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RNA silencing is an important mechanism to regulate gene expression and antiviral

defense in plants. Nevertheless, RNA silencing machinery in the important oil crop

Brassica napus and function in resistance to the devastating fungal pathogen Sclerotinia

sclerotiorum are not well-understood. In this study, gene families of RNA silencing

machinery in B. napus were identified and their role in resistance to S. sclerotiorum

was revealed. Genome of the allopolyploid species B. napus possessed 8 Dicer-like

(DCL), 27 Argonaute (AGO), and 16 RNA-dependent RNA polymerase (RDR) genes,

which included almost all copies from its progenitor species B. rapa and B. oleracea and

three extra copies of RDR5 genes, indicating that the RDR5 group in B. napus appears

to have undergone further expansion through duplication during evolution. Moreover,

compared with Arabidopsis, some AGO and RDR genes such as AGO1, AGO4,

AGO9, and RDR5 had significantly expanded in these Brassica species. Twenty-one

out of 51 DCL, AGO, and RDR genes were predicted to contain calmodulin-binding

transcription activators (CAMTA)-binding site (CGCG box). S. sclerotiorum inoculation

strongly induced the expression of BnCAMTA3 genes while significantly suppressed

that of some CGCG-containing RNA silencing component genes, suggesting that RNA

silencing machinery might be targeted by CAMTA3. Furthermore, Arabidopsis mutant

analyses demonstrated that dcl4-2, ago9-1, rdr1-1, rdr6-11, and rdr6-15 mutants were

more susceptible to S. sclerotiorum, while dcl1-9 was more resistant. Our results reveal

the importance of RNA silencing in plant resistance to S. sclerotiorum and imply a new

mechanism of CAMTA function as well as RNA silencing regulation.
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INTRODUCTION

RNA silencing refers to a variety of mechanisms whereby a small
RNA molecule interferes with a given nucleotide sequence. It
was first discovered in plants and occurs widely in eukaryotic
organisms (Tijsterman et al., 2002; Ullu et al., 2004). In plants,
RNA silencing is triggered by double-stranded RNA (dsRNA)
that gives rise to small RNAs known as microRNAs (miRNAs)
or small-interfering RNAs (siRNAs). Generation and function of
these small RNAs depend on three key protein families, Dicer-
like proteins (DCLs), Argonautes (AGOs), and RNA-dependent
RNA polymerases (RDRs; Baulcombe, 2004). A whole RNA
silencing process comprises three stages: initiation, maintenance,
and signal amplification. DCLs undergo RNase III-type activities
to process complementary double-strand RNAs into small RNAs
with 21–26 nucleotides in length (Carmell and Hannon, 2004).
These small RNAs are then incorporated into AGO-containing
RNA-induced silencing complexes (RISCs) to serve as the
sequence specificity in RNA degradation, translational inhibition,
or heterochromatin formation (Bologna and Voinnet, 2014). At
the signal amplification stage, RDR enzymes are responsible for
synthesis of dsRNAs from ssRNA templates to initiate a new
round of RNA silencing (Sijen et al., 2001).

DCL, AGO, and RDR are key components of RNA silencing
machinery. DCL proteins are key components in small RNA
biogenesis. They are characterized by the presence of six
domains: DEAD, helicase-C, DUF283, PAZ, RNase III, and
dsRNA-binding motif (DSRM; Margis et al., 2006). DCL consists
of a small gene family in higher plants, insects, protozoa,

and some fungi, whereas only one Dicer protein exists in
vertebrates, nematodes, Schizosaccharomyces pombe, and green
alga Chlamydomonas reinhardtii (Liu et al., 2009). AGO proteins
are core factors of the RISC that guide small RNAs to their targets
by sequence complementarity, which results in target mRNA
cleavage, translational repression, or chromatin modification
(Hannon, 2002; Moazed, 2009). AGOs are large proteins (∼90–
100 kDa) consisting of several characteristic functional domains
including DUF1785, PAZ, MID, and PIWI (Hutvagner and
Simard, 2008). RDRs enhance the potency of RNAi by amplifying
the aberrant RNA population. It is defined by the presence of
a conserved RNA-dependent RNA polymerase catalytic domain
and is required for initiation and amplification of the silencing
signal (Schiebel et al., 1998). Multiple copies of AGO and RDR
genes are known to exist in both plants and animals. Members
of these gene families play different roles in RNA silencing.
For example, the Arabidopsis thaliana genome contains four
DCL proteins (DCL1–DCL4) that specifically produce different
types and sizes of small RNAs (Bologna and Voinnet, 2014).
The role of DCL1 is to extract a single small RNA duplex
out of a RNA loop called the pri-miRNA. This gives rise to a
miRNA, generally 21 nucleotides long, and is typically involved
in regulating developmental genes (Parent et al., 2015). DCL2
can produce abundant 22-nt viral siRNAs and shares functional
overlap with DCL4 in antivirus defense (Moissiard et al., 2007).
DCL3 generates 24-nt repeat-associated siRNAs (ra-siRNAs) and
is involved in antiviral defense against DNA viruses (Moissiard
and Voinnet, 2006). DCL4 generates 21-nt trans-acting siRNAs

(ta-siRNA) and is the primary DCL component of antiviral
defense against RNA viruses (Deleris et al., 2006). Likewise,
AGO1, the most well-studied plant AGO gene, associates with
miRNAs and some siRNAs such as ta-siRNAs to cleave target
mRNA and/or inhibit translation (Yu and Wang, 2010). AGO2
protein is involved in antiviral defense by catalyzing viral RNA
cleavage in Arabidopsis (Jaubert et al., 2011). AGO10, the closest
paralog of AGO1, is functionally redundant with AGO1 in some
aspects of development (Lynn et al., 1999) and also functions
as a decoy for miR165/166 to prevent the formation of AGO1-
miR165/166 complexes and the subsequent repression of HDZIP
III gene expression (Zhu et al., 2011). For RDRs, RDR2 converts
ssRNAs generated from repetitive DNAs to precursor dsRNAs of
ra-siRNAs (Xie et al., 2004), while RDR6 produces the ta-siRNA
precursors (Yoshikawa et al., 2005). Gene families encoding these
three key components of RNA silencing machinery have been
identified only in several plant species such as A. thaliana, Oryza
sativa (Kapoor et al., 2008), Zeamays (Qian et al., 2011), Solanum
lycopersicum (Bai et al., 2012), Nicotiana benthamiana (Nakasugi
et al., 2013), Setaria italica (Yadav et al., 2015), and Vitis vinifera
(Zhao et al., 2015). Identification of these families in more plant
species will enhance our understanding of RNA silencing.

