incorporate improved connections
between model parameters and crop physiological attributes
that influence photosynthesis. For example, Amax, a parameter
present in almost all PLRmodels, has been related to leaf nitrogen
content per unit leaf area, which is commonly referred to as
specific leaf nitrogen (SLN) (Muchow and Sinclair, 1994). Use
of advanced PLR models with links between model parameters
and crop physiological attributes will contribute to improving
accuracy and connections in the cross-scale modeling.

Canopy Light Distribution Modeling
In the crop production environment, incident solar radiation is
dynamic and can be described with solar geometry models and
atmospheric transmissivity coefficients (Campbell, 1977; Brock,
1981; Hammer and Wright, 1994; Monteith and Unsworth,
2013a). At the earth’s surface, solar radiation can be separated into
direct and diffuse components, with the latter due to scattering of
light as it travels through the atmosphere. Both components of
incident light are important for canopy photosynthesis (de Wit,
1959, 1965; Duncan et al., 1967) and have become an essential
part of canopy photosynthesis modeling (Duncan et al., 1967;
Hammer and Wright, 1994; de Pury and Farquhar, 1997).

The complexity of canopy photosynthesis was first described
by Boysen Jensen (1932), who demonstrated that canopy
photosynthesis light response differs from that of isolated leaves
in the canopy (Hirose, 2005). It differs because leaves in a canopy
are exposed to different light environments throughout the day,
depending on their spatial arrangement (e.g., leaf position in
the canopy and leaf angle), the solar radiation intensity, and the
location of the sun as it crosses the sky on its diurnal and seasonal
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course. In general, top leaf layers in the canopy receive more
direct and intense light, while lower leaf layers receive much less
light due to shading, although some direct light penetrates even to
the lowest layer. This heterogeneity in radiation is a main factor
complicating canopy photosynthesis.

Monsi and Saeki (1953) were among the first to quantify
how sunlight is diminished as it proceeds into a canopy and
is intercepted by leaves. They developed the first canopy light
distribution model to characterize the light environment in a
canopy. This model can be classified as a 1D canopy model,
where the light environment only varies vertically in canopies
and is assumed homogenous in the horizontal plane. Monsi
and Saeki (1953) showed that light attenuation is approximately
exponential in canopies and can thus be modeled by the common
form of the Beer-Lambert equation for light extinction in
homogenous media (in the context of a canopy):

I = I0e
−k∗LAI (1)

where LAI is the cumulative leaf area index from the top of the
canopy above the layer of interest, I is the light intensity received
at the layer of interest, I0 is the light intensity at the top of
the canopy, and k is the light extinction coefficient. Equation
(1) has been applied in many crop models that apply a static
value of k for the canopy as spatial arrangement of leaves can
be assumed homogeneous throughout the growing season. This
simplification has led to wide adoption of Monsi and Saeki’s
approach in subsequent canopy photosynthesis modeling (Monsi
and Saeki, 1953; Saeki, 1960; de Wit, 1965; Duncan et al., 1967)
and it remained important for canopy light distributionmodeling
in later work (Sinclair et al., 1976; Hammer and Wright, 1994;
Leuning et al., 1995; de Pury and Farquhar, 1997). Estimates of
diurnal photosynthesis and growth of field crops using the 1D
formalisms applied over a diverse range of environments have
shown this approach to be effective and robust (Hammer and
Wright, 1994; Hammer et al., 2009).

Canopy light distribution modeling has subsequently been
expanded to include more detailed canopy models. Multi-layer
models (de Wit, 1965; Monteith, 1965b; Duncan et al., 1967;
Goudriaan, 1977) were developed by dividing the canopy into
layers that are specified by their respective LAI. For each layer,
LAI can be divided into sunlit and shaded leaf fractions and
the sunlit fraction can be further divided into leaf angle classes
(Duncan et al., 1967; Sinclair et al., 1976). The intensity of solar
radiation reaching each fraction is calculated using the Beer-
Lambert equation (Equation 1). The shaded fraction is assumed
to intercept diffuse solar radiation and radiation reflected and
transmitted through canopy layers. The sunlit fraction is assumed
to intercept direct solar radiation in addition to the three types
of radiation intercepted by the shaded fraction (Duncan et al.,
1967; Leuning et al., 1995; de Pury and Farquhar, 1997). Later
canopy models (e.g., Leuning et al., 1995; de Pury and Farquhar,
1997) have incorporated details about attenuation of different
types of radiation through the use of different k-values. Simpler
approximations for the multiple leaf angle classes, such as the
three leaf-angle classes treatment (Goudriaan, 1988), or the
spherical leaf angle distribution (de Wit et al., 1978), can be

assumed to avoid the need for parameterizing leaf angles in
the canopy. The spherical leaf angle distribution is a simple
and robust approach for canopy photosynthesis and crop RUE
modeling that has been widely implemented in later canopy
photosynthesis models (Goudriaan, 1977; Hammer and Wright,
1994; Leuning et al., 1995; de Pury and Farquhar, 1997). Further,
the multi-layer feature can be eliminated by integrating the
canopy across LAI for both sunlit and shaded leaf fractions.
This results in a simpler representation of the canopy that
retains the distinction between sunlit and shaded leaf fractions,
a necessity for capturing heterogeneous radiation in canopies. It
has been shown that simulations using this single layer sun-shade
modeling approach agree very closely with those using the multi-
layermodeling approach in predicting canopy photosynthesis (de
Pury and Farquhar, 1997) and agreed (within 5%) with results
using a static 3D plant architecture model (Roupsard et al.,
2008). This validates the robustness of the sun-shade modeling
approach.

