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In crops, optimizing target traits in breeding programs can be fostered by selecting
appropriate combinations of architectural traits which determine light interception and
carbon acquisition. In apple tree, architectural traits were observed to be under
genetic control. However, architectural traits also result from many organogenetic
and morphological processes interacting with the environment. The present study
aimed at combining a FSPM built for apple tree, MAppleT, with genetic determinisms
of architectural traits, previously described in a bi-parental population. We focused
on parameters related to organogenesis (phyllochron and immediate branching) and
morphogenesis processes (internode length and leaf area) during the first year of tree
growth. Two independent datasets collected in 2004 and 2007 on 116 genotypes,
issued from a ‘Starkrimson’ × ‘Granny Smith’ cross, were used. The phyllochron
was estimated as a function of thermal time and sylleptic branching was modeled
subsequently depending on phyllochron. From a genetic map built with SNPs, marker
effects were estimated on four MAppleT parameters with rrBLUP, using 2007 data.
These effects were then considered in MAppleT to simulate tree development in the two
climatic conditions. The genome wide prediction model gave consistent estimations of
parameter values with correlation coefficients between observed values and estimated
values from SNP markers ranging from 0.79 to 0.96. However, the accuracy of the
prediction model following cross validation schemas was lower. Three integrative traits
(the number of leaves, trunk length, and number of sylleptic laterals) were considered
for validating MAppleT simulations. In 2007 climatic conditions, simulated values were
close to observations, highlighting the correct simulation of genetic variability. However,
in 2004 conditions which were not used for model calibration, the simulations differed
from observations. This study demonstrates the possibility of integrating genome-
based information in a FSPM for a perennial fruit tree. It also showed that further
improvements are required for improving the prediction ability. Especially temperature
effect should be extended and other factors taken into account for modeling GxE
interactions. Improvements could also be expected by considering larger populations
and by testing other genome wide prediction models. Despite these limitations, this
study opens new possibilities for supporting plant breeding by in silico evaluations of
the impact of genotypic polymorphisms on plant integrative phenotypes.
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INTRODUCTION

Tree architecture plays a key role in collecting light and
assimilating carbon and thus affects plant growth and yield
(Valladares et al., 2002; Niinemets, 2010). Moreover, by
modifying plant microclimate, it also determines many
characteristics of fruit quality and can affect the development
of orchard pests and diseases (Lauri and Costes, 2009).
Previous studies have demonstrated that, across vascular plants,
architecture exhibits remarkable regularities (Hallé et al., 1978;
Sussex and Kerk, 2001) which are assumed to result from
genetic control (Reinhardt and Kuhlemeier, 2002). Even though
genetics and breeding aim at selecting optimal combinations
of traits (a genotype with such optimal characteristics being
considered as an ideotype; Donald, 1968), the optimization of
plant architecture is not straightforward because it results from
many morphological and physiological processes interacting
with the environment. In addition, defining an ideotype for a
given species and for particular environmental or agronomic
conditions can be extremely time- and resource consuming
especially in perennials which characteristics may change over
years. Modeling appears as an appropriate tool for the prediction
and simulation of tree architecture and related properties in
order to explore possible ideotypes.

Functional-structural plant models (FSPM) have been
developed for analyzing the relationships between plant
architecture, light interception, microclimate, and physiological
processes such as carbon assimilation or water losses by
transpiration (Vos et al., 2010; DeJong et al., 2011). These
models combine a 3D representation of plant architecture with
mathematical formalisms describing physiological functions
(photosynthesis, carbon allocation...) at different scales of
plant organization (from organs to plant). This kind of models
has been developed for different annual (e.g., Fournier et al.,
2003; Evers et al., 2007), or perennial crops (e.g., Perttunen
et al., 1998; Allen et al., 2005; Costes et al., 2008). Most of
them have been calibrated and validated on one or a few
genotypes with contrasting architectures. However, there is
strong evidence that components and processes responsible
for plant architecture are highly heritable and under genetic
control (Wu and Stettler, 1994; Wu, 1998; De Wit et al., 2002;
Perez et al., 2016). This opened new perspectives for integrating
architectural traits in breeding programs (Wu, 1998; Rötter et al.,
2015).