RNA silencing plays multiple roles in regulating growth and
development as well as abiotic and biotic stress responses. In
higher plants, RNA silencing functions as an antiviral defense
through the action of DCL, AGO, and RDR proteins (Ding
and Voinnet, 2007). The importance of RNA silencing in plant
viral defense is manifested by the fact that it has elicited
counter defense measures from the viral pathogens to overcome
it. Plant viruses have evolved various viral RNA silencing
repressors (VSR) to counteract this defense mechanism by
targeting different RNA silencing pathway components (Csorba
et al., 2015). Apart from viral defense, evidence accumulates for
RNA silencing to play a role in plant interactions with bacterial
pathogens (Voinnet, 2008). The first example is a miRNA
from Arabidopsis that contributes to basal defense against
Pseudomonas syringae by regulating auxin signaling (Navarro
et al., 2006). Similar to viruses, the bacteria has also developed
mechanisms to suppress RNA silencing in order to cause disease
(Navarro et al., 2008). Recently, through the use of mutants
for key components of RNA silencing or functional analyses of
miRNAs in plant defense, the potential role of RNA silencing
in plant defense against fungal pathogens has been revealed.
These fungi include Verticillium dahliae (Ellendorff et al., 2009),
Verticillium longisporum (Shen et al., 2014),Magnaporthe oryzae
(Li et al., 2014), and Botrytis cinerea (Jin and Wu, 2015).

Brassica napus is an allotetraploid and was formed about 7500
years ago by crossing between B. oleracea and B. rapa, followed
by chromosome doubling (Chalhoub et al., 2014). It is one of the
most important oil crops, yet few RNAi machinery components
have been characterized to date. We have identified the miRNAs
involved in the interactions between B. napus and Sclerotinia
sclerotiorum, one of the most devastating fungal pathogens in
oil and vegetable crops. Furthermore, we find that Arabidopsis
ago1 and ago2 mutant plants exhibit enhanced susceptibility to
S. sclerotiorum (Cao et al., 2016). Our results provide a clue to
the important roles of RNA silencing in the interactions between
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B. napus and S. sclerotiorum. In this study, taking advantage of the
completion of the B. napus genome sequencing (Chalhoub et al.,
2014), we performed comprehensive bioinformatics analyses
to identify DCL, AGO, and RDR gene families that are the
three key components of RNA silencing machinery in B. napus.
Furthermore, we employed mutants to probe their functions
in resistance to S. sclerotiorum. We revealed the significant
difference in RNA silencing machinery composition between
B. napus and Arabidopsis, demonstrated the important role of
RNA silencing in resistance to S. sclerotiorum and indicated a
possible regulating mechanism of RNA silencing.

MATERIALS AND METHODS

Identification of Putative B. napus DCL,
AGO, and RDR Genes
Protein sequences of Arabidopsis DCLs, AGOs, and RDRs were
downloaded from TAIR database (http://www.arabidopsis.org/)
and scan for conserved domains were performed using National
Center for Biotechnology Information Conserved Domain
Database (NCBI-CDD; http://www.ncbi.nlm.nih.gov/Structure/
cdd/wrpsb.cgi). All these protein sequences were used as queries
to search their orthologs in B. napus, B. rapa, and B. oleracea
genomes using BLASTp program in NCBI database with default
settings. All retrieved protein sequences were examined for the
presence of conserved domains and redundant sequences were
removed. All candidate sequences of B. napus were subsequently
verified in the GENOSCOPE database (http://www.genoscope.
cns.fr/blat-server/cgi-bin/colza/webBlat). The physico-chemical
properties of BnDCL, BnAGO, and BnRDR proteins were then
predicted using ExPASy Compute pI/Mw tool (http://au.expasy.
org/tools/pi_tool.html; Bjellqvist et al., 1993).

Phylogenetic Analysis and Nomenclature
Multiple alignment of DCL, AGO, and RDR protein sequences
fromA. thaliana, B. napus, B. rapa, and B. oleraceawas performed
using MUSCLE program (Edgar, 2004). The phylogenetic trees
were then constructed using MEGA 5.0 (Tamura et al., 2011)
by Neighbor-Joining (NJ) method following the Jones-Taylor-
Thornton (JTT) model. Bootstrap analysis was performed with
1000 replicates to assess statistical support for nodes. The
candidate genes were renamed according to the phylogenetic
relationship and sequence homologies with corresponding A.
thaliana homologs. The detail information of the proteins used
for phylogenetic tree construction was listed in Table 1 and
Table S1.

Exon-Intron Structure Analysis and
Promoter Cis-Acting Element Prediction
The exon-intron organization of BnDCLs, BnAGOs, and BnRDRs
genes were determined using the online GSDS1.0 program
(http://gsds.cbi.pku.edu.cn/) by comparing their full-length
coding sequences (CDS) with their corresponding genomic
sequences downloaded from the GENOSCOPE database. The
upstream sequences (1.5 kb) of BnDCL, BnAGO, and BnRDR
genes were searched for the presence of potential cis-acting

elements using PLACE database (http://www.dna.affrc.go.jp/
PLACE/signalup.html; Higo et al., 1999).

Plant Materials and Inoculation Analyses
The Arabidopsis dcl, ago, and rdr mutants were provided by
Prof. Shou-Wei Ding (Department of Plant Pathology and
Microbiology, University of California, Riverside, USA) and
Prof. Yi-Jun Qi (Tsinghua-Peking Center for Life Sciences, and
School of Life Sciences, Tsinghua University, China). B. napus
plants were grown in growth cabinets at 25◦C under a 16/8 h
light/dark photoperiod, while Arabidopsis plants of the wild-
type and mutants of RNA-silencing related genes were grown at
23◦C with a 12/12 h day/night photoperiod. Fresh sclerotia of
S. sclerotiorum were cultured at 23◦C on potato dextrose agar
medium (PDA) to produce mycelia, which were transferred to
new PDA plates and grown for 2 days. The PDA plugs containing
the advancing edge of S. sclerotiorum mycelia were removed to
inoculate the plant leaves. For gene expression analyses, leaves
were collected at 0, 8, and 16 h post inoculation (hpi) and frozen
immediately in liquid nitrogen. Diameter of disease lesions
was measured at 24 hpi and statistically analyzed using SPSS
(verson19.0) by Student’s t-test (p < 0.05). For disease resistance
evaluation, at least 10 plants for each genotype were examined
and the experiments were conducted three times independently.

Real-Time Quantitative PCR
Total RNA was extracted using Trizol reagent (Invitrogen,
CA, USA) following the manufacturer’s procedure. Real-time
quantitative PCR (RT-qPCR) was carried out using SYBR Premix
Ex Taq (TakaRa, China) on StepOne Real-Time PCR System
(ABI, USA).The RT-qPCR analyses were conducted three times,
with three replicates for each gene and the relative fold changes
were calculated using the 2−11Ct method as described (Zhao
et al., 2013). A B. napus elongation factor gene was used as
the reference gene and primers used for RT-qPCR are listed in
Table S2. Significance of the differences between mean values was
determined with Student’s t-test (p < 0.05).