However, there is evidence that variation in k can have
significant effects on crop growth. k can be influenced by
developmental stage, canopy configurations (Evers et al., 2009)
and canopy architectural traits, such as leaf shape, leaf angle,
and internode length (Hirose, 2005; Kahlen et al., 2008). This
requires a more dynamic k than used in Equation (1). Duncan
et al. (1967) developed a model of k as a function of canopy
average leaf angle and sun angle that could predict seasonal maize
dry matter production with high accuracy (r = 0.94). Hammer
et al. (2009) applied this approach in their modeling work and
found that canopy-average leaf angle would only have significant
effect on maize grain yield under very high yielding situations
[well-watered and high (>6 plants/m2) planting density]. k has
also beenmodeled empirically with respect to canopy LAI (Tahiri
et al., 2006). The APSIMwheat model has the provision to specify
k in terms of crop row spacing. Modeling of k has progressed
from assuming a static value to connection with crop canopy
attributes.

Despite its effectiveness and robustness, it can be argued
that the 1D modeling approaches are limited in their ability to
explicitly describe effects of canopy architectural traits on canopy
light distribution. Emergence of 3D plant architecture models
may overcome this limitation (Vos et al., 2010). This includes
the RATP model (Sinoquet et al., 2001), which has the capacity
to simulate the spatial distribution of light interception in an
isolated tree crown using a static 3D canopy architecture model
and a 3D extension of the Beer-Lambert equation (Equation 1).
Further, Chen et al. (2014) developed a detailed 3D canopy
architecture model for a tomato crop, which allows simulation
of its growth and its effects on the canopy light distribution
and absorption. The derived k using this model is significantly
affected by leaf angle and internode length; k is higher during
the early growth period (<30 days after first leaf appearance in
this case), but stabilizes at a lower value for the remainder of
crop growth. In this case, the early growth period contributed
to less than 10% of the final shoot dry mass. Because biomass
accumulation of field crops during these early developmental
stages is generally only a small proportion of the biomass
accumulated at maturity, the simpler 1D modeling approach,
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where k is assumed static throughout crop development, is
generally effective and robust. However, the drawback is that
it is more difficult to predict canopy light distribution if
architectural traits (Song et al., 2013; Chen et al., 2014) or
planting configuration (Evers et al., 2009) are manipulated. This
is where the 3D approach may have some advantages.

Connecting Photosynthetic
Light-Response Models to Canopy Light
Distribution
One of the early approaches for modeling of canopy
photosynthesis was based on combining the development
in PLR models with the simplified canopy models for canopy
light distribution calculation (de Wit, 1965; Duncan et al., 1967;
Goudriaan and van laar, 1978). However, incorporation of
this approach into crop models quickly illustrated that aspects
of canopy photosynthesis are influenced by crop growth and
development dynamics and vice versa. For example, many crop
models generate canopy LAI over the crop growing season; this
influences the amount of solar radiation intercepted by crop
canopy, which in turn influences canopy photosynthesis and
drives crop growth (Figure 1). The same basic modeling precept
has been applied in more detailed canopy architectural models
(Vos et al., 2010). Instead of using a simplified description
of canopy structure (such as k and canopy LAI), those models
explicitly describe the development of the 3D canopy architecture
of plants (e.g., Chen et al., 2014). This can be coupled with Monte
Carlo ray tracing for canopy light absorption calculation, which
can be used to drive PLRmodels (Vos et al., 2010). Consideration
of the two-way connection between the PLR models [which have
advanced to become more accurate (Section Leaf Photosynthesis
Light Response Modeling)] with canopy light distribution
provides a foundation for canopy photosynthesis modeling in
the cross-scale modeling framework.

Utilizing Relationships between Crop
Growth and Light Interception
One of the first attempts to describe crop productivity, as
opposed to leaf photosynthesis, as a function of radiation
appeared in the work of de Wit (1959) and Loomis and Williams
(1963). Many authors have since reported linear relationships
between dry mass production and intercepted solar radiation
for various species. The landmark paper by Monteith and
Moss (1977) consolidated the grounds for this relationship
both experimentally and theoretically (Sinclair and Muchow,
1999), and led to the term RUE. Calculation of canopy biomass
growth with the RUE approach is achieved simply by multiplying
solar radiation intercepted by the canopy (e.g., Equation 1),
based on the canopy light distribution model (Monsi and Saeki,
1953), with a pre-determined RUE (Sinclair and Muchow, 1999).
Although the RUE approach brings empiricism to the canopy
level, as opposed to the leaf level with the PLR models, its
simplicity and practicality facilitated its widespread adoption in
crop modeling to quantify crop growth.

One of the first uses of the RUE approach in crop models
appeared in Sinclair (1986) and it continues to have a significant

role in more recent crop modeling advances (e.g., Hammer et al.,
2010). The RUE is species dependent and is usually higher in
C4 species than C3 species. Based on a total solar radiation
basis (which is approximately double the photosynthetic active
radiation), the RUE of maize under optimal growing conditions
is 1.6–1.7 g/MJ, but can be as high as 1.9 g/MJ (Lindquist et al.,
2005). Similarly, the RUE of pearl millet, which is another C4

species, is in the vicinity of 2.0 g/MJ (van Oosterom et al., 2002).
For the C4 species sorghum, the RUE of 3-dwarf germplasm
is generally only 1.2–1.4 g/MJ (Sinclair and Muchow, 1999),
although a tall, 1-dwarf Indian hybrid had a RUE in the range
of 1.6–1.8 g/MJ (Hammer et al., 2010), similar to maize and pearl
millet. In contrast, for C3 species, the RUE of wheat is∼1.2 g/MJ,
whereas soybean, which is a dicotyledonous legume crop with
a different leaf structure, has a RUE of ∼1 g/MJ (Sinclair and
Muchow, 1999).

