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Lycoris aurea, a medicinal species of the Amaryllidaceae family, is used in the practice

of traditional Chinese medicine (TCM) because of its broad pharmacological activities

of Amaryllidaceae alkaloids. Despite the officinal and economic importance of Lycoris

species, the secondary mechanism for this species is relatively deficient. In this study, we

attempted to characterize the transcriptome profiling of L. aurea seedlings with themethyl

jasmonate (MeJA) treatment to uncover the molecular mechanisms regulating plant

secondary metabolite pathway. By using short reads sequencing technology (Illumina),

two sequencing cDNA libraries prepared from control (Con) and 100 µM MeJA-treated

(MJ100) samples were sequenced. A total of 26,809,842 and 25,874,478 clean reads in

the Con and MJ100 libraries, respectively, were obtained and assembled into 59,643

unigenes. Among them, 41,585 (69.72%) unigenes were annotated by basic local

alignment search tool similarity searches against public sequence databases. These

included 55 Gene Ontology (GO) terms, 128 Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways, and 25 Clusters of Orthologous Groups (COG) families. Additionally,

4,175 differentially expressed genes (DEGs; false discovery rate ≤ 0.001 and |log2 Ratio|

≥ 1) with 2,291 up-regulated and 1,884 down-regulated, were found to be affected

significantly under MeJA treatment. Subsequently, the DEGs encoding key enzymes

involving in the secondary metabolite biosynthetic pathways, transcription factors, and

transporter proteins were also analyzed and summarized. Meanwhile, we confirmed the

altered expression levels of the unigenes that encode transporters and transcription

factors using quantitative real-time PCR (qRT-PCR). With this transcriptome sequencing,

future genetic and genomics studies related to the molecular mechanisms associated

with the chemical composition of L. aurea may be improved. Additionally, the genes

involved in the enrichment of secondary metabolite biosynthesis-related pathways could

enhance the potential applications of L. aurea.
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INTRODUCTION

Plants produce the crucial chemicals for growth and development
by their own, including the primary and secondary metabolites.
The primary metabolites include carbohydrates, acids, amino
acids, fat and so on. The secondary metabolites, also named
as natural products or phytochemicals, are specific to some
taxonomic groups, playing pivotal roles in interactions between
the plant and environment, helping plants to defense against
pathogens or herbivores (Dixon, 2001; Kennedy and Wightman,
2011; Kliebenstein and Osbourn, 2012). As the sources of drugs,
insecticides, and flavor, most of the plant secondary metabolites
are very important for human’s daily life (Goossens et al., 2003;
Hussain et al., 2012; Yang et al., 2012).

Lycoris aurea, belonging to Amaryllidaceae family, is a
medicinally and ornamentally important species. It is rich of
the secondary metabolites such as Amaryllidaceae-type alkaloids,
and is widely used for traditional Chinese medicine (TCM). The
Amaryllidaceae-type alkaloids which are isolated from Lycoris
genus have been reported to exhibit immunostimulatory, anti-
malarial, tumor, and viral activities (Jin, 2009). For example,
as one of the typical Amaryllidaceae alkaloids, galanthamine
is a kind of reversible inhibitor of cholinesterase to increase
acetylcholine sensitivity, and it has also been clinically used in
the treatment of Alzheimer’s disease (Harvey, 1995; Bores et al.,
1996). Despite of the officinal, economic and cultural importance
of Lycoris species, the secondary mechanism for this species are
relatively limited.

The experimental approach based on sequencing the
functional genomics was reported to facilitate gene discovery
in plant secondary metabolism (Dixon, 2001; Goossens et al.,
2003). Besides, RNA-sequencing (RNA-Seq) technology was used
to obtain full-scale transcriptomic information from different
plant species such as tea plant, Polygala tenuifolia, Chlorophytum
borivilianum, and Atractylodes lancea, and provide a better
insight into transcriptional and post-transcriptional regulation
of the essential genes in the secondary metabolite biosynthetic
pathways (Kalra et al., 2013; Li et al., 2015; Devi et al., 2016).
Regarding to Amaryllidaceae-type alkaloids biosynthesis
pathway, Kilgore et al. (2014) defined a 4′-O-methyltransferase
which is involved in the biosynthesis of galanthamine by
sequencing transcriptome of Narcissus sp. aff. Pseudonarcissus.
Previously, the de novo transcriptome was sequenced to produce
the EST (comprehensive expressed sequence tag) dataset for
Lycoris aurea, which provides one perspective of the regulatory
and synthesized molecular mechanisms of Amaryllidaceae-
type alkaloids (Wang et al., 2013). On the other hand, the
inspection of the comparative transcriptome files between
two databases provides another method to investigate the