RESULTS

Genome-Wide Identification of DCL, AGO,
and RDR Genes in B. napus
A BLASTp search was conducted against B. napus genome in
NCBI database using well-characterized Arabidopsis AGO, DCL,
and RDR protein sequences as query sequences. The retrieved
sequences were further analyzed for domain composition.
Finally, 8 DCL, 27 AGO, and 16 RDR genes were identified in
B. napus genome (Table 1). Compared with A. thaliana which
contains 4 DCL, 10 AGO, and 6 RDR genes (Table S1); the
members for each gene family in B. napus expanded by two times
or more (Table 1). To compare the composition of these RNA
silencing machinery genes between B. napus and its progenitor
species B. rapa and B. oleracea, similar BLASTp and domain
identification analyses were performed for these two genomes.
The results showed that B. rapa genome contained 4 DCL, 13
AGO, and 6 RDR genes while B. oleracea genome carried 4
DCL, 14 AGO, and 7 RDR genes (Table S1). Comparison analysis
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TABLE 1 | List of B. napus DCL, AGO, and RDR genes.

Gene no. Gene name Accession no. CDS length (bp) Predicted protein No. of introns Genomic location

Length

(aa)

pI Mw

(kDa)

DCLs

1 BnDCL1A BnaA10g00800D 5439 1812 5.97 202.15 17 chrA10:390521..398004

2 BnDCL1C BnaC05g00860D 5430 1809 6.01 201.54 19 chrC05:435258..442575

3 BnDCL2A BnaA05g32540D 4167 1388 6.77 156.70 21 chrA05:22308269..22314738

4 BnDCL2C BnaC05g47910D 4170 1389 7.65 156.94 21 chrC05:42659693..42666090

5 BnDCL3A XP_013656716a 4572 1523 5.91 141.60 23 A8 NC_027764.1

(14560641..14567368)

6 BnDCL3C BnaC03g54010D 4596 1531 6.04 172.25 24 chrC03:40673425..40680494

7 BnDCL4A BnaA10g15080D 4929 1642 6.22 185.01 24 chrA10:11827194..11836581

8 BnDCL4C BnaC09g37430D 4926 1641 6.22 184.48 24 chrC09:40709757..40719200

AGOs

1 BnAGO1A1 BnaA08g03260D 3135 1044 9.40 115.85 22 chrA08:2681072..2686918

2 BnAGO1A2 BnaA05g17460D 3261 1086 9.38 120.33 22 chrA05:12290150..12296889

3 BnAGO1C1 BnaC08g46720D 3159 1052 9.45 116.78 20 chrC08_random:953598..958888

4 BnAGO1C2 BnaC05g25730D 2943 980 9.17 109.15 22 chrC05:21116236..21122145

5 BnAGO2A BnaA09g25290D 3072 1023 9.66 113.91 3 chrA09:18324937..18328648

6 BnAGO2C BnaCnng68320D 2664 887 9.44 100.70 2 chrCnn_random:67905947..67909115

7 BnAGO3A BnaA05g14760D 3033 1010 9.51 112.74 1 chrA05:9228612..9232112

8 BnAGO3C BnaC06g41790D 3108 1035 9.54 114.35 1 chrC06_random:1066401..1069740

9 BnAGO4A1 BnaA04g15560D 2769 922 8.91 103.06 21 chrA04:12884285..12890171

10 BnAGO4A2 BnaA07g13010D 2772 923 8.82 103.36 21 chrA07:11653377..11659092

11 BnAGO4C1 BnaC04g38560D 2769 922 8.87 103.11 21 chrC04:39739228..39745117

12 BnAGO4C2 BnaC04g54830D 2772 923 8.87 103.36 21 chrC04_random:2230442..2236093

13 BnAGO5A BnaA07g13430D 2874 957 9.52 106.71 19 chrA07:11907998..11912994

14 BnAGO5C BnaC04g16450D 2859 952 9.62 106.03 20 chrC04:14487678..14492897

15 BnAGO6A BnaA03g15180D 2604 867 9.03 97.20 21 chrA03:7005357..7010304

16 BnAGO6C BnaC03g18310D 2604 867 8.99 97.37 21 chrC03:9391663..9396398

17 BnAGO7A BnaA07g24280D 2955 984 9.37 112.47 2 chrA07:18160385..18163845

18 BnAGO7C1 BnaC02g19190D 2931 976 9.32 111.58 2 chrC02:15451981..15455314

19 BnAGO7C2 BnaC06g43420D 2700 899 9.38 102.67 5 chrC06_random:2865213..2868659

20 BnAGO8A BnaA02g05290D 2721 906 9.31 101.34 20 chrA02:2403187..2408757

21 BnAGO9A1 BnaA10g14450D 2715 904 9.31 102.04 21 chrA10:11492941..11497567

22 BnAGO9A2 BnaA10g14440D 2748 915 9.38 102.52 20 chrA10:11481378..11486279

23 BnAGO9C1 BnaCnng35060D 2721 906 9.42 102.57 21 chrCnn_random:33265084..33269730

24 BnAGO9C2 BnaC09g36780D 2763 920 9.20 103.80 23 chrC09:40119310..40124830

25 BnAGO9C3 BnaC09g36860D 2649 882 9.23 99.37 19 chrC09:40226286..40231475

26 BnAGO10A BnaA06g36540D 2928 975 9.38 109.27 16 chrA06:23915363..23920283

27 BnAGO10C BnaC07g17330D 2946 981 9.38 109.75 16 chrC07:23533982..23539648

RDRs

1 BnRDR1A BnaA06g09600D 3330 1109 7.50 126.63 2 chrA06:5134289..5137990

2 BnRDR1C1 XP_013669643a 3207 1068 5.93 84.40 3 C1 NC_027767.1

(42513981..42517438)

3 BnRDR1C2 BnaC05g10980D 3282 1093 6.62 124.83 3 chrC05:6358607..6362657

4 BnRDR2A BnaA09g22040D 3390 1129 6.15 128.25 3 chrA09:14659131..14663050

5 BnRDR2C BnaCnng57100D 3378 1125 6.06 127.52 3 chrCnn_random:56892147..56896339

6 BnRDR3A BnaA09g43930D 3003 1000 8.34 113.41 16 chrA09:30278290..30284646

7 BnRDR3C BnaC08g36490D 3000 999 8.05 113.19 16 chrC08:33743646..33750434

(Continued)
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TABLE 1 | Continued

Gene no. Gene name Accession no. CDS length (bp) Predicted protein No. of introns Genomic location

Length

(aa)

pI Mw

(kDa)

8 BnRDR4A BnaA10g12910D 2982 993 8.58 112.64 17 chrA10:10516020..10520784

9 BnRDR5A1 BnaA07g00800D 2928 975 7.13 110.64 19 chrA07:581670..586372

10 BnRDR5A2 XP_013652716a 2853 951 6.32 84.22 16 A7 NC_027763.1 (1493563..1498604,

complement)

11 BnRDR5A3 BnaA07g00770D 2757 918 6.08 103.58 16 chrA07:561541..565534

12 BnRDR5C1 BnaC07g01150D 2934 977 6.10 110.60 17 chrC07:1764972..1769964

13 BnRDR5C2 BnaC07g01170D 2877 958 6.61 108.36 16 chrC07:1805711..1810421

14 BnRDR5C3 BnaC07g01120D 2586 861 5.65 97.84 16 chrC07:1738692..1746427

15 BnRDR6A XP_013655642a 3597 1198 6.93 137.07 1 A8 NC_027764.1 (3130135..3141222,

complement)

16 BnRDR6C XP_013720258a 3597 1198 6.78 137.03 1 Unplaced scaffold NW_013650343.1

(584631..589152)

aThe noted sequences were from the NCBI BioProject: PRJNA293435, while all the others were from the NCBI BioProject: PRJEB5043.

indicated that B. napus genome possessed all copies of DCL,
AGO, and RDR genes from the two progenitor species and
contained three extra copies of RDR genes (Table 1 and Table S1).

