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A defined balance between the generation and scavenging of reactive oxygen species
(ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic
and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress
response but also act as signaling molecule that regulates various cellular processes
including plant-microbe interaction. In particular, rhizosphere constitutes the biologically
dynamic zone for plant–microbe interactions which forms a mutual link leading to
reciprocal signaling in both the partners. Among plant–microbe interactions, symbiotic
associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like
fungus especially Piriformospora indica with plants are well known to improve plant
growth by alleviating the stress-impacts and consequently enhance the plant fitness.
AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-
homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular
processes and plant growth and survival under stressful environments. This article
summarizes the major outcomes of the recent reports on the ROS-generation,
scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica
colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-
AMF/P. indica interaction can help in designing innovative strategies for improving plant
health and productivity under stress conditions.

Keywords: plant root, ROS-metabolism, ROS-signaling, stress, arbuscular mycorrhizal fungi

INTRODUCTION

Plant–microbe interactions cover a broad range of relationships between plant and microbial
community in which either of the partners participate by imposing a beneficial, negative or
neutral effect on its counterpart. Moreover, plant roots are continuously exposed to a large
number of microbes present in the rhizosphere that influence plant life cycle and overall fitness
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(Sanders, 2011; Mine et al., 2014). Plant–microbe symbiotic
interactions have been the focus of recent plant stress research,
where the outcomes of these interactions were credibly evidenced
to alleviate biotic and abiotic stress-impacts and consequently
enhance the plant fitness (Goh et al., 2013; Schouteden
et al., 2015; Doty, 2016). In the present scenario, a relatively
small number of beneficial plant-microbe interactions are well
characterized and utilized (Farrar et al., 2014). Microbial
counterpart- arbuscular mycorrhizal fungi (AMF)-mediated
stress tolerance and growth enhancements have been extensively
reported in colonized host plants during symbiotic interaction
studies (Muthukumar and Udaiyan, 2010; Porcel et al., 2012;
Tahat and Sijam, 2012). Notably, a number of recent works
have discussed the significance of Piriformospora indica, a
arbuscular mycorrhizal-like fungi which is able to grow in pure
culture and without the presence of the plant. P. indica, a
multifunctional and versatile root endophytic fungus belongs
to Sebacinales (order-Basidiomycota) and is involved in the
improvement of growth, yield, and plant tolerance to major
biotic and abiotic stresses (Sherameti et al., 2008; Vadassery
et al., 2009a,b; Cruz et al., 2013; Jogawat et al., 2013; Prasad
et al., 2013; Bakshi et al., 2014; Johnson et al., 2014; Gill
et al., 2016; Trivedi et al., 2016). Both fungal counterparts
viz., AMF and P. indica are capable of improving plant fitness
via changing mainly the chemical plasticity through altering
reactive oxygen species (ROS) generation-scavenging under
biotic and abiotic stresses (Beneventi et al., 2013; Goh et al.,
2013; Hashem et al., 2016; Mo et al., 2016). ROS can be
both radical and non-radical forms and generated in normal
metabolic processes e.g., as a result of electron transport chains
in chloroplast and mitochondria. However, adverse conditions
including abiotic and biotic stresses can significantly accelerate
the generation of ROS at cellular level (Apel and Hirt, 2004;
Gill and Tuteja, 2010; Rasool et al., 2013). Radical forms of
ROS majorly include superoxide radicals (O•−2 ), perhydroxy
radical (HO•2) and alkoxy radicals (RO); whereas, hydrogen
peroxide (H2O2) and singlet oxygen (1O2) are included in non-
radical molecular form. Compared with non-radicals, radical
forms of ROS are more toxic due to their highly reactive
nature (Gill and Tuteja, 2010; Sewelam et al., 2016). In
plants, enzymatic and non-enzymatic systems are the two
major components of ROS-scavenging system. The list of major
enzymatic components includes superoxide dismutase (SOD),
ascorbate peroxidase (APX), monodehydroascorbate reductase
(MDHAR), guaiacol peroxidase (GPX), glutathione reductase
(GR), peroxidase (POD), and catalase (CAT). Major antioxidant
metabolites namely glutathione (GSH) and ascorbic acid (AsA)
belong to the list of non-enzymatic component (Apel and Hirt,
2004; Gill and Tuteja, 2010; Rasool et al., 2013). Notably, NADPH
oxidases and respiratory burst oxidase homologs are the key
components of ROS generation system in plants (Suzuki et al.,
2013; Kadota et al., 2015).