Previous studies have included the genetic variability in
FSPMs by estimating physiological or morphological parameters
using QTL information (Letort et al., 2008; Xu et al., 2012).
More precisely, QTL effects have been used to predict the values
of some FSPM input parameters such as those determining
organ sing strength. QTL effects have been estimated on virtual
recombinant populations (Letort et al., 2008). However, these
methods could be applied if QTLs are detected for model
parameters whereas architectural traits revealed high polygenic
determinisms (Wu and Stettler, 1994; Segura et al., 2008).
Concomitantly, the development of high density genetic maps
with single nucleotide polymorphism (SNP) markers have
allowed the emergence of genome wide prediction models which

aims at predicting genotypic values based on whole genome
information (Heffner et al., 2009; Kumar et al., 2012). The
statistical challenge of the genome wide prediction models is
to estimate in a regression model the effects of a number of
markers larger than the number of individuals, this leading to
over-fitting problems. Statistical methods have been developed
to reduce the risk of over-fitting (de los Campos et al., 2013) by
applying a selection of variables and/or a shrinkage parameter on
marker effects. Genome wide prediction models used a mixed
model approach and marker effects are estimated according to
a prior distribution. This prior distribution can be a Gaussian
distribution in the Ridge Regression BLUP method (Endelman,
2011), a double exponential or t distributions in Bayesian
approaches (de los Campos et al., 2013).

The aim of the present study was to combine a FSPM
previously built for apple tree (MAppleT, Costes et al., 2008)
with genetic determinisms of architectural traits in a bi-parental
segregating population. This population has been previously
studied and showed a strong heritability of architectural traits
(Segura et al., 2006, 2008). Our objective was to explore the
feasibility of combining the effects of SNP markers on model
parameters related to architectural traits with MAppleT in order
to simulate tree architecture.

MAppleT simulates apple tree above-ground development
over years (Costes et al., 2008), by combining Markovian models
to simulate the dynamic of tree topology and a bio-mechanical
model to simulate the geometry (branch angle and bending;
Jirasek et al., 2000; Alméras et al., 2002). Presently, MAppleT
does not simulate any environmental effect on growth processes
and does not include the simulation of carbon source-sink
relationships or water fluxes within the tree. Primary growth is
modeled based on the phyllochron (time between the appearance
of two consecutive leaves) which is considered as a constant value
and the final size of organs (internode, leaf) is an input parameter
of the model. Previous studies showed that changing the values
of these architectural traits in MAppleT, considering the range of
values observed in the segregating population mentioned above,
modifies the light interception of the simulated trees (Da Silva
et al., 2014).

We focused on the vegetative development during the first
year of apple tree growth which is a critical period for architecture
establishment. During this initial growth period, apple tree
develops a main stem with immediate laterals (or sylleptic;
Segura et al., 2006). Therefore, the main variables of interest
for simulating primary growth and branching at this stage are
the phyllochron, the internode length, the individual leaf area,
and the probability of appearance of the sylleptic laterals along
the main stem. Some relations between these variables have
been observed. Notably, the phyllochron is assumed to modulate
sylleptic branching since the number of sylleptic laterals is often
higher when the phyllochron is low during the season (Remphrey
and Powell, 1985; Powell, 1991; Génard et al., 1994). Moreover,
temperature affects the phyllochron of some fruit species such as
kiwifruit or grapevine (Morgan et al., 1985; Pallas et al., 2008).
For peach tree, the phyllochron could be modeled as a function
of thermal time (TT; Kervella et al., 1995; Lescourret et al.,
1998) even if temperature was not the only factor influencing
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the phyllochron when trees are grown in open field conditions
(Davidson et al., 2015).

In this study, we simulated 1-year-old apple tree architectures
depending on the genotype and air temperature over a growing
season. This approach was built through four sub-objectives:
(i) modeling the dynamic of phytomer emergence and the
subsequent sylleptic branching depending on TT, (ii) estimating
key MAppleT parameters based on SNP marker effects, (iii)
integrating the environmental and the marker effects in MAppleT
to simulate genotype development based on genetic and climatic
information, (iv) validate the method by comparing simulation
outputs with observed data.

MATERIALS AND METHODS

Plant Material, Phenotyping, and
Genotyping
The study was carried out on 116 genotypes corresponding to
an apple tree (Malus × Domestica) F1 progeny issued from
a “Starkrimson” × “Granny Smith” cross. The parents were
selected for their contrasted architecture and bearing behavior.
Indeed, the ‘Starkrimson’ maternal parent displays an erect
growth habit with many short shoots and a tendency to irregular
bearing (Lespinasse, 1992). Conversely, the ‘Granny Smith’ pollen
parent displays a weeping habit with long shoots and fruit-
bearing regularity (Segura et al., 2007, 2008).

