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Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating
internodes in developing S. viridis stems grow from an intercalary meristem at the
base, and progress acropetally toward fully expanded cells that store sugar. During
stem development and maturation, water flow is a driver of cell expansion and sugar
delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed
elongating and mature internode transcriptomes to identify putative aquaporin encoding
genes that had particularly high transcript levels during the distinct stages of internode
cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in
internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in
mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2
expression was highly correlated with the expression of five putative sugar transporters
expressed in the S. viridis internode. To explore the function of the proteins encoded by
SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their
permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis
oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1
may function as a water channel in developing stems undergoing cell expansion and
SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute
from mature internodes. Future research will investigate whether changing the function
of these proteins influences stem growth and sugar yield in S. viridis.

Keywords: aquaporin, stem, water transport, sugar accumulation, grasses

INTRODUCTION

The panicoid grasses sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor),
switchgrass (Panicum virgatum), and miscanthus (Miscanthus X giganteum) provide
the majority of soluble sugars and lignocellulosic biomass used for food and biofuel
production worldwide (Somerville et al., 2010; Waclawovsky et al., 2010). A closely
related grass with a smaller genome, Setaria viridis, is used as a model for these crops in
photosynthesis research and for the study of biomass generation and sugar accumulation
(Li and Brutnell, 2011; Bennetzen et al., 2012; Brutnell et al., 2015; Martin et al.,
2016). The mechanisms that regulate cell expansion and photoassimilate delivery in
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the stems of these grasses are of interest because they influence
the yields of soluble sugars and cell wall biomass produced (Byrt
et al., 2011).

Grass stems have repeating units consisting of an internode
positioned between two nodes that grow from intercalary
meristems at the base; sugar, primarily sucrose, accumulates and
is stored in mature cells at the top of the internode (Grof et al.,
2013). Along this developmental gradient there is also a transition
from synthesis and deposition of primary cell walls through to
establishment of thicker secondary cell walls. Sucrose that is
not used for growth and maintenance is primarily accumulated
intracellularly in the vacuoles of storage parenchyma cells that
surround the vasculature (Glasziou and Gayler, 1972; Hoffmann-
Thoma et al., 1996; Rae et al., 2005) or in the apoplasm (Tarpley
et al., 2007). The mature stems of grasses such as sugarcane
can accumulate up to 1M sucrose, with up to 428 mM sucrose
stored in the apoplasm (Hawker, 1985; Welbaum and Meinzer,
1990). In addition to a high capacity for soluble sugar storage,
carbohydrates are also stored in cell walls of stem parenchyma
cells (Botha and Black, 2000; Ermawar et al., 2015; Byrt et al.,
2016a).

Historically, increases in sugar yields in the stems of panicoid
grasses have been achieved by increasing sugar concentration in
stem cells without increasing plant size (McCormick et al., 2009).
Sugarcane and sorghum stem sugar content has been increased by
years of selecting varieties with the highest culm sucrose content,
but these gains have begun to plateau (Grof and Campbell,
2001; Pfeiffer et al., 2010). It may be that we are approaching a
physiological ceiling that limits the potential maximum sucrose
concentration in the stems of these grasses. Increasing the size
of grass stems as a sink may be an effective strategy to increase
stem biomass and the potential for greater soluble sugar yield
as a relationship exists between stem size and capacity to import
and accumulate photoassimilates (sink strength) as soluble sugars
or cell wall carbohydrates. Hence, improved stem sugar yields
have also been achieved in some sorghum hybrids by expanding
stem volume through increased plant height and stem diameter
(Pfeiffer et al., 2010; Slewinski, 2012).

In elongating stems, water and dissolved photoassimilates
are imported from the phloem into the stem by bulk-flow, or
translocation, to drive cell expansion or otherwise be used for
growth, development and storage (Schmalstig and Cosgrove,
1990; Wood et al., 1994). In non-expanding storage sinks, water
delivering sucrose is likely to be effluxed to the apoplasm and then
recycled into the xylem transportation stream to be exported to
other tissues (Lang and Thorpe, 1989; Lang, 1990). In addition
to vacuolar accumulation of sugars delivered for storage, sugars
may also accumulate in the apoplasm with apoplasmic barriers
preventing leakage back into the vasculature (Moore, 1995;
Patrick, 1997).

The flow of water from the phloem into growth and
storage sinks involves the diffusion of water across plant
cell membranes facilitated by aquaporins (Kaldenhoff and
Fischer, 2006; Zhang et al., 2007). Aquaporins are a highly
conserved family of transmembrane channel proteins that enable
plants to rapidly and reversibly alter their membrane water
permeability or permeability to other solutes depending on

the isoform. In maize (Zea mays) and rice (Oryza sativa)
genomes 30–70 aquaporin homologs have been identified,
respectively (Chaumont et al., 2001; Sakurai et al., 2005).
These large numbers of isoforms can be divided into five sub-
families by sequence homology; plasma membrane intrinsic
proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin-like
intrinsic proteins (NIPs), and small basic intrinsic proteins (SIPs;
Johanson and Gustavsson, 2002). In dicotyledonous plants but
not monocotyledonous plants there is also a group referred
to as X intrinsic proteins (XIPs; Danielson and Johanson,
2008).