In order to alert the plants for stress-adaptation, initial
generation of ROS was reported to act as long distance signals
in response to stress (Mittler et al., 2011; Sewelam et al.,
2016). Furthermore, ROS are also thought to be generated
during early stages of symbiotic interactions of mycorrhizal fungi

associated with plant roots (Fester and Hause, 2005; Tanaka et al.,
2006; Puppo et al., 2013; Espinosa et al., 2014; Kiirika et al.,
2014). Though, to efficiently utilize ROS as signaling molecule,
plants must sustain a precise balance between ROS generation
and ROS-scavenging pathways in order to finally mitigate the
potential toxic effects of ROS (Mittler et al., 2004; Baxter
et al., 2014). In plants, stress signals include redox homeostasis,
antioxidants signaling and continuous production/scavenging
of ROS at cellular level (Bose et al., 2014; Jajic et al., 2015).
However, severity or prolonged duration of biotic and abiotic
stresses can reduce the capability of plant to neutralize excess
ROS production that alternatively cause oxidative stress and
finally affect cellular essential metabolic activities and viability
(Gill and Tuteja, 2010; Barna et al., 2012; Nath et al.,
2016).

Despite the previous facts, literature is scanty on how the
generation, signaling and metabolism of ROS can be modulated
in plants with AMF/P. indica association under stress conditions.
Hence, this paper aims to briefly appraise ROS accumulation,
homeostasis, and signaling during plant-AMF and P. indica
interaction in response to major stress conditions.

ROS GENERATION AND SCAVENGING
DURING PLANT-ARBUSCULAR
MYCORRHIZAL INTERACTION UNDER
STRESS CONDITIONS

Reactive oxygen species profiling in AMF-inoculated roots of
several plants including Medicago truncatula, Zea mays, and
Nicotiana tabacum has evidenced important role of mycorrhizal
colonization/arbuscules in the scavenging of major ROS such
as H2O2 (Fester and Hause, 2005). AMF-colonization improved
drought tolerance in olive plants, where compared to non-
colonized olive plants, AMF-colonized plants exhibited lesser
accumulation of ROS (H2O2) and malondialdehyde (MDA),
a lipid peroxidation product (Fouad et al., 2014). Similar
results were also reported in other test plants including date
palm (Benhiba et al., 2015) and Citrus reticulata (Sarkar
et al., 2016), where improved drought tolerance was dedicated
to AMF-mediated improvements in the antioxidant defense
of host plants and alleviate drought stress-effects. A recent
report also confirmed the role of AMF (Glomus versiforme)
colonization in the enhancement of ROS-metabolism via its
modulatory role in the activities of antioxidant enzymes
including SOD, CAT, APX, GR, and MDHAR in drought stressed
water melon plants (Mo et al., 2016). AMFs colonization-
mediated strengthening of antioxidants defense systems was
advocated to control ROS-metabolism and eventually alleviate
oxidative stress in host plants under stress conditions (Peterson
et al., 2004; Vos et al., 2013; Wu et al., 2014; Hashem
et al., 2016). Involvement of ROS generation was also
suggested in providing resistance in soybean against nematode
(Meloidogyne javanica) infection (Beneventi et al., 2013). In
mycorrhizal tomato roots, reduction of infection caused by
root-knot nematode (M. incognita) was linked with ROS
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metabolism (Vos et al., 2013). Enhanced activities of major
antioxidant enzymes including SOD, CAT, POD, GR, and APX
were argued to improve cadmium (Cd)-tolerance in tomato
via AMF-mediated ROS-scavenging (Hashem et al., 2016).
Table 1 summarizes representative studies highlighting plant-
AMF/AMF-like (P. indica) interaction and its link with ROS
metabolism in response to various biotic and abiotic stress
conditions.

LINK OF ROS SIGNALING WITH STRESS
TOLERANCE DURING
PLANT-ARBUSCULAR MYCORRHIZAL
ASSOCIATION

In order to adapt with various biotic and abiotic stresses, plants
are endowed with a highly complicated and elaborated signaling
cascade. In response to stress conditions, plants utilize ROS
as one of the key signaling players which also activate other

defense related signaling pathways (Baxter et al., 2014; Xu and
Brosche, 2014; Sewelam et al., 2016). Transcriptome analysis
of Glomus mosseae/Medicago sativa during herbicide (atrazine)
stress revealed higher stress tolerance via increased expression
of electron transport related genes, ROS-scavenging antioxidants
such as thioredoxin, glutaredoxin, and GPX. Additionally, a
higher degradation of atrazine was also observed in mycorrhizal
(G. mosseae)-treated M. sativa plants (versus non-treated plants),
further corroborated its link with stress mitigation (Song et al.,
2016).