Two field experiments were planted in 2007 (Experiment
1) and 2004 (Experiment 2) at the Melgueil INRA Montpellier
experimental station (France, 43◦36′N 3◦58′E). In both
experiments, two replicates of each genotype were grafted on
Pajam 1 rootstock and planted 5 m × 1.5 m apart in a north-
south orientation. Throughout the experiments, the 232 trees
were well-watered and not pruned.

In each experiment, the topology of each tree was described
as explained in Segura et al. (2006) at the end of the first
growth season and recorded in Multiscale Tree Graph format
(MTG, Godin and Caraglio, 1998). The trunk length, the mean
internode length on the trunk, the number of sylleptic laterals,
and their position along the trunk were extracted from the MTG.
In Experiment 1, the number of newly emerged leaves on trunk
was also counted weekly, from July to the end of growth in
September (11 dates of measurement). When trees were 3-year-
old in Experiment 1, the maximal individual leaf areas along four
randomly chosen shoots were measured on each tree at the end
of the growing season (end of September 2009). This maximal
leaf area has been already observed to be highly heritable and to
display lower variability than individual leaf areas along the trunk
(Lopez et al., 2015).

The population was genotyped with the Infinium R© 20K SNP
array (Bianco et al., 2014) at the Fondazione Edmund Mach
according to the procedures described by Antanaviciute et al.
(2012) and Chagné et al. (2012). Among the 6849 polymorphic
SNPs, 3123 were used in this study, after a careful checking
of their robustness consistency (Van de Weg et al., 2013; Di
Guardo et al., 2015) and recombination pattern (Allard et al.,
2016). In particular, all markers which were not strictly bi-allelic

in at least one of the parent were discarded. We removed these
markers because there were not informative to evaluate genetic
effects in quantitative genetic studies. Indeed, in that case, all the
individuals of the progeny had the same alleles at these markers.

Modeling Temperature Impact on Leaf
Emergence Rate and Sylleptic Branching
Nine linear mixed models (see Supplementary Material 1.1) were
compared to analyze the effect of temperature on the daily rate
of leaf emergence (RLE) and its genetic variability depending
on temperature. Since we did not want to increase the number
of parameters in the MAppleT, the BIC was chosen for model
selection because it is known to be more adequate for selecting
models with a few number of parameters compared to the AIC
(Davidson and Mackinnon, 2004). The two first models did
not include temperature effect and assumed a constant RLE
throughout the growing season. Two different methods were
used to calculate TT based on either the daily mean temperature
(TMean) or a single sine method (TSSM) using 7 and 35◦C as
lower and upper threshold as in Lescourret et al. (1998) on
peach tree. In the subsequent analyzes, the RLE was expressed in
growing degree-day (RLEGDD) and computed as the slope of the
relationship between TT using TSSM and the number of emitted
leaves.

To account for the relationship between the parent shoot
growth and the appearance of sylleptic lateral at a given node,
each day the probability of producing a sylleptic lateral, noted
Pd, was assumed to be linearly dependent on the RLE. In this
study and according to Peyhardi et al. (2013), we considered the
values of RLE during the ndays days before leaf emergence of
the considered metamer on which sylleptic lateral development
can occur. Moreover, we assumed that a sylleptic lateral only
appears at a given rank (called rk) below the terminal apex, in
order to represent the inhibition of axillary bud outgrowth by the
apical meristem (Cline, 2000; Beveridge, 2006). In the model, the
probability of sylleptic lateral emergence was computed when a
new leaf was emitted by the terminal apex. The probability of
appearance of a sylleptic lateral at a node of rank k − rk and at
day d was thus expressed as follows:

Pd(Sylleptic branching
(
k− rk

)
|Phytomer creation (k))

= asyll ×
1

ndays

d∑
i = d−ndays

RLEi (1)

where asyll is the coefficient of the linear relation between Pd and
the mean value of RLE during the ndays previous days.