Abbreviations: DEG, differentially expressed gene; FDR, false discovery rate;

RNA-Seq, high throughput sequencing of cDNA libraries; cDNA, complementary

DNA synthesized from RNA; qRT-PCR, quantitative real-time polymerase chain

reaction; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes;

Nr, non-redundant database; COG, cluster of orthologous groups databases;

CYP1, cyclophilin 1. NCBI, National Center for Biotechnology Information;

MS, Murashige and Skoog; FPKM, Fragments per kilobase of exon per million

fragments mapped reads; ABC, ATP-Binding Cassette.

secondary metabolites biosynthesis, or/and find the objective
genes involved in Salvia miltiorrhiza, Catharanthus roseus, sweet
cherry, Atractylodes lancea, and so on (Guo et al., 2013; Yu and
Luca, 2013; Wei et al., 2015; Huang et al., 2016).

A great diversity in the types of microbial, physical, or
chemical factors, known as elicitors, could influence the levels of
secondary metabolites in plants (Zhao et al., 2005; Vasconsuelo
and Boland, 2007; Jimenez-Garcia et al., 2013; Verma and
Shukla, 2015). For example, the elicitors such as nutrient supply,
temperature, metal ions, light conditions and atmospheric CO2

concentrations affect the production of secondary metabolites
in plants (Nascimento and Fett-Neto, 2010; Gandhi et al.,
2015). The elicitors derived from bacteria, fungi, viral pathogens
and even plants also contribute to the variability in plant
secondary metabolism (Berenbaum, 1995; Verma and Shukla,
2015). Previously, we showed that exogenous methyl jasmonate
(MeJA) application accelerated the Amaryllidaceae alkaloids
accumulation in Lycoris chinensis seedlings (Mu et al., 2009). In
this study, by using elicitorMeJA treatment, the global expression
patterns of genes involved in metabolism, particularly secondary
metabolism, transcription factors, and transporter proteins were
identified. Therefore, this transcriptome sequencing may help
improve future genetics and genomics studies on molecular
mechanisms associated with the secondary metabolites of
L. aurea.

MATERIALS AND METHODS

Plant Growth and Treatment
L. aurea seeds were collected from Institute of Botany, Jiangsu
Province and Chinese Academy of Sciences, Nanjing, China.
The seeds were surface sterilized with 75% alcohol (v/v), and
germinated on half-strengthMurashige and Skoog (MS) medium
(pH 5.8) in the dark at room temperature for 10 days. Afterwards,
the seedlings were transferred into plastic pots containing a
mixture of soil and vermiculite (3:1, v/v) and cultured in a growth
chamber under 14 h light (25◦C)/10 h dark (22◦C). After 12
months growth, the seedlings were treated with 100 µmol L−1

methyl jasmonate (MJ100) for 6 h. MeJA was dissolved with
1% DMSO (v/v) to prepare the stock solution. Seedlings grown
in MeJA-free solution (1% DMSO) were used as control (Con).
The seedlings were harvested and immediately frozen in liquid
nitrogen and stored at−80◦C.

RNA Isolation, cDNA Library Construction
and Illumina Sequencing
Total RNA of the samples were extracted using RNAiso
Plus reagent (Takara Bio, Dalian, China) following the
manufacturer’s instruction. RNA samples were examined
with a spectrophotometer (Thermo Fisher Scientific, Inc.
Waltham, MA, USA) and electrophoresed on a 1% agarose gel.
The construction of the cDNA libraries and the RNA-Seq assay
were performed by the OE Biotech Company (Shanghai, China).