Increasing evidences revealed that ROS-generation is one of
the most frequent responses triggered in plants that represent
a general point for different signaling cascades under stress
(Sewelam et al., 2016). ROS generation is also one of the
characteristics of the early host-defense system during initial
microbial invasion with host plants and can also lead to the
hypersensitive reaction and cell death at the site of interaction
(Puppo et al., 2013). However, detailed reports on ROS signature
kinetics are still very limited during initial stages of microbial
interaction with plant. A transient increase of ROS was observed

TABLE 1 | Representative studies highlighting AMF/P. indica mediated-stress tolerance associated with the metabolism of reactive oxygen species
(ROS) in different plants.

Name of the interacting
fungi

Plant Stress tolerance ROS metabolism in
colonized plants

∗Potential stress
tolerance-mechanism

Reference

Glomus mosseae Solanum lycopersicum
(Tomato)

Cadmium (Cd) stress Increased level of SOD,
CAT, POD, GR, and
APX

AMF-mediated ROS
scavenging

Hashem et al., 2016

G. mosseae Medicago sativa (alfalfa) Atrazine (Herbicide)
stress

High level of
thioredoxin,
glutaredoxin and GPX

High GPX activity may
link with alleviation of
atrazine stress

Song et al., 2016

Piriformospora indica Hordeum vulgare
(Barley)

Salt stress High antioxidant
activities and
glutathione-ascorbate
cycle activation

Stress tolerance link
with increase in
antioxidants

Waller et al., 2005;
Baltruschat et al., 2008

Biotic stress (Fusarium
culmorum)

Increased antioxidants Stress tolerance link
with increase in ROS
metabolism

Waller et al., 2005

Zea mays (Maize) Biotic stress (Fusarium
verticillioides)

High antioxidant
enzymatic activities

High antioxidants
proposed to link with
stress tolerance

Kumar et al., 2009

P. indica and Azotobacter
chroococcum
(Co-inoculation)

Triticum aestivum
(Wheat)

Zinc stress High APX and
peroxidase activity

Induced antioxidant
activities

Abadi and Sepehri,
2016

Rhizophagus manihotis and
Funneliformis mosseae

Olea europaea (Olive) Drought stress Low H2O2 in
AMF-colonized plants

Low H2O2 level
correlated with drought
tolerance

Fouad et al., 2014

R. intraradices and F.
mosseae

Phoenix dactylifera
(Date Palm)

Drought stress High antioxidant-
enzymatic activities

Antioxidant defense
system alleviates long
term drought stress.

Benhiba et al., 2015

Glomus sps. Citrus reticulate
(Mandarin orange)

Drought stress High antioxidant-
enzymatic activities

Increased antioxidant
defense system link
with oxidative stress
tolerance

Sarkar et al., 2016

G. mosseae S. lycopersicum
(Tomato)

biotic stress
(Meloidogyne incognita)

Reduction of root-knot
nematode infection

Involvement of ROS
metabolism with
reduction of the
nematode infection

Vos et al., 2013

∗ROS may be one of the associated mechanisms or it may likely to have link with stress tolerance.
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FIGURE 1 | Schematic representation of reactive oxygen species (ROS) generation and signaling during plant- arbuscular mycorrhizal fungi
(AMF)/Piriformospora indica interaction in response to stress. The left panel of the figure indicates the ROS generation and signaling in presence of
AMF/P. indica interaction, while the right panel demonstrates high ROS in absence of mycorrhizal interaction. AMF/P. indica colonization in plant roots can help the
plant to cop the detrimental effect of stress, directly or indirectly, on plant functionality and metabolism. Altered ROS signaling/metabolism, in response to biotic and
abiotic stress, link with stress tolerance in mycorrhizal colonized plants consequently provides stress tolerance; while, the scenario is just reverse in case of
non-colonized plants i.e., high ROS production followed by the inhibition of plant cellular activities thus affecting the plant fitness. AMF/P. indica colonized plants
were able to withstand stress induced damage by increasing the production of various antioxidant compounds, which helps to scavenge ROS and thus in turn
enhance the activities of various antioxidant enzymes as listed inside the arrow. The positive (+) and negative (−) sign in figure denotes an increased and decreased
levels, respectively. Superoxide dismutase (SOD), Catalase (CAT). Peroxidase (POD), Glutathione reductase (GR), and Ascorbate peroxidase (APX).

within seconds in root hairs of Phaseolus vulgaris after treatment
with Nod factors (NFs), where specific role of ROS response
during symbiotic association was proposed (Cardenas and
Quinto, 2008). Moreover, among ROS, H2O2 is membrane-
permeable and plays an important role in signaling cascade as
well as in defense response under stressful environments (Xia
et al., 2009; Saxena et al., 2016). Thus, H2O2 has emerged as
an active signaling player which is also involved in regulation
of specific biological reactions/cellular metabolism and stress
tolerance (Neill et al., 2002; Yan et al., 2007; Saxena et al., 2016).
In M. truncatula–Sinorhizobium meliloti, exogenously supplied
H2O2 was associated with induced MtSpk1 gene (encoding a
putative protein kinase) and also its conformed functional role
was argued in the control of genes linked to rhizobia symbiosis
(Andrio et al., 2013).