The values of rk and ndays were determined with a virtual
experiment in which tree development was simulated with
MAppleT using different values, 5, 10, 15, and 20 for rk and 3, 7,
and 10 for ndays, respectively (see Supplementary Figure 1). The
best combination of parameters (20 LD and 7 ndays) was defined
as the combination which minimizes the root mean squared
error (RMSE) between observed and simulated distributions of
sylleptic laterals along the trunk. rk and ndays were estimated
on the mean distribution of sylleptic laterals considering all
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genotypes together. Indeed, since sylleptic branching is a rare
event, the number of replicates (only two) was not enough to get
a consistent representation of the distribution of sylleptic laterals
along the trunk for each genotype of the population. Values of rk
and ndays were thus considered as identical for each genotype.

Estimation of MAppleT Parameter Values
We focused on four parameters used in MAppleT, (i) RLEGDD,
(ii) the length of individual internode (IN_length), (iii) the area
of individual leaf (Leaf_area), and (iv) asyll. In MAppleT, these
parameters are the main parameters driving primary growth and
branching. The other parameters that can affect primary tree
growth in MAppleT are the parameters related to the dynamics
of organ expansion but we did not consider them in this study
because they had no impact on the final architecture (all the
organs end their growth at the end of the growth season) and
because they are difficult to estimate experimentally on a large
range on genotypes.

Values of these four parameters were estimated on each tree in
Experiment 1. IN_length was the mean internode length recorded
at the end of the experiment. Leaf_area was estimated as the mean
leaf area of the four leaves measured at the end of Experiment 1.
These dimensions were then considered in MAppleT as the final
dimensions of internodes and leaves for all the metamers along
the trunk and branches expect for the preformed metamers (eight
first leaves). In MAppleT, organ expansion is modeled as a logistic
growth functions and the value of this function reaches Leaf_area
or IN_Length at the end of the organ growth period (Da Silva
et al., 2014).

The value of asyll was estimated for each tree as a function of
the total number of sylleptic laterals (Nsyll), the RLEGDD and the
sum of the daily thermal time (TTd) during the growing season
(15 April–30 September; see more information in Supplementary
Material 1.2), as follows:

asyll =
Nsyll

(RLEGDD)
2
×
∑de

d = db

(
1

ndays

∑d
i = d−ndays

TTi

)
× TTd

(2)
where db is the day when the node of rank rk appears on tree, de
is the day of the end of growing season.

The value of RLEGDD for each individual was estimated from
the linear model between RLE and TT that minimized the BIC
(see Supplementary Table 1).

Analyses of the Genetic Variability,
Correlations, and Heritability Values of
MAppleT Parameters and Architectural
Variables
Analyses of genetic variability and heritability were performed on
the four MAppleT parameters and on three architectural traits
directly measured on trees: the length of trunk (Trunk_length),
the total number of leaves (Nb_Leaves), and the number of
sylleptic laterals (Nb_syll). Moreover, as asyll distribution was
not Gaussian, its logarithm, called logasyll, which was normally
distributed, was used for the genetic analyses.

The significance of the genotypic effect on the four parameters
and on the three integrative variables was estimated, for
both experiments separately, using a linear mixed model with
genotype as random effect as follows:

Pij = µ+ Gi + eij (3)

where Pij is the phenotype value of the jth replicate of genotype
i, µ is the overall mean of the progeny, Gi is the random effect
of the genotype i, and eij is the gaussian residual. This model was
fitted on data using the lmer procedure of the lme4 package of R
software. The mean broad-sense heritability was calculated as:

h2
b =

σ2
G

σ2
G +

σ2
e

n

(4)

where σ2
G is the genotypic variance, σ2

e is the residual variance,
and n is the number of replicates per genotype. In order to
analyze the genetic variability on the two experiments together,
the following linear mixed model using years as fixed effect and
genotype as random effect was used.

Pijk = µ+ Ai + Gj + Iij + eijk (5)

where Pijk is the phenotype value of the kth replicate of genotype j
in the year i, µ is the overall mean of the progeny over the 2 years,
Ai is the fixed effect of the year i, Gj is the random effect of the
genotype j, Iij is the random effect of the interaction between the
effects of the year i and the genotype j and eijk is the gaussian
residual. The mean broad-sense heritability over the 2 years was
calculated for the whole data as:

h2
b =

σ2
G

σ2
G +

(
σ2

i
a

)
+

(
σ2

e
n×a

) (6)

where σ2
G is the genotypic variance, σ2

I is the interaction variance,
σ2

e is the residual variance, a is the number of years, and n is
the number of replicates. The significance of the year effect was
evaluated using anova procedure of the lmerTest package of R
software.