Classification of B. napus DCL, AGO, and
RDR Genes Based on Phylogenetic
Analysis
In order to examine the phylogenetic relationship of DCL,
AGO, and RDR families, we constructed unrooted phylogenetic
trees of all BnDCL, BnAGO, and BnRDR protein sequences
along with their A. thaliana, B. rapa, and B. oleracea homologs
(Figure 1). The 8 BnDCLs were obviously divided into four
groups as reported for AtDCLs. Each group comprised two
members with one contributed by each subgenome (A and C;
Figure 1A). Coincidently, B. rapa and B. oleracea contained 4
DCLs with one member for each group (Figure 1A). According
to the phylogenetic relationship and sequence homology with
AtDCLs, the 8 BnDCLs were named as BnDCL1A, BnDCL1C,

BnDCL2A, BnDCL2C, BnDCL3A, BnDCL3C, BnDCL4A, and
BnDCL4C in accordance with their genomic localization (in A
or C). Besides, BnDCLs showed high sequence similarities (from
78.7 to 87.6% for each group) to their Arabidopsis counterparts
(Table S3).

Based on the NJ phylogenetic tree and the protein sequence
homologies with AtAGOs, the BnAGOs family consisted
of 4 AGO1s (BnAGO1A1, BnAGO1A2, BnAGO1C1, and
BnAGO1C2), 2 AGO2s (BnAGO2A and BnAGO2C), 2 AGO3s
(BnAGO3A and BnAGO3C), 4 AGO4s (BnAGO4A1,
BnAGO4A2, BnAGO4C1, and BnAGO4C2), 2 AGO5s
(BnAGO5A and BnAGO5C), 2 AGO6s (BnAGO6A and
BnAGO6C), 3 AGO7s (BnAGO7A, BnAGO7C1, and
BnAGO7C2), 1 AGO8 (BnAGO8A), 5 AGO9s (BnAGO9A1,
BnAGO9A2, BnAGO9C1, BnAGO9C2, and BnAGO9C3) and
2 AGO10s (BnAGO10A and BnAGO10C). The total B. napus
AGO copies in each subgroup were corresponding to that in

the two progenitors B. rapa and B. oleracea except one extra
AGO9 (BnAGO9C3) and one less AGO8 (Figure 1B). Notably,
an uneven number of AGO gene copies from these three Brassica
species was observed. Genomes of B. rapa and B. oleracea
comprised two copies of AGO1, AGO4, and AGO9 genes, which
was identical to the subgenomes A and C of B. napus except
that the subgenome C of B. napus contained an extra copy of
AGO9 (BnAGO9C3). In addition, B. oleracea genome and B.
napus subgenome C possessed two copies of AGO7 genes. Thus,
copy numbers of these AGO genes were higher in these Brassica
species than in A. thaliana. Instead, B. napus subgenome C did
not contained any AGO8 gene. Besides the exceptions herein
described, the number (only one) of the remaining AGOs in
genomes of B. rapa and B. oleracea and subgenomes A and C
of B. napus was identical to A. thaliana. On the other hand, the
distribution of gene members of AGO groups was generally even
in the A and C subgenomes of B. napus except AGO7, AGO8,
and AGO9 (Figure 1B and Table 1). Additionally, sequence
similarity between BnAGOs and Arabidopsis homologs was
generally high, ranging from 60.8 to 92.7%, while the similarity
among sequences of the same group of BnAGOs was 87.9–91.1%
for AGO1, 86.7% for AGO2, 90.0% for AGO3, 96.8–99.6%
for AGO4, 94.5% for AGO5, 98.6% for AGO6, 76.5–91.0%
for AGO7, 72.4–97.3% for AGO9 and 96.1% for AGO10
(Table S3).

Like DCLs and AGOs, RDRs in B. napus were named after
the Arabidopsis homologs which were the phylogenetically
closest in the NJ tree and showed the highest protein
sequence homologies. Consequently, B. napus geneome
comprised 3 RDR1s (BnRDR1A, BnRDR1C1, and BnRDR1C2),
2 RDR2s (BnRDR2A and BnRDR2C), 2 RDR3s (BnRDR3A
and BnRDR3C), 1 RDR4 (RDR4A), 6 RDR5s (BnRDR5A1,
BnRDR5A2, BnRDR5A3, BnRDR5C1, BnRDR5C2, and
BnRDR5C3) and 2 BnRDR6s (BnRDR6A and BnRDR6C;
Figure 1C). It is noteworthy that B. napus genome possessed
6 RDR5 genes, 3 in each subgenomes (A and C), which is
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FIGURE 1 | Phylogenetic trees of B. napus and A. thaliana Dicer-like (A), Argonaute (B), and RNA-dependent RNA polymerse (C) protein sequences.

The trees were created by MEGA 5.0 software using Neighbor-Joining (NJ) methods with bootstrap of 1000. B. napus proteins are indicated with a black filled circle

before the protein names.

more than that in genomes of the progenitors B. rapa (1) and
B. oleracea (2), indicating the further multiplication of RDR5
genes in B. napus genome during evolution. Besides, B. oleracea
genome and B. napus subgenome C carried 2 RDR1 genes
but no any RDR4 gene. Thus, composition of these RDRs in
the three Brassica genomes was distinct from Arabidopsis.
Furthermore, as observed for BnAGO family, members of
RDR1 and RDR4 were unequally distributed in the A and
C subgenomes of B. napus. In addition, protein sequence

similarity between BnRDRs and AtRDRs was generally high,
ranging from 63.1 to 90.4%, while the similarity within the same

group of BnRDRs was 61.5–95.2% for RDR1, 98% for RDR2,
97.6% for RDR3, 70.2–99.3% for RDR5 and 99.4% for RDR6
(Table S3).