ROS MODULATION DURING
INTERACTION OF PLANTS AND P. indica
UNDER STRESS CONDITION

Piriformospora indica mediated stress tolerance has been credibly
reported in various crops including barley (Waller et al., 2005;
Deshmukh and Kogel, 2007), wheat (Serfling et al., 2007), maize
(Kumar et al., 2009), tomato (Sarma et al., 2011), and lentil
(Dolatabadi et al., 2012). In rhizosphere, P. indica was reported to
enhance the levels of alkaline phosphatase and acid phosphatase
enzymes that in turn contributes for higher phosphate uptake
in plants (Das et al., 2014). However, information is still
meager on the relation of P. indica with the status of ROS in
plants with mycorrhizal association. Nevertheless, the control of
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ROS generation and the modulation of major components of
antioxidant defense pathway were argued as a key mechanism
underlying P. indica mediated improved stress tolerance in
wheat, barley and maize (Waller et al., 2005; Serfling et al.,
2007; Kumar et al., 2009). In plant roots, ROS generation and
activation of defense related responses was reported during
initial mycorrhizal associations (Pozo and Azcón-Aguilar, 2007).
Notably, the generation of ROS was initially observed before
physical contact of P. indica with plant roots and no H2O2 was
reported after establishment of symbiotic relationship between
P. indica and plant root (Vadassery et al., 2009a; Camehl et al.,
2011; Vahabi et al., 2015).

H2O2 was found to induce OXI1 (Oxidative Signal Inducible1)
gene which consequently triggers defense response during
pathogen infection (Rentel et al., 2004; Anthony et al.,
2006; Petersen et al., 2009). In Arabidopsis roots, OXI1 (a
serine/threonine kinase) was shown to be required for oxidative
burst/ROS-mediated responses including root hair elongation
and disease tolerance against biotrophic pathogens (Rentel
et al., 2004; Petersen et al., 2009). Though, under favorable
co-cultivation conditions, H2O2 generation was repressed in
P. indica-colonized Arabidopsis roots while stimulation of growth
response via P. indica involved PLD-PDK1-OXI1 cascade in
Arabidopsis (Camehl et al., 2011). Activation of the GSH-
AsA cycle followed by increased antioxidant capacity was
reported in P. indica colonized barley root (Waller et al., 2005).
P. indica-mediated enhancement of antioxidants was reported
to link with salt stress tolerance in the colonized barley plants
(Baltruschat et al., 2008). Microbe derived effectors delivered
during plant-mycorrhizal association can enhance the microbial
infections and also manipulate the host metabolism. Recently,
a study demonstrated that the expression of candidate effector
(PIIN_08944) of P. indica was found to decrease the ROS burst
activated by flg22 and chitin in barley (Akum et al., 2015). Co-
inoculation of P. indica and Azotobacter chroococcum in wheat
enhanced APX and peroxidase-antioxidant enzyme activities
under zinc-deprived environment (Abadi and Sepehri, 2016).

Recently, the exudates released via P. indica interaction were
reported to initially lead to ROS generation, accumulation of
stress-responsive phytohormone, stomatal closure and induce the
defense responsive genes in root and/or shoot of Arabidopsis.
Moreover, after the establishment of physical contact of plant
with P. indica, defense responsive genes expression/number,
phytohormone and ROS levels turned down; whereas, the
stomata re-opened (Vahabi et al., 2015). Figure 1 schematically

highlights the link of ROS generation, scavenging and signaling
with plant-mycorrhizal association and their cumulative effect on
the enhanced plant fitness under stress.

CONCLUSIONS AND PERSPECTIVES

Symbiotic microbial association can enhance the ROS-
antioxidant defense system and ultimately improve the plant
fitness under stress. Further, in future, exploration of ROS
signatures kinetics during initial plant-arbuscular mycorrhizal
association can enhance the basic understanding of mycorrhizal
link with ROS generation. Additionally, molecular insights into
the detailed kinetics of ROS metabolism in plant-mycorrhizal
especially P. indica signaling are advocated to design innovative
strategies via modulating the ROS metabolism and ultimately will
help to improve plant productivity under stress conditions.
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