As aquaporins have important roles in controlling water
potential, they are prospective targets for manipulating stem
biomass and sugar yields (Maurel, 1997). The crucial role of
aquaporins in water delivery to expanding tissues and water
recycling in mature tissues is indicated by their high expression
in these regions (Barrieu et al., 1998; Chaumont et al., 1998; Wei
et al., 2007). Here, we explore the transcriptional regulation of
aquaporins in meristematic, expanding, transitional and mature
S. viridis internodal tissues to identify candidate water channels
involved in cell expansion and water recycling after sugar delivery
in mature internode tissues.

MATERIALS AND METHODS

Phylogenetic Tree
Setaria viridis aquaporins were identified from S. italica (Azad
et al., 2016), Arabidopsis (Johanson et al., 2001), rice (Sakurai
et al., 2005), barley (Hove et al., 2015) and maize (Chaumont
et al., 2001) aquaporins, and predicted S. viridis aquaporins
from transcriptomic data (Martin et al., 2016) (Supplementary
Table S1) using the online HMMER tool phmmer (Finn et al.,
20151). Protein sequences used to generate the phylogenetic
tree were obtained for S. viridis and Z. mays from Phytozome
11.0.5 (S. viridis v1.1, DOE-JGI2; last accessed July 19, 2016)
(Supplementary Table S2). The phylogenetic tree was generated
using the neighbor-joining method in the Geneious Tree Builder
program (Geneious 9.0.2).

Elongating Internode Transcriptome
Analysis and Aquaporin Candidate
Selection
Expression data on identified S. viridis aquaporins was obtained
from a transcriptome generated from S. viridis internode
tissue (Martin et al., 2016). Protein sequences of selected
putative aquaporin candidates expressed in the elongating
S. viridis transcriptome were analyzed by HMMscan (Finn et al.,
20151).

Plant Growth Conditions
Seeds of S. viridis (Accession-10; A10) were grown in 2 L pots,
two plants per pot, in a soil mixture that contained one part

1http://www.ebi.ac.uk/Tools/hmmer/
2http://phytozome.jgi.doe.gov/
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coarse river sand, one part perlite, and one part coir peat. The
temperatures in the glasshouse, located at the University of
Newcastle (Callaghan, NSW, Australia) were 28◦C during the
day (16 h) and 20◦C during the night (8 h). The photoperiod
was artificially extended from 5 to 8 am and from 3 to 9 pm by
illumination with 400 W metal halide lamps suspended ∼40 cm
above the plant canopy. Water levels in pots were maintained
with an automatic irrigation system that delivered water to each
pot for 2 min once a day. Osmocote R© exact slow release fertilizer
(Scotts Australia Pty Ltd, Sydney, NSW, Australia) was applied at
20 g per pot, 2 weeks post-germination. Additional fertilization
was applied using Wuxal R© liquid foliar nutrient and Wuxal R©

calcium foliar nutrient (AgNova Technologies, Box Hill North,
VIC, Australia) alternately each week.

Harvesting Plant Tissues, RNA
Extraction, and cDNA Library Synthesis
Harvesting of plant material from a developing internode
followed Martin et al. (2016). Total RNA was isolated from
plant material ground with mortar and pestle cooled with
liquid nitrogen, using Trizol R© Reagent (Thermo Fisher Scientific,
Scoresby, VIC, Australia) as per manufacturer’s instruction.
Genomic DNA was removed using an Ambion TURBO DNase
Kit (Thermo Fisher Scientific) following the manufacturer’s
instructions. cDNA was synthesized from 230 ng of isolated
RNA from the cell expansion, transitional, and maturing
developmental zones as described in Martin et al. (2016) using
the Superscript III cDNA synthesis kit (Thermo Fisher Scientific)
with an oligo d(T) primer and an extension temperature of 50◦C
as per the manufacturer’s instructions.

Reverse-Transcriptase Quantitative PCR
(RT-qPCR)
Reverse-transcriptase-qPCR was performed using a Rotor-Gene
Q (QIAGEN, Venlo, Netherlands) and GoTaq R© Green Master
Mix 2x (Promega, Madison, WI, USA). A two-step cycling
program was used following the manufacturer’s instructions. The
green channel was used for data acquisition. Gene expression of
the candidate genes was measured as relative to the housekeeper
S. viridis PP2A (SvPP2A; accession no.: Sevir.2G128000). The
PP2A gene was selected as a housekeeper gene because it is
established as a robust reference gene in many plant species
(Czechowski et al., 2005; Klie and Debener, 2011; Bennetzen
et al., 2012) and it was consistently expressed across the
developmental internode gradient in the transcriptome and
cDNA libraries (Martin et al., 2016; Supplementary Figure S1).
The forward (F) and reverse (R) primers used for RT-qPCR
for were: SvPIP2;1-F (5′-CTCTACATCGTGGCGCAGT-
3′) and SvPIP2;1-R (5′–ACGAAGGTGCCGATGATCT-3′),
and SvNIP2;2-F (5′–AGTTCACGGGAGCGATGT- 3′) and
SvNIP2;2-R (5′–CTAACCCGGCCAACTCAC-3′). SvPIP2;1 and
SvNIP2;2 primer sets amplified 161 and 195 base pair fragments
from the CDS, respectively. SvPP2A primer set sequences
were SvPP2A-F (5′–GGCAACAAGAAGCTCACTCC-3′) and
SvPP2A-R (5′-TTGCACATCAATGGAATCGT-3′) and amplified
a 164 base pair fragment from the 3′UTR.