Collectively, genome of the allopolyploid species B. napus
possesses almost all copies of DCL, AGO, and RDR genes
from its progenitor species B. rapa and the RDR5 group in B.
napus appears to have undergone further expansion through
duplication during evolution. Furthermore, compared with
Arabidopsis, some AGO and RDR genes such as AGO1, AGO4,

AGO9, and RDR5 have significantly expanded in these Brassica
species.
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Physico-Chemical Properties and Domain
Composition of B. napus DCL, AGO, and
RDR Proteins
Physico-chemical properties and domain composition of B.
napus DCL, AGO, and RDR proteins were generally similar to
their Arabidopsis counterparts, though some differences were
noticed. For DCLs, seven out of eight BnDCL proteins contained
DEAD, Helicase-C, Duf283, PAZ, and RNaseIII domains as
reported for Arabidopsis DCLs. The remaining one (BnDCL3C)
lacked the DEAD domains, which is distinguishable from
AtDCL3 in this regard (Figure 2A). Further, comparison of the
DEAD domain region of all Arabidopsis and three Brassica
species revealed two deletions of 31 and 9 amino acids (aa),
respectively, in BnDCL3C (Figure S1A). The correct sequence of

BnDCL3C awaits further experimental confirmation. The gene
length was highly similar within groups but considerably varied
between groups of BnDCLs. BnDCL1s were the largest (5439
and 5430 bp) followed by BnDCL4s (4929 and 4926 bp) and
BnDCL3s (4572 and 4596 bp), while BnDCL2s were the smallest

(4167 and 4170 bp; Table 1). This group-wise variation in gene

length is also observed in AtDCLs (Table S1).
The domain composition of BnAGOs was identical to that

of AtAGOs. All BnAGOs possessed DUF1785, PAZ, and PIWI

domains. Besides, all BnAGO1 proteins contained an additional

Gly-rich Ago1 domain (Figure 2B). Furthermore, we examined

BnAGOs for presence of the four key active residues (DDH/H)

in the PIWI domain that are responsible for the endonuclease

property of AGO proteins involved in RNAi. The PIWI domain

FIGURE 2 | Domain composition of B. napus and A. thaliana DCL (A), AGO (B), and RDR (C) protein sequences. Domains are indicated as boxes in various

colors. The diagrams were drawn to scale.
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sequence alignment revealed that all 11 members of groups
BnAGO1s (4), BnAGO5s (2), BnAGO7s (3), and BnAGO10s (2)
possessed the four key active residues, suggesting that they might
have endonuclease activity (Figure 3). The remaining BnAGOs
belonging to AGO2, AGO3, AGO4, AGO6, AGO8, and AGO9
groups contained substitutions of the two H residues, which is
similar to their Arabidopsis AGO counterparts. Furthermore,
the length of the BnAGOs CDS varied from 2604 bp for
BnAGO6 to 3261 bp for BnAGO1A2, potentially encoding 867
and 1086 amino acids, respectively (Table 1). All BnAGOs
encode for ∼100 kDa basic proteins with a pI ranging from
8.82 to 9.66. The physico-chemical properties of BnAGOs were

generally similar to AtAGOs and conserved within all AGO
groups.

All the 16 BnRDR proteins carried an RdRP domain
(Figure 2C). Additionally, members of BnRDR1, BnRDR2, and
BnRDR6 groups bore a RBD domain as observed in the same
groups of AtRDRs (Figure 2C). Furthermore, we examined
BnRDRs for presence of the catalytic motif in the RdRP domain.
The sequence alignment demonstrated that all members of
BnRDR1, BnRDR2, and BnRDR6 groups shared a common
DLDGD motif in the catalytic domain, while all members of
BnRDR3 and five out of six BnRDR5 proteins contained DFDGD
motif. The exception was BnRDR5A3, which did not contain

FIGURE 3 | Alignment of PIWI domains of B. napus and A. thaliana AGO proteins. The protein sequences were aligned using MEGA 5.0. The conserved Asp,

Asp and His (DDH) triad residues as well as His (H) corresponding to H798 of Arabidopsis AGO1 are shaded black. Amino acid positions corresponding to each

protein are indicated at the end of each line.
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DFD in the characteristic catalytic motif, which requires further
experimental confirmation (Figure S1B). These data indicated
that BnRDR1, BnRDR2, and BnRDR6 proteins belong to RDRα

class, while the BnRDR3 and BnRDR5 proteins are members
of RDRγ class. This is similar to what has been observed for
AtRDRs. Additionally, the length of BnRDR proteins varied from
861 to 1198 aa (Table 1). Different groups of RDRs exhibited
diverse pI-values; the pI-value of BnRDR3s and BnRDR4 was
higher than 8.0, while that of the majority of the other BnRDRs
was lower than 7.0 (Table 1).

Comparison of the protein pI-value indicated that AGOs
are obviously basic proteins with a pI higher than 8.8, DCLs
are generally acidic proteins with a pI lower than 6.8 except
BnDCL2C, while RDRs may be acidic or basic with a pI ranging
from 5.7 to 8.6 (Table 1).

Exon-Intron Organization of B. napus DCL,
AGO, and RDR Genes
The exon-intron structure of DCL, AGO, and RDR genes was
examined to gain more insights into their possible structural
evolution. Our results for all three gene families showed that
intron number was generally conserved in members of the same
groups while varied significantly in different groups of the same
family. For BnDCL genes, the intron number varied from 17
to 24 and BnDCL3 and BnDCL4 groups contained 3∼7 more
introns than the remaining two groups (Table 1 and Figure
S2A). In the case of BnAGOs, considerable variations in intron
number were observed. BnAGO groups 1, 4, 5, 6, 8, 9, and 10
comprised similar number of introns ranging from 16 to 23,
while BnAGO groups 2, 3, and 7 possessed only 1∼5 introns,
which were dramatically less than other BnAGO groups (Table 1
and Figure S2B). Similar to BnAGOs, remarkable intron number
variation also occurred in BnRDRs. BnRDR1, BnRDR2, and
BnRDR6 groups contained as few as 1∼3 introns, while BnRDR3,
BnRDR4, and BnRDR5 groups carried as many as 16∼19 introns
(Table 1 and Figure S2C). These group-dependent exon-intron
structures were conserved for genes from both B. napus and
Arabidopsis. The observation that exon-intron structure of DCL,
AGO, and RDR genes was highly similar within members of the
same groups but significantly divergent across different groups of
the same family suggests that these gene families especially AGO
and RDR families have undergone frequent gene duplication and
recombination throughout evolution.