Poly (A) mRNA was enriched referring to the previous
method (Yu et al., 2016) by using NEBNext R© Poly(A) mRNA
Magnetic Isolation Module (New England Biolabs, Ipswich, MA,
USA), and fragmented to short pieces. These short fragments
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were as applied as the templates for cDNA. The cDNAs were
then subjected to end-repair using T4 DNA polymerase and
phosphorylation using Klenow DNA polymerase. Then, a base
“A” was added to the 3′ ends of the repaired cDNA fragments.
All of the short fragments were linked to sequencing adapter.
The resulting fragments were selected as the PCR templates after
electrophoresis. Finally, the four libraries were sequenced using
Illumina HiSeqTM 2,000.

Transcriptome Assembly and Functional
Annotation
The raw data of the RNA sequencing were purified by trimming
adapters, removing reads containing poly-N, and rejecting the
low-quality data (quality value ≤ 10 or unknown nucleotides
larger than 5%) to get the clean reads. Meanwhile, the proportion
of nucleotides with quality values greater than 20 (Q20) and
GC content of the clean data were calculated. Then, all of the
clean reads were assembled by using Trinity program (Grabherr
et al., 2011). Firstly, for each library, the certain short reads
with overlap regions were assembled into longer contiguous
sequences (contigs). Then, based on the paired-end information,
the distance of different contigs was recognized by mapping the
clean reads, to obtain the sequence of the transcripts. Finally,
performing the sequence of potential transcript to TGI Clustering
tool, the unigenes were obtained (Pertea et al., 2003). For
gene functional annotation, all of the assembled unigenes were
aligned to the public databases, including National Center for
Biotechnology Information (NCBI) non-redundant protein (Nr)
and nucleotide (Nt) database, the Swiss-Prot protein database,
GeneOntology (GO, http://wego.genomics.org.cn/cgi-bin/wego/
index.pl) database, Clusters of Orthologous Groups (COGs)
database, and the Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.jp/kegg/kegg2.html) database, with
a cut-off of E ≤ 10−5.

Differentially Expressed Genes (DEGs)
Analysis
The expression level of unigene was calculated following
fragments per kilobase of exon per million fragments mapped
reads (FPKM) method (Mortazavi et al., 2008). To identify DEGs
between two groups, the ratio of the FPKM values (using 0.001
instead of 0 if the FPKM was 0) were taken as the fold-changes in
the expression of each gene. In order to compute the significance
of the difference in transcript abundance, the false discovery
rate (FDR) control method was used to identify the threshold of
the P-value in multiple tests (Reiner et al., 2003). In this result,
only fold change with|log2 (MJ100_FPKM/Con_FPKM)|≥ 1,
and an FDR ≤ 0.001 were taken as the threshold for significantly
differential expression. The log2-transformed FPKM value for

DEGs was applied to generate heat map by MeV 4.7 (Howe et al.,
2011). Meanwhile, the DEGs were annotated with GO and KEGG
databases.

Validation of DEGs with Quantitative
Real-Time PCR (qRT-PCR)
qRT-PCRwas used to confirm the expression ofMeJA-responsive
genes in L. aurea. Total RNA was extracted from tissue
sample using the method described above. The first-strand
cDNA was synthesized using a PrimeScriptTM II First Strand
cDNA synthesis kit (Takara Bio, Dalian, China) according to
the manufacturer’s protocol. The primers were designed using
the software Primer Premier 5.0, and listed in Table S1. The
quantified expression levels of the tested genes were normalized
against the housekeeping genes Cyclophilin 1 (CYP1) (Ma et al.,
2016). qRT-PCR was performed using SYBR Premix Ex TaqTM

II kit (Takara) and run on qTOWER2.2 Real-Time PCR System
(Analytik Jena AG, Jena, Germany). Conditions for quantitative
analysis were as follows: 94◦C for 2 min; 35 cycles of 94◦C for
15 s, 60◦C for 20 s, 72◦C for 10 min. Data for each sample were
calculated using 2−11CT method (Livak and Schmittgen, 2001).