Gene Co-expression Network Analysis
Raw FPKM values of putative aquaporins and sugar transporters
were extracted from the S. viridis elongating internode
transcriptome (Martin et al., 2016). Putative S. viridis sugar
transporters from the Sucrose Transporter (SUT), Sugar Will
Eventually be Exported Transporter (SWEET), and Tonoplast
Monosaccharide Transporter (TMT) families were identified by
homology to rice SUT, SWEET, and TMT genes (Supplementary
Table S3; Supplementary Figures S2–S4). FPKM values were
normalized by Log2 transformation and Pearson’s correlation
coefficients calculated by Metscape (Karnovsky et al., 2012).
A gene network was generated for Pearson’s correlation
coefficients between 0.8 and 1.0 and visualized with the Metscape
app in Cytoscape v3.4.0. Significance of Pearson’s correlation
coefficients were calculated using SPSS (IBM Corp. Released
2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk,
NY, USA) (Supplementary Table S4). The 1.5Kb 5′ promoter
region, directly upstream of the transcriptional start site, of the
two aquaporin candidates and the highly correlated putative
sugar transporter genes were screened for the presence of
cis-acting regulatory elements registered through the PlantCARE
online database (Lescot et al., 20023) and cis-acting elements
of Arabidopsis and rice SUT genes reported by Ibraheem et al.
(2010).

Photometric Swelling Assay
Extracted consensus coding sequences for SvPIP2;1 and
SvNIP2;2, from S. viridis transcriptome data (Martin et al., 2016),
were synthesized commercially by GenScript (Piscataway, NJ,
USA). SvPIP2;1 and SvNIP2;2 cDNA fragments were inserted
into a gateway enabled pGEMHE vector. pGEMHE constructs
were linearized using NheI (New England Biolabs, Ipswich,
MA, USA) and purified using the MinElute PCR Purification
Kit (QIAGEN). Complimentary RNA (cRNA) for SvPIP2;1
and SvNIP2;2 was transcribed using the Ambion mMessage
mMachine Kit (Life Technologies, Carlsbad, CA, USA).

Xenopus laevis oocytes were injected with 46 ng of SvPIP2;1
or SvNIP2;2 cRNA in 46 µL of water, or 46 µL of water
alone as a control. Injected oocytes were incubated for 72 h in
Ca-Ringer’s solution. Prior to undertaking permeability assays
oocytes were transferred into ND96 solution pH 7.4 (96 mM
NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 500 µg.mL−1

Streptomycin, 500 µg.mL−1 Tetracycline; 204 osmol/L) and
allowed to acclimate for 30 min. Oocytes were then individually
transferred into a 1:5 dilution of ND96 solution (42 osmol/L),
pH 7.4, and swelling was measured for 1 min for SvPIP2;1
injected oocytes and 2 min for SvNIP2;2 injected oocytes. Oocytes
were viewed under a dissecting microscope (Nikon SMZ800
light microscope, Japan) at 2× magnification. The changes
in volume were captured with a Vicam color camera (Pacific
Communications, Australia) at 2× magnification and recorded
with IC Capture 2.0 software (The Imagine Source, US) as
AVI format video files. Images were acquired every 2.5 s for
2 min measurements and every 2 s for 1 min measurements.
The osmotic permeability (Pf ) was calculated for water injected

3http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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and cRNA injected oocytes from the initial rate of change in
relative volume (dVrel/dt)I determined from the cross sectional
area images captured assuming the oocytes were spherical:

Pf =
Vi ×

(
dVrel/dt

)
i

Ai × Vw ×1C0
,

Where V i and Ai are the initial volume and area of the oocyte,
respectively, Vw is the partial molar volume of water and 1Co is
the change in external osmolality. The osmolality of each solution
was determined using a Fiske R© 210 Micro-Sample freezing point
osmometer (Fiske, Norwood, MA, USA). pH inhibition of oocyte
osmotic permeability was determined as above where oocytes
where bathed in 1:5 diluted ND96 solution with the addition
of 50 mM Na-Acetate, pH 5.6. Topological prediction models
of SvPIP2;1 and SvNIP2;2 were generated in TMHMM4 (Krogh
et al., 2001) and TMRPres-2D (Spyropoulos et al., 2004) to assess
potential mechanisms of pH gating.