The RUE increases with the nitrogen status of the leaves,
particularly if leaf N is limiting growth (Sinclair and Horie, 1989).
For C4 crops maize and sorghum, RUE increases rapidly from
a SLN level of 0.3 g/m2 and approaches a plateau when SLN
reaches its critical value of ca. 1 g/m2 (Muchow and Sinclair,
1994), beyond which any increase in SLN has no significant
effect on crop growth. For C3, rice the minimum SLN was
similar to maize and wheat (0.3 g/m2), but the critical SLN
was around 2 g/m2 (Sinclair and Horie, 1989). In general, C3

species tend to have greater SLN than C4 species (Anten et al.,
1995). The vertical profile of SLN within a canopy also affects
the RUE (Hammer and Wright, 1994), as can environmental
factors such as the nature of incident solar radiation, air
temperature (Ta), atmospheric CO2 partial pressure (Ca), and
plant water status. The RUE increases with greater proportion
of diffuse solar radiation (e.g., Sinclair et al., 1992), which is
also predicted with a theoretical analysis that incorporates leaf-
level photosynthesis light responses (Hammer andWright, 1994).
Their work predicted an increase of ca 40% in RUE of soybean
crops (at SLN of 3 g/m2) with full diffuse solar radiation in case
of heavy cloud cover.

Crop models commonly use simple indices as multipliers
to capture effects of Ta and Ca and plant water status.
For example, in APSIM-wheat it is assumed that RUE
is not affected by temperature in the range of 10–25◦C
(http://www.apsim.info/Documentation/Model,CropandSoil/
CropModuleDocumentation/Wheat.aspx), but is reduced at
either higher or lower temperatures. In comparison, this range is
17–33◦C in the CERES-Maize model (López-Cedrón et al., 2005).
This insensitivity of RUE over broad ranges of temperatures
corresponds with findings that leaf photosynthesis is insensitive
to temperature within these ranges (Sage and Kubien, 2007).
In modeling studies exploring impacts of climate change on
crop productivity (Lobell et al., 2015), RUE is increased with
elevated Ca in C3 species but is not changed in C4 species, in line
with the known differences in response to photosynthesis. In
water-limited situations, RUE is reduced in line with the relative
transpiration achieved by the crop, which is determined from
the balance between atmospheric demand and soil water uptake
(Chapman et al., 1993). The RUE approach is a simpler way to
model crop growth than the PLR models (used in the first type
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of canopy photosynthesis modeling), but it involves invoking a
number of empiricisms to deal with responses to environmental
factors and crop physiological attributes of the crop, which can
reduce the predictive power of the RUE approach.

AVENUES TO IMPROVE CONNECTIONS IN
THE CROSS-SCALE MODELING
FRAMEWORK WITH ENVIRONMENTAL
FACTORS AND CROP PHYSIOLOGICAL
ATTRIBUTES

Success of cross-scale modeling depends on (1) the reliability
of models at each level and (2) effective connections across
levels of modeling. In previous sections, we have discussed
the emerging framework for cross-scale modeling that connects
photosynthesis models at the biochemical/leaf level with those
at the canopy/crop level, with an emphasis on capture of light
and its conversion into photosynthates and canopy biomass.
Conveniently, this established framework can serve as the basis
to connect other environmental factors and crop physiological
attributes into the cross-scale model (Figure 1). Nitrogen is a
critical factor in this connection and we will detail the use of SLN
to exemplify the two considerations for cross-scale modeling: (1)
generation and modeling of SLN as an emergent consequence of
plant growth and development dynamics, and (2) developments
for connecting SLN into the cross-scale modeling framework
using the sun-shade leaf modeling approach.

Crop Physiological Attribute: Specific Leaf
Nitrogen (SLN)
SLN is an emergent consequence of plant growth and
development dynamics and has been modeled on this basis in
crop models (Hammer et al., 2010). The rate of nitrogen (N)
uptake of a crop is closely linked to leaf area expansion (Lemaire
et al., 2007), particularly early in the crop cycle, prior to stem
elongation (van Oosterom et al., 2010). Pre-anthesis allocation of
N across organs follows a hierarchical pattern, where the demand
for structural stem N and the N demand of expanding leaves
is met first (Hammer et al., 2010). For leaves, this demand is
represented by the critical SLN. Any additional N that is available
once these demands have been met is subsequently allocated to
these organs as luxury or storage N, which reflects the sink-
limited crop growth modeling approach (Fatichi et al., 2014).
Because larger stems require more structural N, stem size can
reduce luxury leaf N uptake beyond the critical SLN. Similarly,
a large canopy size (high LAI) will reduce SLN through dilution.
As a consequence, the SLN of a crop is an emergent consequence
of the complex interactions among total crop N uptake, relative
organ size (which determines crop N demand) and the hierarchy
of N allocation (van Oosterom et al., 2010).

SLN is a key driver of both crop-level RUE (e.g., Sinclair
and Horie, 1989) and leaf-level photosynthesis (i.e., leaf CO2

assimilation rate) (e.g., Evans, 1989; Grindlay, 1997). Below
the critical SLN, the rate of light-saturated (or CO2 limited)
net photosynthesis increases linearly with SLN, although the
response differs across species (Field and Mooney, 1983; Sinclair

and Horie, 1989; Anten et al., 1995) and can also depend on
environmental conditions. At SLN values above the critical level,
however, photosynthesis rates reach a maximum (Field and
Mooney, 1983; Sinclair and Horie, 1989), which is possibly linked
to either light and/or the supply of CO2 being the limiting
factor (Evans, 1989). One approach to modeling leaf-level
photosynthesis that incorporates SLN and is adopted in some
PLR models is to associate some key photosynthetic parameters
with SLN (e.g., Amax, Hammer andWright, 1994). This approach
is also applicable for driving the biochemical photosynthesis
models with crop physiological attributes, which can be done by
establishing relationships between biochemical photosynthesis
model parameters (e.g., maximum rate of Rubisco carboxylation,
Vcmax) and SLN (e.g., de Pury and Farquhar, 1997). This
approach allows SLN, which is often related to canopy-level RUE,
to be connected with the leaf-level models, and thus facilitates
effective connections across levels of modeling.