Prediction of Cis-Acting Elements in
Promoter of B. napus DCL, AGO, and RDR

Genes
The 1.5 kb sequences upstream of the translation initiation
codon of BnDCL, BnAGO, and BnRDR genes were retrieved and
searched for cis-acting elements using PLACE database. This
revealed the presence of various cis-acting elements related to
phytohormone response, abiotic stress and defense response
in BnDCL, BnAGO, and BnRDR genes (Table S4). All of these
genes contained at least three cis-acting elements directly
related to defense response, including ASF1MOTIFCAMV
(S000024), GT1CONSENSUS (S000198), SEBFCONSSTPR10A

(S000391), WBOXATNPR1 (S000390), and WRKY71OS
(S000447). Interestingly, 21 out of these 51 genes possessed a
6-bp CGCG element (A/C/G) CGCG (C/G/T; Figure 4 and Table
S4), with BnAGO2A, BnAGO5C, BnAGO6A, and BnAGO8A
containing two copies of these cis-elements. It has been revealed
that calmodulin-binding transcription activators (CAMTAs)
contribute to plant defense responses by binding to CGCG
cis-elements of the target gene promoters and thereby regulating
their expression (Yang and Poovaiah, 2002; Du et al., 2009; Nie
et al., 2012). Thus, intriguingly, our result predicts that RNA
silencing might be regulated by CAMTAs.

Expression Analyses Implied That CAMTA3

Might Mediate Regulation of B. napus DCL,
AGO, and RDR Gene Expression in
Response to Pathogen Inoculation
Owing to the high cDNA sequence identity in the same gene
family, design of gene-specific primers for many of B. napus DCL,
AGO, and RDR genes is unfeasible. Therefore, we chose all gene
members of BnAGO4, BnRDR1, and BnDCL1 groups, for which
ideal gene-specific primers could be designed, as representative
to examine the expression pattern of these predicted genes
in B. napus and their response to S. sclerotiorum inoculation.
The analysis demonstrated that these genes were differentially
expressed in leaves under normal growth conditions (Figure 5A
and Figure S3). Six of them including four BnAGO4s, BnRDR1A,
and BnDCL1A, exhibited moderate to high level expression in
normal leaves, while the expression of BnRDR1C1, BnRDR1C2,
and BnDCL1C was only detected when a second round PCR
was conducted using the products of the first round PCR as
templates (Figure 5A and Figure S3). These data demonstrated
the difference in constitutive expression of these nine BnAGO4,
BnRDR1, and BnDCL1 genes in B. napus leaves. Real-time
quantitative PCR (RT-qPCR) was further used to gain insight into
expression patterns of these genes in response to S. sclerotiorum
inoculation at 0, 8, and 16 hpi. Interestingly, all of these
genes, except BnRDR1A, BnRDR1C1, and BnDCL1A, were down-
regulated to various degrees by S. sclerotiorum inoculation.
Notably, 4 AGO4s were all markedly reduced by 2.2∼10.2
folds at 16 hpi (Figure 5B). This result suggested the possible
involvement of these genes in the interactions between B. napus
and S. sclerotiorum.

All these genes with the exception of 2 BnRDR1 (BnRDR1A
and BnRDR1C1), carried CGCG elements in the DNA sequences
upstream of their coding regions (Figure 4) and we conjectured
that the lowered expression of these genes might have resulted
from up-regulation of CAMTA genes in response to S.
sclerotiorum inoculation. To test this hypothesis, we examined
the expression of BnCAMTA3 genes after inoculation with this
pathogen. BnCAMTA3 genes were selected since AtCAMTA3
has been reported to function in regulating plant defense (Du
et al., 2009; Nie et al., 2012; Rahman et al., 2016). Four
BnCAMTA3 genes were identified through BLASTp searches
against B. napus genome database using AtCAMTA3 as query.
RT-qPCR assays demonstrated that expression of two out of four
BnCAMTA3 genes (BnCAMTA3a and BnCAMTA3b) increased
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FIGURE 4 | CGCG cis-acting elements of B. napus DCL, AGO, and RDR genes in their promoter regions. Elements were predicted in 1.5 kb regions

upstream from the first ATG. CGCG box sequences and relative positions to the first ATG are shown. The diagrams were drawn to scale.
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FIGURE 5 | Expression profiles of B. napus AGO4, RDR1, DCL1, and CAMTA3 genes. (A) Semi-quantitative RT-PCR examination of the transcript

accumulation of BnAGO4, BnRDR1, and BnDCL1 genes constitutively in B. napus leaves under normal growth conditions. Round 2 PCRs were conducted by using

the products of the first round PCR as templates. (B,C) Quantitative real-time PCR analyses for expression profiles of BnAGO4, BnRDR1, and BnDCL1 genes (B) and

BnCAMTA3 genes (C) in response to Sclerotinia sclerotiorum inoculation in B. napus leaves. Expression of these genes at 8 and 16 hpi was shown relatively to that at

0 hpi. The experiments were conducted three times, each containing three replicates for all genes. The expression data were statistically analyzed using SPSS

software. Significance of the differences between mean values was determined with Student’s t-test. Error bars represent SD, while asterisks (*) indicate significant

difference at p < 0.05.

strongly by 14.7 and 10.4 folds, respectively, at 8 h after
S. sclerotiorum inoculation (Figure 5C). Given that CAMTA3
negatively regulates plant disease resistance through direct
binding and subsequent repression of target defense-related
genes (Du et al., 2009; Nie et al., 2012), our results indicate
that RNA silencing might be regulated by CAMTAs during B.
napus–S. sclerotiorum interactions.

Arabidopsis dcl, ago, and rdr Mutants
Commonly Exhibited Altered Susceptibility
to S. sclerotiorum
The observation in this study that expression of BnDCL1,
BnAGO4, and BnRDR1 genes altered significantly in response
to S. sclerotiorum inoculation and our previous findings that

Arabidopsis ago1 and ago2 mutant plants exhibit enhanced
susceptibility to S. sclerotiorum (Cao et al., 2016) prompted us

to assess the possible role of DCL, AGO, and RDR-mediated

RNA silencing in plant resistance to this pathogen. A total of

13 A. thaliana dcl, ago, and rdr mutants were tested. They

included three dcl, seven ago, and three rdr mutants, all in

Col-0 background except dcl1-9 and ago4-1 which are derived
from Ler ecotype. Based on the phenotypes after S. sclerotiorum
inoculation, themutants could be divided into three classes. Class
I comprised those exhibiting enhanced susceptibility, Class II
contained mutants displaying enhanced resistance, while Class
III included mutants showing similar disease phenotypes to wild-
type plants (Figure 6). The mutants dcl4-2, ago9-1, rdr1-1, rdr6-
11, and rdr6-15weremore susceptible to S. sclerotiorum challenge
by showing more severe necrosis and larger size of disease lesions
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FIGURE 6 | Susceptibility to S. sclerotiorum in Arabidopsis dcl, ago, and rdr mutants. (A) Disease symptoms of dcl, ago, and rdr mutants and wild type

plants after inoculation with S. sclerotiorum. Photographs were taken at 24 hpi. I, mutants exhibiting enhanced susceptibility; II, mutants displaying enhanced

resistance; and III, mutants showing similar disease phenotypes to wild-type plants. (B) Statistical analysis of disease severity. The inoculation analysis was performed

three times, each in at least 10 plants for all mutants. The lesion size data were statistically analyzed using SPSS software. Significance of the differences between

mean values was determined with Student’s t-test. Error bars indicate SD, while asterisks (*) indicate significant difference at p < 0.05.
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than wild-type plants (Figure 6). By contrast, the mutant dcl1-9
was found to be more resistant since it displayed less necrosis
and smaller size of disease lesions when compared with Ler plants
upon S. sclerotiorum inoculation (Figure 6). However, the dcl2-1,
ago3-1, ago4-1, ago5-1, ago6-1, ago7-1, and ago10-3mutant plants
exhibited similar disease susceptibility as the wild-type plants
with respect to severity of necrosis and size of disease lesions
(Figure 6). These data demonstrate the involvement of DCL,
AGO, and RDR-mediated RNA silencing in plant resistance to
the necrotrophic fungal pathogen S. sclerotiorum.