RESULTS

Identification of Putative Setaria viridis
Aquaporins
Previously published S. viridis elongating internode
transcriptome data (Martin et al., 2016), and protein sequences of
aquaporins identified in Arabidopsis, S. italica, barley, maize and
rice were used to identify genes predicted to encode aquaporins
that were highly expressed in stages of cell expansion and
sugar accumulation. The nomenclature assigned to the putative
aquaporins followed their relative homology to previously named
maize aquaporins determined by phylogenetic analysis of protein
sequences (Chaumont et al., 2001; Figure 1). S. viridis proteins
separated as expected into the major aquaporin subfamilies
referred to as PIPs, TIPs, NIPs, and SIPs. Within S. viridis 41
full length aquaporins were identified: 12 PIPs, 14 TIPs, 12
NIPs, and three SIPs. One predicted aquaporin identified in the
genome, transcript Sevir.6G061300.1, has very high similarity
to SvNIP5;3 (Sevir.6G06000.1) but may be a pseudogene as it
has two large deletions in the transcript relative to SvNIP5;3.
Sevir.6G061300.1 only encodes for two out of the typical six
transmembrane domains characteristic of aquaporins, and no
transcripts have been detected in any of the S. viridis RNA-seq
libraries available through the Joint Genome Institute (JGI)
Plant Gene Atlas Project (Grigoriev et al., 2011). Another
truncated NIP-like transcript, Sevir.5G141800.1, was identified.
It is predicted to encode a protein 112 amino acids in length
with only two transmembrane domains. As it is unlikely to
generate an individually functioning aquaporin it has not been
named. However, unlike Sevir.6G061300.1, Sevir.5G141800.1
was included in the phylogenetic tree as it was shown to be highly
expressed in several tissue types in S. viridis RNA-seq libraries
available through the JGI Plant Gene Atlas Project (Grigoriev
et al., 2011) and may be of interest to future studies of Setaria
aquaporin-like genes.

4http://www.cbs.dtu.dk/services/TMHMM/

FIGURE 1 | Phylogenetic tree based on protein sequences of
aquaporins from Setaria viridis and Zea mays. S. viridis aquaporins were
identified in the genome via HMMER search using aquaporins sequences
from Arabidopsis, barley, maize, and rice. Maize aquaporins were included in
the phylogenetic tree for ease of interpretation. The addition of aquaporin
sequences from other grasses did not change the groupings. Tree was
generated by neighbor-joining method using the Geneious Tree Builder
program, Geneious 9.0.2. The scale bar indicates the evolutionary distance,
expressed as changes per amino acid residue. Aquaporins can be grouped
into four subfamilies: PIPs (plasma membrane intrinsic proteins), TIPs
(tonoplast intrinsic proteins), NIPs (nodulin-like intrinsic proteins), and SIPs
(small basic intrinsic proteins). ∗Sevir.5G141800.1 protein sequence is
truncated, 112 amino acids in length. ‡SvNIP5;3 (Sevir.6G06000.1) may have
a related pseudogene Sevir.6G061300.1.

Analysis of Setaria viridis Aquaporin
Transcripts in Stem Regions
We compared the relative transcript levels of putative S. viridis
aquaporin encoding genes in the different developmental regions
of an elongating internode (Figure 2). We observed that SvPIP1;2
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FIGURE 2 | Expression of putative aquaporins across the developmental zones of an elongating S. viridis internode. (A) Schematic of the developmental
regions in an elongating internode of S. viridis as reported by Martin et al. (2016): meristematic zone, residing at the base of the internode, where cell division occurs;
the cell expansion zone where cells undergo turgor driven expansion; transitional zone where cells begin to differentiate and synthesize secondary cell walls; and the
maturation zone whereby expansion, differentiation and secondary cell wall synthesis cease and sugar is accumulated. (B) The expression profiles of putative
S. viridis aquaporins, as identified by phylogeny to Z. mays aquaporins, were mined in the S. viridis elongating internode transcriptome (Martin et al., 2016). RNA-seq
data is presented as mean FPKM ± SEM for four biological replicates from each developmental zone.

transcripts were abundant in all regions; and SvTIP1;1 transcripts
were also abundant, particularly in cell expansion regions.
SvPIP2;1, SvPIP1;1, SvTIP2;2, and SvTIP2;1 transcripts were
detected in all regions with the highest transcript levels in cell
expansion and transitional regions. Transcripts for SvTIP4;4,

SvNIP3;1, and SvPIP1;5 were highest in the meristem relative
to other regions; whereas SvTIP4;2, SvNIP2;2, and SvTIP1;2
transcripts were at their highest in transitional or mature regions.
Low transcript levels were observed for SvSIP1;2, SvNIP1;1,
and SvPIP2;4 in all regions, with maximum transcripts for
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SvNIP1;1 and SvPIP2;4 detected in the transitional region, and
very low transcript levels were detected for SvPIP2;6, SvSIP1;1,
and SvNIP2;1.

Overall the highest aquaporin transcript levels detected across
the internode developmental zones were those of SvPIP1;2
(Figure 2). Previous research has indicated that the related
ZmPIP1;2 interacts with PIP2 subgroup proteins targeting PIP2s
to plasma membrane, and a number of PIP1 aquaporins are not
associated with osmotic water permeability when expressed alone
in oocytes (Fetter et al., 2004; Luu and Maurel, 2005; Zelazny
et al., 2007). Our interest lay in identifying water permeable
aquaporins that might be preferentially involved in delivering
water to the growing stem cells and in sucrose accumulation
in mature stem regions. As candidates SvPIP2;1 and SvNIP2;2
met these criteria we focussed on these two genes. SvPIP2;1 had
the high transcript levels in the region of cell expansion and
transcript levels of SvNIP2;2 were highest in mature stem regions
(Figure 2B). The protein sequences of SvPIP2;1 and SvNIP2;2
were analyzed by the HMMER tool HMMscan which identified
these candidates as belonging to the aquaporin (Major Intrinsic
Protein) protein family.