Environmental Factors: Air Temperature
and CO2
Environmental factors such as air temperature (Ta) and
atmospheric CO2 partial pressure (Ca) should be accounted for
in the cross-scale modeling framework (Figure 1). Like solar
radiation, Ta also varies diurnally and seasonally, which can
also be modeled, for example, using the approach of Parton and
Logan (1981). Ta influences leaf photosynthesis because it is a key
determinant of leaf temperature (Tl) (Monteith and Unsworth,
2013b).

One of the early studies of photosynthetic responses to Tl

and Ca was on quantum efficiency of photosynthesis (Ehleringer
and Björkman, 1977). Various studies quantified the effects of
Ca on the empirical convexity factor of some PLR models
(Ogren, 1993; Lewis et al., 1999) (attributed to the CO2 effect on
photorespiration; Yin and Struik, 2015), and on the maximum
rate of photosynthesis and quantum efficiency (Cannell and
Thornley, 1998). In general, increases in Tl or Ca also increase
values of some PLR model parameters. However, the combined
effects of Tl and Ca on model parameters becomes more
complex to analyse (Cannell and Thornley, 1998). The more
aggregated nature of PLR models means that model parameters
often represent a combination of biochemical processes of
photosynthesis, each of which may respond differently to
environmental effects. Crop models using the more aggregated
forms of photosynthesis modeling (PLR or RUE) often
incorporate scaling factors as multipliers to account for effects
of temperature and Ca on growth (Jones et al., 2003; Holzworth
et al., 2014; Lobell et al., 2015). Hence, the effects of Tl and
Ca in crop models using these empirical formalisms cannot be
estimated as reliably as with biochemical photosynthetic models.

CONNECTING BIOCHEMICAL MODELS OF
PHOTOSYNTHESIS INTO THE
CROSS-SCALE MODELING FRAMEWORK

An approach to reduce the empiricism at the biochemical/leaf
level in cross-scale modeling involves using models that can
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better capture the biochemical processes of photosynthesis
and, at the same time, ensures effective connections across
levels of modeling. This was pioneered by Yin and van Laar
(2005), who connected the biochemical models of photosynthesis
with the GECROS crop model through upscaling to canopy
photosynthesis with the sun-shade leaf modeling approach.
This cross-scale modeling approach was used by Yin and
Struik (2008) to simulate likely consequences on rice yield of
introducing the C4 pathway into rice. In a later study, Gu
et al. (2014) demonstrated that the cross-scale model could be
used to explore effects of natural variation in photosynthetic
attributes on biomass accumulation of rice. Yin and Struik
(2015) have utilized the cross-scale modeling framework and
evaluated constraints to the potential efficiency of converting
solar energy into phytoenergy along the scales of biological
organization from leaf biochemistry to canopy physiology and
crop biomass. However, the latter two studies stopped short
of exploring effects on grain yield because of uncertainties
related to the prediction of grain number. The choice of
models at both the biochemical/leaf and canopy/crop level are
equally important for bridging the gap between photosynthetic
manipulation at the biochemical level and crop productivity.
Another canopy photosynthesis modeling study, which was
also developed through upscaling of biochemical models, was
undertaken to explore consequences of changing Rubisco kinetic
properties on daily canopy photosynthesis (Zhu et al., 2004;
Long et al., 2006). This study, however, was limited to daily
predictions, because the simulation model lacked the two-way
connection between the biochemical models and crop growth
and development dynamics. In the following section, we will
discuss strategies for connecting the biochemical models of
photosynthesis into the cross-scale modeling framework to
overcome issues of connectivity.

Biochemical Models of C3 and C4 Leaf
Photosynthesis
The importance of Ribulose-1,5-bisphosphate carboxylase/
oxygenase (Rubisco) in determining photosynthesis has been
recognized in early studies (see overview in von Caemmerer,
2013). Rubisco catalyses the competing reactions of the
carboxylation [first step of the photosynthetic carbon reduction
(PCR) cycle] and oxygenation [first step of the photorespiratory
carbon oxidation (PCO) cycle] of ribulose-1,5-bisphosphate
(RuBP) (Figure 1). This led to the development of biochemical
photosynthesis models based on Rubisco kinetic properties
and the two cycles (see review of von Caemmerer et al., 2009).
The model of Farquhar et al. (1980) is one of these, and will be
referred to here as the C3 photosynthesis model. This model
assumes that net photosynthesis is determined by the minimum
(Equation 2) of either RuBP-saturated (Rubisco-limited)
or RuBP-regeneration-limited (electron-transport-limited)
CO2 assimilation rate (Equations 3, 4 respectively). Rubisco-
limited photosynthesis is comparable to the CO2-limited
photosynthesis described by Blackman’s PLR model, whereas
electron-transport-limited photosynthesis is comparable to the
light-limited photosynthesis. Farquhar (1989) demonstrated

that the C3 photosynthesis model, intended at the biochemical
level, is also applicable for photosynthesis at the leaf level given
the assumptions that photosynthetic attributes are identical
for all chloroplasts in the leaf and that light distribution inside
the leaf is homogenous (Song et al., 2013). The utility of the
C3 photosynthesis model has been in helping to interpret gas
exchange measurements of steady-state CO2 assimilation (A) of
leaves (e.g., response of A to intercellular CO2 partial pressure,
A/Ci curves) and predicting the effects on photosynthesis of
variation in genotype, photosynthetic photon flux density
(PPFD), leaf temperature, and intercellular CO2 and O2 partial
pressures (von Caemmerer et al., 2009). The main equations of
the C3 photosynthesis model (von Caemmerer, 2000) are:

A = min {Ac,Ai} (2)

Ac =
(Cc − Γ∗)Vcmax

Cc + Kc(1 + Oc/Ko)
− Rd (3)

Aj =
(Cc − Γ∗) J

4Cc + 8Γ∗

− Rd (4)

where A is the net CO2 assimilation rate, Cc and Oc are the
chloroplastic CO2 and O2 partial pressures respectively, Rd is
the respiration other than that from the PCO cycle, Γ∗ is half
the reciprocal of the relative CO2/O2 specificity of Rubisco
multiplied by Oc and is also defined by the CO2 compensation
point in the absence of Rd (Figure 2.11, von Caemmerer, 2000),
Vcmax is the maximum rate of Rubisco carboxylation, Kc and Ko

are theMichaelis Menten constants of Rubisco carboxylation and
oxygenation, and J is the electron transport rate.

The photosynthetic electron transport chain can be limited
by either NADPH (the reduced form of nicotinamide adenine
dinucleotide phosphate) or ATP (adenosine triphosphate)
supply, depending on which of the three modes of electron
transport (i.e., linear, cyclic, and pseudocyclic electron transport)
are active (von Caemmerer, 2000). Equation (4), the most
used expression, assumes 100% linear electron transport and
that NADHP supply limits overall leaf photosynthesis (Yin
et al., 2009). However, this may not always be the case in
leaves. For example, if ATP supply is limiting with 100% linear
electron transport, the factors 4 and 8 in the denominator of
Equation (4) are replaced by 4.5 and 10.5, respectively (Yin
et al., 2009). Due to the uncertainty on whether NADPH or
ATP is limiting, different forms of Equation (4) are used.
This uncertainty can be eliminated by using a generalized
stoichiometry of the electron transport chain (extended-electron-
transport-chain) model that incorporates the three modes of
electron transport for C3 photosynthesis (Yin et al., 2009). A C4

equivalent of the model is presented in Yin and Struik (2009).
The extendedmodel quantifies the photosynthetic quantum yield
(α) based on the photochemical efficiencies of photosystem I
and II and the fraction of total photosystem I electron fluxes
that follows the cyclic and pseudocyclic pathways (Yin and
Struik, 2015). The extended model is valuable for the analysis
of photosynthetic regulation via the electron transport pathways
in response to environmental stresses (Yin et al., 2004, 2009).
However, there are still uncertainties in a number of parameters
in the model (e.g., number of H+ transported by cyclic electron
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transport; Yin and Struik, 2009). In addition, Equation (4)
performed similarly to the extended-electron-transport-chain
model when used to infer values of Vcamx and Jmax of the C3

photosynthesis model from A/Ci curves (Yin et al., 2004). In
fact, this is also the case for the ATP-supply-limited version of
Equation (4). This implies that for the purpose of reproducing
A/Ci curves for cross-scale modeling, use of the extended-
electron-transport-chain model may not be necessary.

The main equations for the biochemical model of C4

photosynthesis (von Caemmerer, 2000), based on previous
work of Berry and Farquhar (1978) and Collatz et al. (1992),
adopts the main equations of the C3 photosynthesis model (i.e.,
Equations 2–4) with modifications to capture the coordinated
function of mesophyll and bundle-sheath cells. In the C4

photosynthesis model, Ac and Aj are given by:

Ac =
(Cs − γ∗Os)Vcmax

Cs + Kc(1 + Os/Ko)
− Rd (5)

Aj =
(Cs − γ∗Os) (1− x) Jt

3 (Cs + 7/3γ∗Os)
− Rd (6)

where γ∗ is half the reciprocal of the relative CO2/O2 specificity
of Rubisco, Cs and Os are the bundle-sheath CO2 and O2

partial pressure [which are calculated with additional equations,
described in von Caemmerer (2000), reflecting the coordinated
function of mesophyll and bundle-sheath cells], respectively. Jt
is the total electron transport rate from both the mesophyll
and bundle-sheath cells and the factor (1 − x) represents the
proportion of the total electrons that are available to the bundle-
sheath cells, while the rest are required by the mesophyll cells.

Connecting Biochemical Photosynthesis
Models to Environmental Factors and Crop
Physiological Attributes
Biochemical photosynthesis models can be connected to
crop models by utilizing the emerging cross-scale modeling
framework (Figure 1). The first step in this approach, which
involves upscaling to canopy photosynthesis, has been achieved
through the use of the simpler representations of canopy
structure (i.e., LAI and k) such as the multi-layer (Leuning et al.,
1995), the sun-shade (de Pury and Farquhar, 1997), the big-
leaf (which aggregates absorbed radiation and photosynthetic
capacity into a single element) (Sellers et al., 1992) modeling
approaches and 3D models such as the RATP model (Sinoquet
et al., 2001). However, upscaling to cross-scale modeling through
the use of the sun-shade modeling approach is an avenue to
achieve a balance between simplicity and robustness (Yin and van
Laar, 2005). In the following section, we will discuss strategies
for connecting environmental factors (i.e., Ta, Ca, and water)
and crop physiological attributes (e.g., SLN) into the cross-scale
modeling framework.