DISCUSSION

RNA silencing is a versatile molecular mechanism to regulate
diverse biological processes through altering transcript
accumulation of genes essential to these processes. In
this study, we identified three gene families encoding key
components of RNA silencing machinery in B. napus and its
progenitors B. rapa and B. oleracea. We demonstrated the
important role of RNA silencing in plant resistance to the
fungal pathogen S. sclerotiorum and indicated a possible new
molecular mechanism to regulate RNA silencing in response to
this pathogen. Our results provide insights into composition,
function, and mechanism of RNA silencing in plants.

RNA Silencing Machinery in B. napus
DCL, AGO, and RDR are key components of plant RNA silencing
machinery. Our results demonstrate that B. napus possesses
8 BnDCL, 27 BnAGO, and 16 BnRDR genes. This gene copy
numbers are much larger than those in A. thaliana although the
two species belong to the same family (Brassicaceae). However,
considering that B. napus is tetraploid whileA. thaliana is diploid,
it is clear that each haploidy in the two species carries the
same number (4) of DCL genes but different number of AGO
and RDR genes. The haploid B. napus contains more AGO
and RDR genes than A. thaliana. B. napus is an allotetraploid
from crossing between B. oleracea and B. rapa, followed by
chromosome doubling (Chalhoub et al., 2014). Our results
demonstrate that B. napus genome includes almost all copies of
these RNA silencing machinery genes from its progenitor species
B. rapa and B. oleracea. In addition, B. napus genome contains
three extra copies of RDR5 genes, indicating that the RDR5
group in B. napus appears to have undergone further expansion
through duplication during evolution. Moreover, compared with
A. thaliana, some AGO and RDR genes such as AGO1, AGO4,
AGO9, and RDR5 have significantly expanded in these Brassica
species. The B. napus subgenomes A and C bear more RDR5
genes but similar AGO genes compared with genomes of its
progenitor species B. rapa and B. oleracea, suggesting that the
expansion of RDR5 genes is likely to occur after B. napus
formation while that of AGO1, AGO4, and AGO9 may have
occurred before B. napus formation. Additionally, members
of AGO7, AGO8, and AGO9 as well as RDR4 are unevenly
distributed in the A and C subgenomes of B. napus. This
asymmetric distribution may have resulted from homeologous
exchanges, which is also most likely the source of further
expansion of these two families and it is consistent with the

previous report (Chalhoub et al., 2014). Considering that B.
napus genome contains at least two copies of each DCL, AGO,
and RDR genes except AGO8, and that all four members of
BnAGO4 are expressed constitutively and/or in response to
pathogen inoculation (Figure 5) and are thus most probably
functional, it is interesting to understand whether these genes
functions redundantly or differentially.

Variation in composition of RNA machinery, especially
composition of different gene groups (DCL1, DCL2, DCL3, and
DCL4 for DCL; AGO2/3/7, AGO1/5/10, and AGO4/6/8/9 for
AGO as well as RDR1/2/6 and RDR3/4/5 for RDR) seems to
widely exist in plants. For example, the tomato genome contains
four DCL2 but only a single ortholog of the other DCLs (Bai
et al., 2012). Similarly, tomato AGO1/5/10 group consists of two
AGO1 and AGO10 each, AGO2/3/7 group comprises two AGO2,
AGO4/6/8/9 group is constituted of four AGO4s, and a new
AGO member, but lacks AGO8 and AGO9 (Bai et al., 2012).
Another species of the Solanaceae family, N. benthamiana, has
identical number of AGO1/5/10 group genes, a similar number
of AGO4/6/8/9 group genes but different number of AGO2/3/7
group genes when compared with tomato. The N. benthamiana
AGO4/6/8/9 group bears two AGO4s, while the AGO2/3/7
group lacks AGO3 (Nakasugi et al., 2013). In addition, grape
AGO1/5/10 group consists of two AGO10s, while AGO2/3/7
group includes two AGO2s (Zhao et al., 2015). Regarding RDR,
tomato RDR1/2/6 group consists of two RDR6s, while this group
in grape contains two RDR1s. The N. benthamiana genome
apparently does not carry any RDR3/4/5 group genes, while
tomato and grape RDR3/4/5 group both lack RDR4 and RDR5
but contain two and one RDR3, respectively (Bai et al., 2012;
Nakasugi et al., 2013; Zhao et al., 2015).