To confirm our RNA-seq expression profile observations,
we measured the transcript levels of SvPIP2;1 and SvNIP2;2
in the S. viridis internode regions by RT-qPCR. Stem samples
were harvested from S. viridis plants grown under glasshouse
conditions with the light period artificially supplemented by
use of metal halide lamps to replicate as closely as possible
the conditions used by Martin et al. (2016) for the RNA-seq
analysis. We assessed the relative fold change of gene expression
normalized to the cell expansion zone and similar trends were
observed for the RT-qPCR expression data compared to the RNA-
seq transcriptome data (Figure 3). SvPIP2;1 transcript levels were
high in the cell expansion region and decreased toward the
maturation region and SvNIP2;2 transcript levels were highest in
mature stem tissues.

We are interested in the coordination of water and sugar
transport related processes in developing grass stems. As a tool
to investigate this, we further analyzed the stem transcriptome
data to test whether any aquaporin and sugar transport related
genes were co-expressed. Putative S. viridis sugar transporters
were identified from the internode transcriptome (Martin et al.,
2016) by homology to the rice sugar transporter families:
SUTs, SWEETs, and TMTs (Supplementary Figures S2–S4).
A co-expression gene network of the aquaporins and sugar
transporters expressed in the S. viridis stem was generated
in Cytoscape v3.4.0 using Pearson’s correlation coefficients
calculated by MetScape (Karnovsky et al., 2012) (Figure 4). This
analysis revealed that for a number of aquaporins and sugar
transport related genes there was a high correlation in expression:
SvPIP2;1 expression correlated with the expression of SvPIP2;3,
SvTIP2;1, and SvNIP1;1 (0.8–0.9); and the correlation coefficients
for co-expression of SvPIP2;1 with SvPIP2;5, SvTIP4;1, SvTIP1;2,
and SWEET1a were in the range of 0.8–0.9. Most notable was
the high correlation (0.95–1.0) of expression of SvNIP2;2 with
sugar transport related genes SvSUT5, SvSUT1, SvSWEET4a and
with SvTIP4;2 and SvPIP2;6. The correlation between expression
of SvNIP2;2 and SvSWEET13b and SvSWEET16 was also high

(0.9–0.95). The cis-acting regulatory elements of the promoter
regions of the aquaporin candidates SvNIP2;2 and SvPIP2;1,
and the putative sugar transporter genes SvSUT1, SvSUT5, and
SvSWEET4a were analyzed (Supplementary Figure S5). There
was no obvious relationship between the correlation of expression
of SvNIP2;2 and SvSUT1, SvSUT5 and SvSWEET4a and their
cis-acting regulatory elements.

Characterisation of Setaria viridis PIP2;1
and NIP2;2 in Xenopus laevis Oocytes
To explore whether the proteins encoded by SvPIP2;1 and
SvNIP2;2 function as water channels they were expressed in
the heterologous X. laevis oocytes system. Water with or
without 46 ng of SvPIP2;1 and SvNIP2;2 cRNA was injected
into oocytes and the swelling of these oocytes in response to
bathing in a hypo-osmotic solution (pH 7.4) was measured
(Figure 5A). The osmotic permeability (Pf ) of cRNA injected
oocytes was calculated and compared to the osmotic permeability
of water injected oocytes. Water injected oocytes had a Pf
of 0.60 ± 0.08 × 10−2 mm s−1. Relative to water injected
control oocytes SvPIP2;1 and SvNIP2;2 cRNA injected oocytes
had significantly higher Pf of 14.13 ± 1.66 × 10−2 mm s−1 and
3.22± 0.28× 10−2 mm s−1, respectively (p < 0.05).

The effect of lowering oocyte cytosolic pH was determined
by bathing oocytes in an external hypo-osmotic solution at
pH 5.6 with the addition of Na-Acetate (Figure 5B). Reduced
osmotic permeability of the cRNA injected oocyte membrane was
observed in response to the low pH treatment. A reduction in Pf
was observed for SvPIP2;1 and SvNIP2;2 cRNA injected oocytes
bathed in an external hypo-osmotic solution at pH 5.6 relative to
the pH 7.4 solution indicating that SvPIP2;1 and SvNIP2;2 have
pH gating mechanisms (Figure 5B). Water injected oocytes in the
pH 5.6 Na-Acetate solution had Pf of 0.84 ± 0.13 × 10−2 mm
s−1. SvNIP2;2 and SvPIP2;1 cRNA injected oocytes in the pH 5.6
solution had significantly lower Pf of 2.46± 0.32× 10−2 mm s−1

and 0.97± 0.13× 10−2 mm s−1, respectively, compared to those
in pH 7.4 solution (p < 0.05). SvPIP2;1 and SvNIP2;2 associated
osmotic permeability and pH gating observations indicate that
these proteins can function as water channels. The mechanism
of pH gating for other plant aquaporins is the protonation of a
Histidine residue in the Loop D structure; topological modeling
of SvPIP2;1 and SvNIP2;2 predicted that the Loop D of SvPIP2;1
contains a Histidine residue while SvNIP2;2 Loop D does not
contain a His residue (Supplementary Figure S6).