An issue for canopy photosynthesis modeling is if and how to
include spatial variability within the canopy for environmental
factors like Ta and Ca. Many authors resort to the assumption
that these environmental factors do not vary spatially within
the canopy (Leuning et al., 1995; Wang and Leuning, 1998;
Yin and van Laar, 2005), while others use empirical functions,

such as an exponentially decreasing wind speed through canopy
for estimating leaf boundary layer conductance, which affects
diffusion of Ca into leaves (Yin and van Laar, 2005). Spatial
variability of environmental parameters within the canopy, such
as Ta, can also be captured with 3D plant architecture modeling
(e.g., Sinoquet et al., 2001). However, the assumptions for
omitting spatial variability are supported by observations (Wang
and Leuning, 1998) that the effects on canopy photosynthesis
of including spatial variation for Ta, vapor pressure deficit
(VPD) and Ca in simulations are only minor (within 5%) under
a wide range of soil water availabilities and meteorological
conditions. This is further supported by the finding that canopy
photosynthesis can be closely approximated by photosynthesis of
the sunlit fraction (Hirose, 2005). It could be that a large part
of canopy photosynthesis is contributed by leaves in the upper
part of the canopy, which experience environmental conditions
close to those above the canopy, making it reasonable to omit
the spatial variability in Ta, VPD, and Ca within canopies from
simulation models.

As seen in the Section Utilizing Relationships between Crop
Growth and Light Interception, Ta can have a significant impact
on RUE and crop growth, because it affects leaf temperature (Tl),
which in turn affects leaf-level photosynthesis. The question of
how to estimate Tl is covered in subsequent paragraphs. First,
parameterizing effects of Tl on photosynthesis is possible by
using studies that quantify the response of biochemical model
parameters to Tl (Bernacchi et al., 2001, 2002, 2003; Massad
et al., 2007; Braune et al., 2009; Boyd et al., 2015; Yin et al.,
2016). Temperature responses of the main C3 model parameters
(Vcmax, Jmax, Kc, Ko, and Γ∗) have been studied both in vivo and
in vitro in recent years. In vivo data sets are most comprehensive
for model C3 species such as Arabidopsis thaliana and Nicotiana
tabacum (Bernacchi et al., 2001, 2002, 2003; Walker et al., 2013),
although data sets for C3 and C4 crop species are also becoming
available (Massad et al., 2007; Braune et al., 2009; Yin et al.,
2016). In vitro data for C3 species like wheat (Cousins et al.,
2010) and the model C4 species Setaria viridis have also appeared
(Boyd et al., 2015). To connect Tl into canopy photosynthesis
modeling, it has been suggested that spatial variation of Tl within
the canopy is required. 3D canopy architectural models could
be used to describe this spatial variation (Sinoquet et al., 2001).
However, Wang and Leuning (1998) demonstrated by using the
sun-shaded leaf modeling approach, assuming that Tl was the
same within each fraction but differed between them, that a
reasonable approximation resulted. This has been implemented
inmany studies (de Pury and Farquhar, 1997;Wang and Leuning,
1998; Dai et al., 2004; Yin and van Laar, 2005).

The difficulty in simulating Tl is that it is interlinked with
transpiration. Diffusion of Ca into leaves through stomata (Ci)
driving photosynthesis is affected by stomatal conductance,
which is driven by the balance between atmospheric demand
and crop soil water uptake. These complex interactions are
unavoidable. An emerging framework for capturing these
interactions in well-watered situations is by coupling the leaf-
level biochemical photosynthesis models with the isothermal
form of the Penman-Monteith equation (for Tl simulation)
and a stomatal conductance model (for Ci simulation). The
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Penman-Monteith equation (Monteith, 1965a; Monteith and
Unsworth, 2013b) reflects the interdependency between leaf
energy balance and transpiration, which depends on diffusion
of water vapor out of leaves through stomata and the leaf
boundary layer and on the VPD of the surrounding air. Many
authors have taken this path and captured these interactions
for leaf-photosynthesis modeling and connected it with canopy
photosynthesis modeling through the use of the sun-shade
modeling approach (Wang and Leuning, 1998; Kim and
Lieth, 2003; Yin and van Laar, 2005; Yin and Struik, 2009).
Furthermore, some of these canopy photosynthesis models
have been implemented in crop models (Yin and van Laar,
2005; Yang et al., 2009), achieving frameworks in line with
the cross-scale modeling approach. Given this framework for
capturing connections across scales, there remain choices of
models for capturing the interlinked nature of Tl, transpiration,
and photosynthesis.

Canopy photosynthesis models that respond to Ca, which
affects Ci, involve incorporating a stomatal conductance model.
The most widely used leaf stomatal conductance models are
those that relate stomatal conductance to photosynthesis (e.g., the
BWB-type models developed and named after the authors in Ball
et al., 1987) and multiplicative models (e.g., Jarvis, 1976) based
on environmental factors (for review of stomatal conductance
models see Damour et al., 2010). Stomatal conductance for CO2

can be converted to that for water vapor, or vice versa, by
assuming water vapor diffuses through stomata at a rate that
is 1.6 times faster than CO2 (Dai et al., 2004; Yin and van
Laar, 2005). This is modeled by using Graham’s law of effusion,
calculated as the square root of the ratio of the molecular weight
of CO2 over H2O. The BWB-typemodels have subsequently been
improved by several authors (Leuning, 1995; Yin and Struik,
2009), while retaining the concept that stomatal conductance
is driven by photosynthesis. Coupling of stomatal conductance
models to biochemical models of photosynthesis (Collatz et al.,
1992; Leuning, 1995; Kim and Lieth, 2003; Yin and Struik,
2009; Li et al., 2012) can facilitate photosynthesis estimation in
response to Ca. Wang and Leuning (1998) incorporated a BWB-
type stomatal conductance model into canopy photosynthesis
modeling through the use of the sun-shade modeling approach.
They assumed that stomatal conductance (per leaf area basis) was
the same within each fraction but differed between them, and
concluded that this generated a reasonable approximation. This
is a simple and robust approach for connecting Ca into canopy
photosynthesis modeling and has been adopted in other work
(Dai et al., 2004; Yin and van Laar, 2005).