RESULTS

Transcriptome Sequencing Profile of
L. aura under MeJA Treatment
To develop a comprehensive overview of the L. aurea
transcriptome under MeJA treatment, two Solexa/Illumina
libraries Con and MJ100, were designed for RNA-Seq. These two
libraries (Con and MJ100) produced 4.82 Gbyte and 4.65 Gbyte
of clean data, respectively. In addition, paired-end reads of each
library are with GC percentage and Q20 percentage of 97.52 and
45.24%, 97.42 and 44.83%, respectively. Subsequently, short reads
with average lengths of 244 and 273 bp of the two libraries were
collected into 181,881 and 156,621 contigs, respectively (Table 1).
Taking the distance of paired-end reads into account, these
contigs were assembled into non-redundant unigenes (Table S2).
In total, 59,643 unigenes in the range of 250–14,908 bp (with an
average length of 740 bp) were obtained (Figure 1).

Sequence Annotation and Classification
All of the unigenes were annotated by BLAST search in the
public databases (Table 2). The results revealed that 40,636
unigenes (68.13%) had significantly matched in the Nr database,
30,216 (50.66%) in the Nt database, and 26,345 (44.17%) in
the Swiss-Prot database. Taken the entire public databases
together, there were 41,585 unigenes (69.72%) successfully
annotated (Table 2). For GO analysis, there were 31,157 unigenes
divided into three ontologies, the percentage and summary

TABLE 1 | Summary of Illumina HiSeqTM 2,000 assembly and analysis of L. aurea transcriptome sequences.

Samples Raw reads Clean reads Clean bases Q20 percentage (%) GC percentage (%) Average length (bp) Total contigs

Con 27,257,506 26,809,842 4.82G 97.52 45.24 244 181,881

MJ100 26,191,328 25,874,478 4.65G 97.42 44.83 273 156,621
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number of unigenes was annotated in each GO term shown
in Figure 2 and Table S3. Based on the similarity to sequences
with known functions, 115,216 sequences were assigned to
the biological process (BP) category, 95,500 to the cellular
component (CC) category, 34,965 to the molecular function
(MF) category. Because several unigenes were assigned to more
than one category, the total assigned number was bigger than
the total number of the unigenes. In MF category, genes
assigned to “catalytic activity” (15,547) and “binding” (14,379)
constituted the largest proportion, accounting for 85.59% of
the total. Within the CC category, “cell” (23,719), “cell part”
(23,717) and “organelle” (19,872) were highly represented.
Moreover, “cellular process” (19,233) and “metabolic processes”
(18,289) were the main groups under BP category (Figure 2;
Table S3).

For functional prediction and classification, all unigenes were
subjected to BLAST search against the COG database. There
were 15,370 unigenes assigned to COG functional classification
and divided into 25 specific categories based on the homology
(Table 2; Figure 3). The “General functional prediction only”
(4,997) was the largest category, followed by “Transcription”
(3,056), “Replication, recombination and repair” (2,562),
“Post-translational modification, protein turnover, chaperones”
(2,362) and “Signal transduction mechanisms” (2,000). “Nuclear

FIGURE 1 | Length distribution of assembled unigenes.

structure” (7) and “Extracellular structures” (6) were the smallest
COG categories. KEGG pathway mapping was also carried
out. The results showed that 24,651 unigenes were mapped to
128 predicted metabolic pathways (Figure 4; Table S4). The
largest category was “Metabolism” including “Global map”
(8,736), “Carbohydrate metabolism” (3,464), “Lipid metabolism”
(2,955), “Amino acid metabolism” (1,390), “Biosynthesis of
other secondary metabolites” (1,105), “Nucleotide metabolism”
(1,033), “Energy metabolism” (936), “Metabolism of terpenoids
and polyketidesgly” (818), “Glycan biosynthesis andmetabolism”
(619), “Metabolism of cofactors and vitamins” (586), and
“Metabolism of other amino acids” (521) (Figure 4, A class;
Table S4).

Differential Expression Analysis of
Assembled L. aurea Transcripts under
MeJA Treatment
To identify transcriptional responses of unigenes under MeJA
treatment, reads from Con and MJ100 samples, were mapped
to the obtained non-redundant unigenes. According to the
FPKM values, the mappable reads were used to estimate the
transcription levels. More than 97.0% of unigenes had FPKM
values in the range of 1–100 (Figure 5A). Then the expression
levels of unigenes in both samples were calculated. The unigenes
which had at least a two-fold change with FDR ≤ 0.001
(Figure 5B) were screened and taken as differentially expressed
genes (DEGs). Totally, we identified 4,165 DEGs between Con
and MJ100 samples. Among them, 2,281 DEGs were found
up-regulated and 1,884 down-regulated (Figure 5C).