DISCUSSION

Roles of Aquaporins in Grass Stem
Development
On the basis of amino acid sequence comparison with known
aquaporins in Arabidopsis, rice and maize, the genomes of
sugarcane, sorghum and S. italica include 42, 41, and 42 predicted
aquaporin encoding genes, respectively (da Silva et al., 2013;
Reddy et al., 2015; Azad et al., 2016). In S. viridis 41 aquaporin
encoding genes were identified that group into four clades
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FIGURE 3 | Comparison of relative fold changes between RNA-seq and RT-qPCR of SvPIP2;1 and SvNIP2;2 in an elongating internode of S. viridis. (A)
SvPIP2;1. (B) SvNIP2;2. Data is mean relative fold change in expression ± SEM. Data for RNA-seq and RT-qPCR was normalized relative to the cell expansion zone
expression level.

corresponding to NIPs, TIPs, SIPs, and PIPs (Figure 1). We
note that Azad et al. (2016) named the Setaria aquaporins in an
order consecutive with where they are found in the genome. For
ease of comparing related aquaporins in C4 grasses of interest,
we named the Setaria aquaporins based on their homology to
previously named maize aquaporins (Figure 1) (Chaumont et al.,
2001), of course high homology and the same name does not
infer the same function. In the S. viridis elongating internode
transcriptome, we detected transcripts for 19 putative aquaporin
encoding genes, including 5 NIPs, 6 TIPs, 2 SIPs, and 6 PIPs
(Figures 2 and 3; Martin et al., 2016). In mature S. viridis
internode tissues, the transcript levels of TIPs and NIPs was
generally low with the exception of SvNIP2;2, SvTIP4;2, and
SvTIP1;2. In a sorghum stem transcriptome report investigating
SWEET gene involvement in sucrose accumulation, we note
that transcripts for all 41 sorghum aquaporins were detected in
pith and rind tissues in 60-day-old plants (Reddy et al., 2015;
Mizuno et al., 2016). Of those 41 aquaporins the expression of
16, primarily NIPs and TIPs, was relatively low. However, PIP1;2,
PIP2;1, and NIP2;2 homologs were all highly expressed in pith
and rind of sorghum plants after heading, which is consistent
with our findings for the S. viridis homologs of these genes
(Figure 2; Mizuno et al., 2016). Comparisons with other gene
expression studies for C4 grass stem tissues were not possible
as in most studies the internode tissue has not been separated
into different developmental zones or the study has not reported
aquaporin expression (Carson and Botha, 2000, 2002; Casu et al.,
2007).

Relationships between Sink Strength,
Sink Size, Water Flow, and the Function
of Aquaporins
The molecular and physiological mechanisms that determine
stem cell number and cell size in turn determine the capacity
of the stem as a sink (Ho, 1988; Herbers and Sonnewald, 1998).

Examples have been reported in the literature where stem volume
and sucrose concentration has been increased, in sugarcane
and sorghum, by increasing cell size (Slewinski, 2012; Patrick
et al., 2013). Larger cell size may improve sink strength by
increasing membrane surface area available to sucrose transport
(increasing import capacity), increasing single cell capacity to
accumulate greater concentrations of sucrose in parenchyma
cell vacuoles due to increased individual cell volume (increasing
storage capacity), and increasing lignocellulosic biomass.

Cell expansion and growth are highly sensitive to water
potential. This is because expansion requires a continuous
influx of water into the cell to maintain turgor pressure (Hsiao
and Acevedo, 1974; Cosgrove, 1986, 2005). The diffusion of
water across a plant cell membrane is facilitated by aquaporins
(Kaldenhoff and Fischer, 2006). Aquaporins function throughout
all developmental stages, but several PIP aquaporins have been
found to be particularly highly expressed in regions of cell
expansion (Chaumont et al., 1998; Maurel et al., 2008; Besse et al.,
2011). Here, we report that in the S. viridis internode, SvPIP2;1
was highly expressed in regions undergoing cell expansion
(Figure 2). Positive correlations have been reported for the
relationship between PIP mRNA and protein expression profiles
of PIP isoforms in the expanding regions of embryos, roots,
hypocotyls, leaves, and reproductive organs indicating that gene
expression is a key mechanisms to regulate PIP function (Maurel
et al., 2002; Hachez et al., 2008; Liu et al., 2008). Therefore,
high expression of SvPIP2;1 in the expanding zone of S. viridis
internodes indicates that this gene may be involved in the process
of water influx in this tissue to maintain turgor pressure for
growth.

The roles of a number of PIP proteins in hydraulic
conductivity in plant roots and leaves have been reported but
PIP function in stems is largely unexplored. The regulation
of the hydraulic properties of expanding root tissues by PIP
expression was analyzed by Péret et al. (2012) and they reported
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FIGURE 4 | Co-expression network of putative S. viridis aquaporin and sugar transporter genes identified in an elongating internode. The
co-expressed gene network was generated from the stem specific aquaporins (Figure 2) and sugar transporters identified in the S. viridis elongating internode
transcriptome reported by Martin et al. (2016). Raw FPKM values were Log2 transformed and Pearson’s correlation coefficients (0.8–1.0) were calculated in the
MetScape app in Cytoscape v3.4.0. Sugar transporters in the S. viridis elongating internode were identified by homology to rice sugar transporter genes
(Supplementary Figures S2–S4). Sugar transport related genes are color filled with blue and aquaporin genes with orange. SvNIP2;2 and SvPIP2;1 are in bold font.