The emerging framework for capturing the interactions
between Tl, transpiration and photosynthesis is subsequently
revised to capture effects of water-limited situations. Many
authors incorporated empirical effects on some of the
biochemical model parameters (see references cited in Li et al.,
2012), assuming that water stress directly affects photosynthesis.
In contrast, Li et al. (2012) modeled effects of water stress by
incorporating effects of soil water as an empirical impact function
in the BWB-type model without modifying photosynthesis. This
can be upscaled to the canopy level as described above. However,
the similarity in both approaches to incorporating water effects is

that stomatal conductance is responsive to photosynthesis, which
may not be the case in water-limited situations. Approaches to
water limitation used in crop models may provide an avenue
to reduce the empirical approach currently used in biochemical
photosynthesis models. When water becomes limiting, some
crop models drive crop growth via transpiration, which is
estimated by the balance between atmospheric demand and crop
soil water uptake (Monteith and Greenwood, 1986; Monteith,
1988; Hammer et al., 2010). The switch between light-limited
and water-limited crop growth depends on the estimated plant
water status (Chapman et al., 1993; Hammer et al., 2010). A
more mechanistic method involving the coordination of the
controls of stomatal aperture, transpiration and abscisic acid
(Tardieu et al., 2015) can be used to estimate transpiration, but
the simpler approach for estimating transpiration in crop models
has proven to be robust when applied across a diverse range
of environments (Hammer et al., 2010). This implies that in
water-limited situations, photosynthesis is responsive to stomatal
conductance.

A major crop physiological attribute affecting canopy and leaf
photosynthesis is SLN (Section Avenues to Improve Connections
in the Cross-Scale Modeling Framework with Environmental
Factors and Crop Physiological Attributes). Nitrogen is needed
to support photosynthetic machineries via Rubisco for the
photosynthetic carbon reduction cycle and thylakoid membrane
proteins for the electron transport chain. Partitioning of leaf
nitrogen to these photosynthetic components is a complex
topic and is probably species dependent (Evans, 1989; Buckley
et al., 2013). Fortunately, without modeling these complexities,
canopy photosynthesis can be linked to canopy nitrogen
content through upscaled PLR models that respond to SLN
(Hammer and Wright, 1994). This approach is also applicable
for obtaining canopy photosynthesis based on the biochemical
photosynthesis models (de Pury and Farquhar, 1997). Linking
biochemical photosynthesis model parameters to SLN becomes
a key for connecting across scales, because model parameters are
quantitatively related to SLN (Evans, 1983, 1989; Braune et al.,
2009; Archontoulis et al., 2012). Because of this association, total
nitrogen content of sunlit and shaded fractions can be used to
drive the biochemical photosynthesis models when scaling up to
the canopy level (de Pury and Farquhar, 1997).

Extending Cross-Scale Modeling for
Assessing Genetic Manipulations of
Photosynthesis
Current canopy photosynthesis modeling based on the
biochemical photosynthesis models can be readily used
for assessing the consequences of genetic manipulations of
photosynthesis on crop growth and production. Yin and Struik
(2008) incorporated a canopy photosynthesis model, based on
the C4 photosynthesis model, into the GECROS crop model
to assess the consequences of C4 photosynthesis on rice crop
production. They predicted a yield increase of 23% with the
full introduction of the C4 pathway into rice. Improvement
in Rubisco kinetic properties have also been assessed for
consequences on canopy photosynthesis (Zhu et al., 2004;
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Long et al., 2006). Given the wide range of possibilities for
photosynthetic manipulation there is a need to extend the
biochemical models and possibly the cross-scale modeling
framework. Three important areas in pursing this are (1)
extending the biochemical photosynthesis models to capture
genetic manipulations in photosynthesis, (2) connecting model
extensions across scales, and (3) capturing pleiotropic effects
of genetic manipulations in photosynthesis. These issues
are discussed in terms of framing the cross-scale modeling
for genetic manipulations using examples based on current
knowledge for three specific potential manipulations.

Improving Rubisco Kinetic Properties
The upscaled biochemical photosynthesis models (Section
Connecting Biochemical Photosynthesis Models to
Environmental Factors and Crop Physiological Attributes)
can be readily used to estimate consequences of manipulations
in Rubisco kinetics on canopy photosynthesis. However, an
effect of changing Rubisco kinetics, Kc in particular, is that it can
also affect the maximum catalytic turnover of carboxylase per
Rubisco site, kcat (Whitney et al., 2011; Evans, 2013; Sharwood
and Whitney, 2014). In addition, Vcmax is the product of kcat
and the number of moles of Rubisco sites per unit of leaf area,
nR (Zhu et al., 2004; Evans, 2013). These pleiotropic effects
will affect the calculation of CO2 assimilation rate and should
be captured in the cross-scale modeling. However, nR and the
relationship between Kc and kcat need to be defined. nR can
be calculated from measurements of Rubisco concentration in
leaves, which provides the connection with SLN, which in turn
is determined by the balance between crop nitrogen uptake and
rate of leaf area growth [Section Crop Physiological Attribute:
Specific Leaf Nitrogen (SLN)]. However, the relationship
between Kc and kcat may be difficult to predict as different
approaches for manipulating Rubisco enzymes can lead to
different relationships (Evans, 2013). On the other hand, when
comparing Kc and kcat of Rubisco enzymes, there is a strong
linear relationship (Evans, 2013) that can be parameterized by
a slope and intercept. Capturing these pleiotropic effects in the
cross-scale modeling should allow more realistic simulations of
canopy photosynthesis.