Functional Classification of the DEGs
To further elaborate the functions of DEGs, we performed
GO enrichment analysis, using Fisher’s exact test with an FDR
adjusted P ≤ 0.01 as the cutoff. Of the 4,165 DEGs, 1,806
were assigned GO annotations (Table S5). For example, In
the BP category, “cellular process,” “metabolic process,” “single-
organism process,” and “response to stimulus” were the top-
four DEGs group (56.14%). In the CC category, the DEGs
were annotated to “cell,” “cell part,” and “organelle” comprised
the largest proportion (70.28%). Moreover, in the MF category,
the genes which were associated with “catalytic activity” and
“binding” took the biggest part (84.72%) of the DEGs (Table S6).
Additionally, these DEGs were similarly enriched in the BP

TABLE 2 | Functional annotation of non-redundant unigenes against the public databases.

Annotation database Number of unigenes Percentage (%) 300 ≤ length < 1000 nt length ≥ 1000 nt

Annotated in NR 40,636 68.13 23,381 13,428

Annotated in NT 30,216 50.66 15,969 12,129

Annotated in COG 15,370 25.77 7,034 7,737

Annotated in GO 31,157 52.24 17,468 11,133

Annotated in KEGG 24,651 41.33 12,977 9,851

Annotated in Swiss-Prot 26,345 44.17 14,216 9,994

Annotated in at least one database 41,585 69.72 24,004 13,449

Total unigenes 59,643 100 34,768 13,754
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FIGURE 2 | Gene ontology (GO) categorization of assembled unigenes. The unigenes were categorized based on gene ontology annotation, and the proportion

of each category is displayed based on the ontologies biological process, cellular component, and molecular function.

FIGURE 3 | Clusters of orthologous groups (COG) classifications of putative proteins. All putative proteins were aligned to the COG database and can be

classified functionally into at least 25 molecular families.

Frontiers in Plant Science | www.frontiersin.org 5 January 2017 | Volume 7 | Article 1971

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wang et al. MeJA-Treated Transcriptome of L. aurea

FIGURE 4 | KEGG metabolism pathway categories of assembled unigenes. Main functional categories are the Metabolism (A), Genetic Information Processing

(B), Environmental Information Processing (C), Cellular Processes (D), and Organismal Systems (E). Bars represent the numbers of L. aurea assignments of unigenes

with BLASTX matches to each KEGG term.

FIGURE 5 | Transcriptomes of L. aurea under MeJA treatment. (A) Number of unigenes expressed in each sample. (B) Scatter-plot graphs of the differential

gene expression patterns between Con and MJ100 libraries. DEGs were determined using a threshold of FDR ≤ 0.001 and |log2 Ratio| ≥ 1. Red spots represent

up-regulated DEGs and green spots indicate down-regulated DEGs. Those shown in blue are unigenes that did not change significantly under MeJA treatment.

(C) Number of differentially expressed genes (DEGs) showing up- (red) or down- (green) regulation between the samples.
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FIGURE 6 | Expression profiling of DEGs in secondary metabolism pathway. (A) List of DEGs involved in different secondary metabolism pathway under MeJA

treatment. (B) Distribution of DEGs involved in different secondary metabolism pathway under MeJA treatment.

categories, such as “metabolic process,” “response to stimulus,”
and “cellular process” (Table S6).

KEGG pathway enrichment analysis for DEGs was also
performed. Of the 4,165 DEGs, 1,547 genes were assigned a
KEGG ID and categorized into 121 pathways (Table S5). Of these,
29 pathways were significantly overrepresented under MeJA
treatment, containing “Biosynthesis of secondary metabolites,”
“Glycerophospholipid metabolism,” “Metabolic pathway,” “Plant
hormone signal transduction,” and “Plant-pathogen interaction”
(Table S7).