that auxin mediated reduction of Arabidopsis thaliana (At)
PIP gene expression resulted in delayed lateral root emergence.
Previously AtPIP2;2 anti-sense mutants were reported to have
lower (25–30%) hydraulic conductivity of root cortex cells than
control plants (Javot et al., 2003). PIP2 family aquaporins,
involved in cellular water transport in roots have also been
linked to water movement in leaves, seeds, and reproductive
organs (Schuurmans et al., 2003; Bots et al., 2005). The roles of
PIP proteins in maintenance of hydraulic conductivity and cell
expansion in stems are likely to be equally as important as the
roles reported for PIPs in the expanding tissues of roots and
leaves. One study in rice reported OsPIP1;1 and OsPIP2;1 as
being highly expressed in the zone of cell expansion in rapidly
growing internodes (Malz and Sauter, 1999). Expression analysis
of sugarcane genes associated with sucrose content identified
that some unnamed PIP isoforms were highly expressed in

immature internodes, and in high sugar yield cultivars (Papini-
Terzi et al., 2009). Proteins from the PIP2 subfamily in particular
in maize, spinach and Arabidopsis have been shown to be highly
permeable to water (Johansson et al., 1998; Chaumont et al.,
2000; Kaldenhoff and Fischer, 2006). Here, we demonstrate,
by expression of SvPIP2;1 in Xenopus oocytes and analysis of
water permeability, that this protein functions as a water channel
(Figure 5A).

Aquaporin Function and Sugar
Accumulation in Mature Grass Stems
The accumulation of sucrose to high concentrations in panicoid
stems rapidly increases with the cessation of cell expansion,
which is also associated with the deposition of secondary cell
walls (Hoffmann-Thoma et al., 1996). In the mature regions of
the stem internodes, imported sucrose is no longer required for
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FIGURE 5 | Osmotic permeability (Pf) of Xenopus laevis oocytes injected with SvNIP2;2 and SvPIP2;1 cRNA. (A) Osmotic permeability (Pf) of water (H2O)
injected and SvNIP2;2 and SvPIP2;1 cRNA (46 ng) injected oocytes. Oocytes were transferred into a hypo-osmotic solution, pH 7.4, and Pf was calculated by video
monitoring of the rate of oocyte swelling. (B) Effect of lowering oocyte cytosolic pH on osmotic permeability (Pf) of H2O and SvNIP2;2 and SvPIP2;1 cRNA injected
oocytes by bathing in hypo-osmotic solution supplemented with 50 mM Na-acetate, pH 5.6, n = 12–14; a = non-significant; b = p < 0.05; c = p < 0.005.

growth, development, or as a necessary precursor to structural
elements and it is stored in the vacuoles of ground parenchyma
cells or the apoplasm (Rae et al., 2009). Phloem unloading
and the delivery of sucrose to these storage cells may occur
via an apoplasmic pathway as in sorghum or a symplasmic
pathway as in sugarcane (Welbaum and Meinzer, 1990; Walsh
et al., 2005). The degree of suberisation and/or lignification of
cell walls surrounding the phloem may influence stem sucrose
storage traits by restricting apoplasmic pathways of sucrose
transport. In potato tubers and Arabidopsis ovules a switch
between apoplasmic and symplasmic pathways of delivering
sucrose to storage sites has been reported (Viola et al., 2001;
Werner et al., 2011). Similarly, a switch from symplasmic to
apoplasmic transport pathways has been proposed for sorghum
as internodes approach maturity (Tarpley et al., 2007; Milne
et al., 2015). Both apoplasmic and symplasmic mechanisms
of phloem unloading require the maintenance of low sugar
concentration in the cytoplasm of parenchymal storage cells.
Control of hydrostatic pressure is facilitated by the sequestration
of sucrose into the vacuole by tonoplast localized SUTs or into
the apoplasm by plasma membrane localized SUTs (Slewinski,
2011). Members of the SUT and TMT families have been shown
to function on the tonoplast to facilitate sucrose accumulation
in the vacuole (Reinders et al., 2008; Wingenter et al., 2010;
Bihmidine et al., 2016). In mature stem tissue plasma membrane
localized SWEETs, SUTs, and possibly some NIPs may have a role
in transporting sugar into the apoplasm (Milne et al., 2013; Chen,
2014).

The cell maturation zone is characterized by cells that
have ceased expansion and differentiation and have realized
their sugar accumulation capacity (Rohwer and Botha, 2001;
McCormick et al., 2009). In mature sink tissues, the movement
of water and dissolved photoassimilates from the phloem
to storage parenchyma cells may be driven by differences
in solute concentration and hydrostatic pressure (Turgeon,
2010; De Schepper et al., 2013). However, the movement
of water and sucrose by diffusion or bulk-flow requires the

continued maintenance of low cytosolic sucrose concentrations
by accumulation of sucrose into the vacuole or efflux into the
apoplasm for storage (Grof et al., 2013). Throughout internode
development, the internal cell pressure of storage parenchyma
cells in sugarcane remains relatively constant despite increasing
solute concentrations toward maturation (Moore and Cosgrove,
1991). As mature cells tend to have heavily lignified cell walls
that limit the ability of the protoplast to expand in response to
water flux the equilibration of storage parenchyma cell turgor
is likely to be achieved by the partitioning of sucrose into the
vacuole and apoplasm, and efflux of water into the apoplasm
(Moore and Cosgrove, 1991; Vogel, 2008; Keegstra, 2010; Moore
and Botha, 2013). Phloem water effluxed into the apoplasm may
then be recycled back to the vascular bundles (Welbaum et al.,
1992).