Mesophyll Conductance
The biochemical photosynthesis models have already been
extended to include diffusion of Ca from the surrounding air
to the leaf intercellular airspace (Ci) by incorporating the leaf
boundary layer conductance and stomatal conductance and have
been incorporated into canopy photosynthesis models (Wang
and Leuning, 1998). However, mesophyll conductance, which
affects diffusion of Ci to the carboxylating site of Rubisco (Cc),
is also required in modeling due to its significance in controlling
leaf photosynthesis (Flexas et al., 2008; Terashima et al.,
2011) and for considering mesophyll conductance manipulations
(Flexas et al., 2012). The framework to include mesophyll
conductance in modeling CO2 diffusion, using Ficks’s first law of
diffusion for CO2, is given by:

C c = C a−
A

g bl
−

A

g s
−

A

gm
(7)

where Cc and Ca are the CO2 partial pressure at the carboxylating
site of Rubisco inside chloroplasts and of the surrounding air,
respectively, gbl, gs and gm are the leaf boundary layer, stomatal
andmesophyll conductance for CO2 respectively, andA is the net
CO2 assimilation rate.

Use of Equation (7) relies on revising Ci-based biochemical
model parameters to incorporate effects of gm (i.e., Cc-based
values) and parameterizing of gm. The first issue is
accommodated by the increasing availability of Cc-based
values (Bernacchi et al., 2002; Cousins et al., 2010). For the
second issue, environmental factors (e.g., air temperature, soil
water, andCa), crop physiological attributes (e.g., leaf N), and leaf
anatomical parameters (e.g., mesophyll cell wall thickness) can be
used to determine gm through the use of empirical relationships
(Evans et al., 2009; Flexas et al., 2012; Tomás et al., 2013).
These empirical approaches rely on experimental measurements
for establishing the correlation, which can be facilitated by
developments in measurement techniques such as gas exchange,
in combination with carbon isotope discrimination (Pons et al.,
2009). Such techniques allow the response of gm to soil N, soil
water, and leaf temperature to be parameterized (Evans and
von Caemmerer, 2013; Barbour and Kaiser, 2016). Established
correlations with empirical approaches, however, may not
extrapolate reliably to yet unexplored parts of the simulation
landscape. For example, gm responses to environmental factors
and crop physiological attributes may not be estimated using
known empirical relationships when gm is manipulated by
altering expression of aquaporins on cell membranes (Flexas
et al., 2012) or anatomical features of leaves such as the thickness
of mesophyll cell walls (Terashima et al., 2011). An additional
layer of complexity is introduced if pleiotropic effects of gm
manipulation are considered. Work on characterizing effects of
gm manipulation on a range of photosynthesis related attributes
(e.g., total Rubisco activity, respiration rate, and gs) can provide
information on possible pleiotropic effects (Flexas et al., 2006;
Barbour et al., 2016), which should help parameterize the
cross-scale modeling. Recently, a more mechanistic approach for
modeling gm was presented (Evans and von Caemmerer, 2013).
However, it should be noted that use of more complex models
will need parameterization of responses to environmental and
crop physiological attributes for the cross-scale modeling.
Effective modeling involves careful consideration of the extent of
complexity actually required (Hammer et al., 2006).

Introducing Chlorophyll d and f into the Light

Harvesting Antenna of Photosystems
Light absorption by Chlorophyll a and b, which are the most
common chlorophylls in the light harvesting antenna of crop
species, can only utilize wavebands in the spectrum up to 700
nm (Chen and Blankenship, 2011). Introducing chlorophyll
d and f could offer the possibility of pushing the boundary
toward 750 nm, which increases available PAR by 19% (Chen and
Blankenship, 2011). Effects of this can be estimated by existing
canopy light distribution models (e.g., sun-shade models) if
k-values can be revised. However, the biochemical photosynthesis
models commonly use an empirical, non-rectangular hyperbola
function to describe electron transport rate (J) in terms of PPFD
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(e.g., Equation 2.13, von Caemmerer, 2000). Unfortunately, the
connection between empirical parameters of the non-rectangular
hyperbola function and compositions of chlorophyll types is
not clear. In addition, these new chlorophyll types will alter
the spectral quality of light in the canopy by changing the
ratio between red (660 nm) and far-red (730 nm) light. This
could interfere with the phytochromes in plants that regulate
shade avoidance and other phytochrome-related physiological
functions (Evans, 2013). It has been shown that lower red:far-red
ratio can cause a lower chlorophyll a:b ratio (Pons and de Jong-
van Berkel, 2004) as well as influence bud outgrowth and tillering
(Ballaré and Casal, 2000; Lafarge et al., 2002). These possible
pleiotropic effects of introducing new chlorophyll types remain
difficult to incorporate at this stage.

CONCLUDING REMARKS

The emerging cross-scale modeling framework connecting
biochemical/leaf and canopy/crop levels (Figure 1) has the
capacity to link genetic manipulation of photosynthesis
to crop yield. The success of cross-scale modeling is built
on (1) the reliability of models at each scale and (2) how
well the connections are captured across scales. Connecting
the biochemical photosynthesis models into the cross-scale
modeling framework allows clearer links to the biochemical
processes of photosynthesis, based on which consequences of
photosynthetic manipulations can be reliably estimated. This
can be further improved by the advancing understanding of

photosynthetic responses to environmental and physiological

attributes and further modeling efforts. The crop scale
models with the concept of both source- and sink-limited
growth provide important effects that can regulate the
biochemical photosynthetic models via crop scale nitrogen
and water status, which determine SLN and influence canopy
conductance in water-limited situations. Development of
the cross-scale modeling framework using the gene-to-
phenotype modeling approach can potentially accelerate
progress in improving crop resource capture efficiency to
support crop improvement through genetic manipulation of
photosynthesis.
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