Identification of MeJA-Responsive Genes
Expressed during MeJA Treatment
We analyzed 209 DEGs involving in 12 biosynthesis pathways
of secondary metabolites (Figure 6). The results showed that
the largest subcategory was phenylpropanoid biosynthesis (58),
followed by flavonoid biosynthesis (36), flavone and flavonol

biosynthesis (35), and stilbenoid, diarylheptanoid and gingerol
biosynthesis (35). To identify MeJA-related genes in L. aurea,
we used unigene sequences in BLAST searches of the public
databases, and found 1,591 and 2,111 unigenes encoding
transcription factors (TFs) and transporter proteins (TPs).
Among them, 147 and 138 DEGs of TFs and TPs were
detected respectively (Tables S5, S8). In total, the DEGs
of TFs were divided into 17 subfamilies including WRKY,
APETALA2/Ethylene-Response Factors (AP2/ERF), basic Helix-
Loop-Helix (MYBs), bZIPs, and so on. Most of them were
extensively up-regulated in response to MeJA treatment in L.
aurea (Figure 7; Table 3). For example, 26 out of 32 WRKY TFs
and all the 14 MYB TFs are up-regulated under MeJA treatment
(Table 3). Meanwhile, numerous genes encoding transporters
were also included in the sets of DEGs we detected (Table S8). The
results showed that, under MeJA treatment, the expression level
of 138 transporter genes varied (Figure 8). Among them, zinc
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FIGURE 7 | Expression profiling of DEGs annotated as transcription factors.

TABLE 3 | Regulated transcription factors (TFs) under the MeJA treatment.

TF family Number Percentage (%) Up Down

WRKY 32 21.77 26 6

AP2/ERF 25 17.01 21 4

MYB 14 9.52 14 0

GATA* 8 5.44 7 1

bHLH 8 5.44 7 1

NAC 4 2.72 4 0

bZIP 4 2.72 4 0

MYC 3 2.04 3 0

MADS 3 2.04 3 0

Heat stress 2 1.36 2 0

TGA 2 1.36 2 0

Zinc finger 2 1.36 2 0

CBF 1 0.68 1 0

C3HL* 1 0.68 1 0

NGA3-like 1 0.68 1 0

SNAP 1 0.68 1 0

DNA-binding TF activity protein 36 24.49 19 17

Total 147 100 117 30

*Represents subgroup of zinc finger family.

transporter is the largest cluster family (21, 15.22%), and most
of them were down-regulated under MeJA treatment. Notably,
the expression level of genes encoding ATP-Binding Cassette
(ABC) transporters (20, 14.49%), ammonium transporters (3,
2.17%), amino acid/peptide/protein transporters (23, 16.67%),
drug transporters (11, 7.97%), electron transporters (6, 4.35%),
iron ion transporters (5, 3.62%), magnesium transporters (3,
2.17%), nucleobase-ascorbate transporters (3, 2.17%), nucleoside
transporters (2, 1.45%), proton transporters (5, 3.62%), sugar
transporters (10, 7.25%), sulfate transporters (4, 2.90%), and
uncharacterized transporters (7, 5.07%) changed under MeJA
treatment (Figure 8).

Verification of RNA-Seq Data by qRT-PCR
To test the reliability of the RNA-Seq data, the expression
level of 15 transporter genes were selected for qRT-PCR assays
(Figure 9). These candidates included 10 ABC transporters and
5 drug transmembrane transporters (Table S1; Figure 8). The
RNA-Seq data were compared with the transcript abundance
patterns of the MeJA treatment and control. Our results showed
that almost all of the expression comparisons of qRT-PCR
assay were in fairly good match with the RNA-Seq data, even
if the fold-change of some genes in their expression level
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FIGURE 8 | Expression profiling of DEGs annotated as transporters.

detected by sequencing and qRT-PCR did not match perfectly.
These data confirmed the reliability of the RNA-Seq results
(Figure 9). Only one ABC transporter gene (CL8796.Contig3),
which was analyzed by qRT-PCR, revealed significant difference
in expression level comparing with the RNA-Seq data (Figure 9).
In a word, the expression patterns of all unigenes consistent with
the RNA-Seq data, indicating that our experimental results were
reliable.