Members of the NIPs are candidates for water and neutral
solute permeation, and some NIPs could have a role in water and
solute efflux to the apoplasm in mature stem cells (Takano et al.,
2006; Kamiya et al., 2009; Li et al., 2009; Hanaoka et al., 2014).
The NIP subfamily is divided into the subgroups NIP I, NIP II,
and NIP III based on the composition of the ar/R selectivity filter
(Liu and Zhu, 2010). NIP III subgroup homologs have reported
permeability to water, urea, boric acid, and silicic acid (Bienert
et al., 2008; Ma et al., 2008; Ma and Yamaji, 2008; Li et al., 2009). In
grasses NIP2;2 homologs, from the NIP III subgroup, have been
shown to localize to the plasma membrane (Ma et al., 2006).

In the S. viridis internode, SvNIP2;2 had relatively high
transcript levels in mature stem tissue where sugar accumulates,
and it can function as a water channel, although with a
relatively low water permeability compared to SvPIP2;1
(Figures 2 and 5A). Our analysis of gene co-expression
in stem tissues revealed high correlation between the
expression of SvNIP2;2 and five putative S. viridis sugar
transporter genes (Figure 4). Co-expression can indicate that
genes are controlled by the same transcriptional regulatory
program, may be functionally related, or be members of
the same pathway or protein complex (Eisen et al., 1998;
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Yonekura-Sakakibara and Saito, 2013). The strong correlation
between expression of SvNIP2;2 and key putative sugar
transport related genes such as SvSUT5, SvSUT1, SvSWEET4a,
SvSWEET13b, and SvSWEET16 indicates that they may be
involved in a related biological process such as stem sugar
accumulation. It is likely that one or more of the SWEETs have
roles in transporting sugars out of the stem parenchyma cells
into the apoplasm. SvNIP2;2 may be permeable to neutral solutes
as well as water and the role of this protein in the mature
stem could be in effluxing a solute to adjust osmotic pressure
allowing for greater sugar storage capacity. The rice and soybean
(Glycine max L.) NIP2;2 proteins are permeable to silicic acid and
silicon, respectively (Ma et al., 2006; Zhao et al., 2010; Deshmukh
et al., 2013). The deposition of silicic acid into the apoplasm,
where it associates with the cell wall matrix as a polymer of
hydrated amorphous silica (Epstein, 1994; Ma et al., 2004; Coskun
et al., 2016), strengthens the culm to reduce lodging events, and
increases plant resistance to pathogens and abiotic stress factors
(Mitani, 2005).

SvNIP2;2 water permeability was gated by pH (Figure 5B).
Gating of water channel activity has been reported for PIPs,
including SvPIP2;1 (Figure 5B), and for the TIP2;1 isoform found
in grapevine (Törnroth-Horsefield et al., 2006; Leitao et al., 2012;
Frick et al., 2013). The mechanism of pH gating for these AQPs is
the protonation of a Histidine residue located on the cytoplasmic
Loop D where site-directed mutagenesis studies of the Loop D
His residue results in a loss of pH dependent water permeability
(Tournaire-Roux et al., 2002; Leitao et al., 2012; Frick et al.,
2013). However, although SvNIP2;2 water permeability was pH
dependent the predicted Loop D structure does not contain a
His residue (Supplementary Figure S5), hence for SvNIP2;2 the
mechanism for pH gating is not clear.

CONCLUSION

Our observations of high transcript levels of SvPIP2;1 in
expanding S. viridis stem regions and high transcript levels of
SvNIP2;2 in mature stems inspired us to test the function of
the proteins encoded by these genes. We found that SvPIP2;1
and SvNIP2;2 can function as pH gated water channels. We
hypothesize that in stem tissues SvPIP2;1 is involved in cell
growth and that SvNIP2;2 may facilitate water movement and
potentially the flow of other solutes into the apoplasm to sustain
solute transportation by bulk-flow, and possibly ‘recycle’ water
used for solute delivery back to the xylem. It is expected

that SvPIP2;1 could have additional roles, as other PIP water
channels have been shown to also be permeable to CO2, hydrogen
peroxide, urea, sodium and arsenic (Siefritz et al., 2001; Uehlein
et al., 2003; Mosa et al., 2012; Bienert and Chaumont, 2014; Byrt
et al., 2016b). SvNIP2;2 could have roles such as transporting
neutral solutes to the apoplasm, as previous studies report silicic
acid, urea, and boric acid permeability for other NIPS (Bienert
et al., 2008; Ma et al., 2008; Ma and Yamaji, 2008; Li et al., 2009;
Deshmukh et al., 2013). Transporting solutes other than sucrose
into the apoplasm in mature stem tissues may be an important
part of the processes that supports high sucrose accumulation
capacity in grass stem parenchyma cells. The next steps in
establishing the respective functions of SvPIP2;1 and SvNIP2;2
in stem growth and sugar accumulation in S. viridis will require
testing of the permeability of these proteins to a range of other
solutes and modification of their function in planta.
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