Function of RNA Silencing in Plant
Resistance to Fungal Pathogens
It is well-known that RNA silencing can protect plants from
viral infection (Ding and Voinnet, 2007; Llave, 2010; Incarbone
and Dunoyer, 2013; Wu et al., 2015). This antiviral immunity
involves production of virus-derived small interfering RNAs
(viRNAs) and results in specific silencing of viruses by viRNA-
guided effector complexes. Apart from defense against viruses,
RNA silencing also plays a role in plant defense against bacterial
pathogens (Katiyar-Agarwal et al., 2006; Navarro et al., 2006;
Voinnet, 2008; Robert-Seilaniantz et al., 2011). Similar to viruses,
bacteria have also developed mechanisms to suppress RNA
silencing in order to infect successfully (Navarro et al., 2008).
More recently, functions of RNA silencing in plant resistance
to fungal pathogens are being revealed. Plant miRNAs are
differentially expressed in response to inoculation with fungal
pathogens, such as Erysiphe graminis (Xin et al., 2010), Fusarium
virguliforme (Radwan et al., 2011), V. dahliae (Yin et al., 2012;
Yang et al., 2013), V. longisporum (Shen et al., 2014), M. oryzae
(Li et al., 2014), and B. cinerea (Jin and Wu, 2015). More
importantly, mutants of key components of the RNA silencing
machinery exhibit altered susceptibility to fungal pathogens
including two species of Verticillium (Ellendorff et al., 2009;
Shen et al., 2014). Moreover, it has been reported that B. cinerea
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produces small RNAs to suppress plant defense by hijacking host
RNA interference pathways (Weiberg et al., 2013). It is interesting
to elucidate the function and mechanism of RNA silencing in
the interactions between the important oil crop B. napus and
the devastating fungal pathogen S. sclerotiorum. Previously, we
have identified the miRNAs involved in this plant-pathogen
interaction, many of which targeting genes involved in plant
defense. Besides, three miRNAs (ath-miR168a_1ss21AC, aly-
miR403a-3p_L+1, and bna-miR403) target AGO1 and AGO2
which are two key components of RNA silencing. We further
found that Arabidopsis ago1-27, ago1-33, and ago2-1 mutant
plants exhibit enhanced susceptibility to S. sclerotiorum (Cao
et al., 2016), thus providing a clue to the important roles of
RNA silencing in the interactions between B. napus and S.
sclerotiorum. In this study, we identified gene families encoding
DCL, AGO, and RDR, three key components of RNA silencing in
B. napus. We found that these genes, represented by all members
of three groups of genes (4 BnAGO4, 3 BnRDR1, and 2 BnDCL1
genes), are differentially expressed in response to S. sclerotiorum
inoculation (Figure 5B). Our results showed that the expression
divergence was present among members belonging to the same
gene group after S. sclerotiorum inoculation (Figure 5B), which
suggested that gene members within the same groups may have
diverse functions in this plant-pathogen interaction. AtAGO4
is one of the critical components in the transcriptional gene-
silencing pathway associated with siRNA that directs DNA
methylation (Zilberman et al., 2004; Qi et al., 2006) and is
required for resistance to P. syringae (Agorio and Vera, 2007).
AtRDR1 is elicited by salicylic acid (SA) treatment and viral
infection (Yu et al., 2003; Diaz-Pendon et al., 2007; Qi et al.,
2009). Together, these results suggest that AGO4 and RDR1
may also contribute to B. napus defense against S. sclerotiorum.
Furthermore, we assessed susceptibility toward S. sclerotiorum
in 13 dcl, ago, and rdr A. thaliana mutants. As many as six dcl,
ago, and rdr mutants exhibit altered susceptibility (Figure 6).
These mutants include dcl4-2, ago9-1, rdr1-1, rdr6-11, rdr6-15,
and dcl1-9. The mutated genes encode different RNA-silencing
components. This is similar to what was found in the study
involving another fungal pathogen V. dahliae (Ellendorff et al.,
2009). Collectively, these results indicate that RNA silencing may
be involved in interactions between plants and fungal pathogens.
However, how these DCLs, AGOs, and RDRs regulate resistance
to S. sclerotiorum is unclear. Recently, it has been reported that
rice AGO18 functions through regulating AGO1 accumulation
by direct binding with the AGO1-targeted miRNA (miR168; Wu
et al., 2015). Whether a similar mechanism exists for AGOs or
even RDRs and DCLs in Arabidopsis and B. napus is worthy of
further study.

Regulation of RNA Silencing Machinery
A remaining challenge for RNA silencing is to dissect the
mechanism through which the RNA silencing pathway itself
can be regulated. Up to now, little of this mechanism has
been uncovered except the evidence that the expression of
components of the RNA silencing pathway is subject to negative
feedback regulation by their own miRNA products. For example,
miR162 targets DCL1, miR168 targets AGO1, and miR403

targets AGO2. However, there is no more information regarding
regulatory mechanisms for the other RNA silencing components.
Considering the importance of RNA silencing pathway, we are
curious to know whether other mechanisms exist that confer
additional layers of regulation on the RNA silencing machinery.
Intriguingly, in present study, we found that substantial number
of B. napus DCL, AGO, and RDR genes (21 out of a total
of 51) possessed CAMTA/SR binding sites [(A/C/G) CGCG
(C/G/T)] in their promoter sequences (Figure 4 and Table
S4). CAMTAs, especially CAMTA3, contribute to plant defense
responses by direct binding and thereby regulating the expression
of the target genes (Yang and Poovaiah, 2002; Du et al., 2009;
Nie et al., 2012). Therefore, we suspect that the expression
of these CGCG-element-containing RNA silencing components
may be regulated by CAMTAs. To confirm this possibility, we
examined the expression of CAMTA genes and these CGCG-
element-containing RNA silencing genes in B. napus in response
to S. sclerotiorum inoculation. The results of this expression
analysis indicate that S. sclerotiorum inoculation strongly induced
the expression of BnCAMTA3 genes while it significantly
suppressed that of many CGCG-element-containing BnAGO,
BnDCL and BnRDR genes (Figure 5). Moreover, another work
in our laboratory has revealed that Atcamta3 mutant plants
exhibit enhanced resistance to S. sclerotiorum (Rahman et al.,
unpublished data). Taken together, our results suggest that
RNA silencing might be regulated by CAMTA3. Nevertheless,
further confirmation of CAMTA binding activity with CGCG-
element-containing RNA silencing genes by other assays such as
EMSA and its effect on expression of these genes will provide
more straightforward evidence to support this intriguing likely
mechanism for regulation of RNA silencing machinery.

It is well-known that the functions of CAMTAs are dependent
on their interaction with Ca2+/CaM (Choi et al., 2005; Du et al.,
2009) and these genes, especiallyCAMTA3, are widely involved in
plant defense (Yang and Poovaiah, 2002; Du et al., 2009; Nie et al.,
2012; Rahman et al., 2016). For instance, knockout ofAtCAMTA3
leads to increased accumulation of salicylic acid and enhanced
host disease resistance to both bacterial (Du et al., 2009) and
fungal pathogens (Nie et al., 2012) and nonhost resistance to
bacterial pathogen (Rahman et al., 2016) but reduced resistance
against insect herbivores (Qiu et al., 2012). Similarly, one rice
CAMTA mutant (oscbt-1) exhibits enhanced resistance to blast
fungal pathogen and leaf blight bacterial pathogen (Koo et al.,
2009). Given that expression of some RNA silencing machinery
may be regulated by CAMATs and both of CAMTA as well as
RNA silencing contribute to plant resistance, it will be intriguing
to explore whether the role of CAMTAs in regulating plant
defense response can be attributed to its regulation of RNA
silencing and thus opening a possibility to link Ca2+ signaling
and RNA silencing together to provide a novel facet of Ca2+

signaling in regulation of plant disease resistance.

CONCLUSIONS

The B. napus genome possessed 8Dicer-like (DCL), 27 Argonaute
and 16 RNA-dependent RNA polymerase (RDR) genes. The B.
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napus genome expanded RDR5 genes compared with that of
its progenitors B. oleracea and B. rapa and all genomes of
three Brassica species expanded AGO1, AGO4, and AGO9 genes
compared with the Arabidopsis genome. B. napus DCL, AGO,
and RDR genes widely (21 out of 51) harbored a CAMTA-binding
site (CGCG box) in their promoter regions. Inoculation with
S. sclerotiorum strongly induced the expression of BnCAMTA3
genes while significantly reduced that of many CGCG-containing
RNA silencing component genes. Our results suggested that
RNA silencing machinery might be targeted by CAMTA3.
Furthermore, mutant analyses demonstrated that six out of 13
dcl, ago, and rdr mutants exhibited altered susceptibility to S.
sclerotiorum. These results indicate the important role of RNA
silencing in plant resistance to this devastating fungal pathogen.
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