DISCUSSION

The RNA-Seq should lead to the transcriptional profiling
analysis. By using Illumina HiSeqTM 2,000 sequencing, we got
two libraries (Con and MJ100), producing 4.82 Gbyte and
4.65 Gbyte of clean data, respectively, which are larger than
the previous 454 GS platform database (Wang et al., 2013).
The transcriptome assembly was carried out by using Trinity
software, which has good performing in none reference genome
assembling (Grabherr et al., 2011). It showed that the short reads
with average lengths of 244 and 273 bp of the two libraries,
were collected into 181,881 and 156,621 contigs, respectively
(Figure 1).

Sequencing profile is an effective tool to obtain functional
genes (Wang et al., 2009). For example, inspection of the leaf
epidermis enriched transcription database, an ABC transporter
CrTPT2 that mediates the transporter of anticancer drug
components in Catharanthus roseus was identified (Yu and Luca,
2013). Even more, combined the danshen (Salvia miltiorrhiza)
EST database with the next-generation sequencing of mRNA

from induced hairy root, Guo et al. (2013) identified CYP76AH1
which catalyzes turnover of multiradiene in tanshinones
biosynthesis, leading to a successful heterologous production
of ferruginol in yeast cell. In this study, combining with the
previous EST database of L aurea (Wang et al., 2013), the entire
transcriptome information obtained would be helpful for the
future functional genomic research in L. aurea.

It has become clear that as an elicitor, MeJA is the main
signal of secondary metabolite production across the plant
kingdom, from angiosperms to gymnosperm (De Geyter et al.,
2012). MeJA treatment triggers the majority of secondary
metabolites biosynthesis (i.e., terpenoids, phenylpropanoids, and
alkaloids) through an extensive transcriptional reprogramming
(Zhao et al., 2005; Pauwels et al., 2009; De Geyter et al.,
2012; Misra et al., 2014). Previously, we also showed that
exogenous MeJA application accelerated the Amaryllidaceae
alkaloids accumulation in L. chinensis seedlings (Mu et al.,
2009). Here, by using trancriptome sequencing, we investigated
the MeJA-responsive transcriptional changes, and identified
4,165 DEGs (including 2,281 up-regulated and 1,884 down-
regulated) between Con and MJ100 samples in L. aurea
(Figure 5C). They were categorized into 121 KEGG pathways
(Table S5), and involved in 12 biosynthesis pathways of
secondary metabolites (Figure 6). In general, Amaryllidaceae
are regarded as derivatives of the common precursor 4′-
O-methylnorbelladine via intramolecular oxidative phenol-
coupling (Eichhorn et al., 1998; Park, 2014), which belongs
to the isoquinoline alkaloid biosynthesis pathway. Recently, a
norbelladine 4′-O-methyltrasferase (NpN4OMT) gene involved
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FIGURE 9 | Validation and comparative relative expression of 15 selected unigenes between the control and MeJA libraries in L. aurea. Differential

expression between control (black column) and MeJA-treated sample (gray column) was compared. The normalized expression level (FPKM) of RNA-Seq is indicated

on the x-axis. The relative expression levels were determined by quantitative real-time PCR using Cyclophilin 1 as an internal reference; each PCR was repeated three

times and the error bars represent standard deviation (SD).

in the biosynthesis of galanthamine in Narcissus ap. aff.
pseudonarcissus has been characterized (Kilgore et al., 2014).
When aligned against transcriptome database, the potential
homologous gene of NpN4OMT in L. aurea was also found,
and its expression level showed more than two times higher
under MeJA treatment, when compared with the control
sample (Table S7). It suggested that DEGs database reserving
a large number of genetic information which would be
helpful for characterizing the key enzymes associated with the
Amaryllidaceae alkaloids biosynthesis.

The expression of plant secondary pathway is under the tight
control of a large number of TFs at different levels (Yang et al.,
2012). For example, TFs involved in Jasmonates (JAs) signaling
cascades usually regulate the transcription of multiple genes in
a biosynthesis pathway, so as to improve the production of
secondary metabolites (Zhou andMemelink, 2016). Several types
of TFs shown as regulators of secondary metabolite biosynthesis

in plants have been identified, belonging to the families AP2/ERF,
bHLH, MYB, and WRKY (Naoumkina et al., 2008; Shoji et al.,
2010; Todd et al., 2010; Yang et al., 2012; Yu et al., 2012;
Misra et al., 2014). In this study, at least 1,591 unigenes
encoding transcription factors (TFs) were found. Among them,
147 DEGs of TFs were simultaneously detected (Tables S5, S8).
They were divided into 17 subfamilies, and most of them
were extensively up-regulated in response to MeJA treatment
(Figure 7; Table 3), suggesting their possible involvement in the
regulation of secondary metabolite biosynthesis in L. aurea.
The WRKY TF family is unique to plants, and is characterized
by a conserved WRKY domain which specifically binds to the
W-box sequence (Rushton et al., 2010; Zhou and Memelink,
2016). Previous reports indicated that many WRKY TFs may
be regulated by wound and JA signal, and are reported as
regulators of genes involved in various secondary metabolite
pathways (Chen et al., 2012; Phukan et al., 2016). As shown in this
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study, among the DEGs, WRKY cluster is the largest family and
most of them were up-regulated under MeJA treatment (Table 3;
Figure 7). This result suggested the potentially important role of
WRKY TFs in the regulation of gene expression in L. aurea. In
addition, the bHLH TF MYC2 has been reported as a master
regulator in the JAs signaling network (Kazan and Manners,
2013). Transcription levels of the key enzymes of the primary and
secondary metabolism were also regulated byMYC2 (Dombrecht
et al., 2007). In this study, we also noticed that most of the bHLH
TF genes (including 3 MYC genes), were up-regulated under the
MeJA treatment in L. aurea (Figure 7). The expression changes
of these transcription factors may reveal their key functions.

The verity of secondary metabolites has a great deal of
differences among the species; the specific compounds are
often restricted in a few species, or even within a few
varieties within a species (Smetanska, 2008). Moreover, the
biosynthesis and storage of these compounds are usually tissue-
and developmental stage-specific. In plants, the secondary
metabolites always have to be stored in the special tissues or
subcellular compartment which is distinct from the biosynthesis
part. The mechanism of the biosynthesis and accumulation of
plant secondary metabolites in such appropriate pattern attracted
more attention (Yazaki et al., 2008; Nour-Eldin and Halkier,
2013). In most cases, plant secondary metabolites are transported
intercellularly, intracellularly, and in an intratissue fashion by
specific transporters (Yazaki, 2005; Yazaki et al., 2008; Nour-
Eldin and Halkier, 2013). Meanwhile, the membrane transporter
is comparatively specific and highly controlled for each secondary
metabolite (Yazaki, 2005; Nour-Eldin and Halkier, 2013; Lv et al.,
2016). ABC transporter family, based on hydrolysis of ATP,
is proved to take a main part of transporting the secondary
metabolites (Yazaki, 2005, 2006). Since many plant secondary
metabolites are medicinally used, the ABC transporters are
associated with the drug resistant (Fletcher et al., 2010). In
addition, the ABC transporters that presumably take part in
secondary metabolite transport were also characterized among
the MeJA up-regulated transcripts. For example, the ABCG
transporter unigenes related to artemisinin yield in Artemisia
annua, which are responsive tomethyl jasmonate treatment, have
been identified (Zhang et al., 2012). In Panax ginseng, a novel
PDR-type ABC transporter gene PgPDR3 induced by MeJA was
also characterized (Zhang et al., 2013). It has been suggested that

ABC transporters are often associated with the special compound

transport, including alkaloids, terpenoids, and polyphenols, etc.
(Sakai et al., 2002; Yazaki, 2005, 2006; Yazaki et al., 2008; Shoji,
2014; Lv et al., 2016). Among the DEGs of L. aurea treated with
MeJA, a large proportion of ABC transporters were identified
(Figure 8; Table S8). Thus, the results will be helpful to identify
the potential ABC transporters for translocation of secondary
metabolites in L. aurea.

In this study, a large-scale unigene investigation of L. aurea
underMeJA treatment was performed by Illumina sequencing. In
total, we found 4,175 DEGs, and many transcripts were encoded
by putative genes including transporter proteins, transcription
factors and enzymes involved in secondary metabolism pathway.
The data we obtained provided comprehensive information
on gene discovery, transcriptome profiling, and transcriptional
regulation of L. aurea. Additionally, our findings highlight
the significance of JA signaling and Amaryllidaceae alkaloids
synthesis in L. aurea, and provide a foundation for subsequent
genomic research in the future.
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