For each heritability value, associated confidence intervals
were calculated as defined in Knapp et al. (1985). The phenotypic
and genotypic correlations between MAppleT parameters
and architectural traits were calculated for each experiment
separately. Correlations between the two experimental dataset
were calculated for the three architectural traits, only. The
significance of the correlations was tested with a Pearson’s test.

Genomic Prediction of MAppleT
Parameter Values
Following Xu et al. (2011), QTL were detected on BLUPs for
the four studied parameters using the interval mapping method
within the MapQTL software (Van Ooijen et al., 2002). The
logarithm of the odds (LOD) at which QTL was declared
significant was determined according to a genome wide error of
0.05 over 2000 permutations of the data. A QTL was considered
as significant when the associated LOD was higher than 4.
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As polygenic determinisms were expected, a genomic
prediction method based on Ridge Regression was used after this
QTL analysis (Whittaker et al., 2000; Meuwissen et al., 2001).
More precisely, this method estimates infinitesimal loci effects
assuming a shrinkage parameter equals to the ratio of the residual
to the environmental variance using the following mixed effect
model:

Y = µ+ Xg + e (7)

where Y are the phenotypic values (232 × 1; two replicates
per genotype), µ is the overall mean of phenotypic value, X
(232 × 2160) is the matrix of markers for each individual, g
(2160× 1) is the marker effects which are assumed to be normally
distributed (g ∼ N(0, Iσ2

g)), and e (232 × 1) is the residual
effects (g ∼ N(0, Iσ2

e )). In this study, we only kept 2160 markers
among the 3123 SNPs available in the genetic map. These 2160
markers correspond to the markers that were heterozygous for
one of the two parents, only. As a consequence, the matrix of
markers includes one kind of heterozygous (A/B) and one kind
of homozygous markers (A/A), only. In the matrix of markers,
a locus was then coded −1 when the two alleles were different
(A/B), and was coded 1 when the two alleles were similar (A/A),
whatever the heterozygous parent. Marker effect estimations were
performed on phenotypic values collected in Experiment 1 data
using the mixed.solve procedure of the rrBLUP package of R
software (Endelman, 2011).

We estimated the genetic values of each parameter (G,
(116×1)) for all genotypes in the population using the estimated
marker effects (ĝ):

G = µ+ Wĝ (8)

with W the matrix of markers for each genotype (116× 2160). In
order to predict the phenotypic values of MAppleT parameters,
markers effects were multiplied by the ratio between the standard
deviation of observed phenotypes and the standard deviation of
the genotypic predictions.

g2 =
sd(Y)
sd(G)

× ĝ (9)

The phenotypic values of MAppleT parameters (P, (116× 1)) was
calculed for each parameters and for all the genotypes as follows:

P = µ+Wg2 (10)

The accuracy of the genome wide prediction model was assessed
by testing the correlations between estimated and observed values
of the MAppleT parameters, in three different ways. First, the
accuracy of the prediction model was determined using all
genotypes to estimate parameter values. Second, and following
previous studies (Kumar et al., 2012; Fodor et al., 2014), the
accuracy of the prediction was evaluated using a 10-fold cross
validation. For this, genotypes were randomly assigned to one
of the 10 equal folds. Each fold (validation population, 10% of
the population) was predicted using marker effect estimations
using the nine other folds (training population). In this case, the

accuracy was calculated as the mean value of the correlations
between predicted and observed phenotypes obtained for the 10
folds. Lastly, we also tested the accuracy of the prediction with a
“leave-one-out” cross validation. In this method, each phenotype
was predicted using marker effects estimated on the whole
population without this genotype. The accuracy was calculated as
the correlation between predicted and observed phenotypes on
the whole population.

Implementation of Markers Effects in
MAppleT and Output Evaluation
The values of the four parameters (IN_length, Leaf_area, RLEGDD,
and asyll) for all the genotypes were calculated using the genome
wide prediction model based on the matrices of marker effects
and genotypes. Simulations were then performed with MAppleT
with the environmental conditions of both experiments.

For validating the approach, the values of the three integrated
architectural traits (Nb_Leaves, Trunk_length, and Nb_syll) were
compared with observed values. Since the sylleptic branching
model is stochastic, different values were obtained for the
different simulations with the same set of genotypic parameters.
The observed number of sylleptic laterals per genotype was thus
compared with the mean number of sylleptic obtained after
running five simulations.

The validation was performed in two consecutive steps. First,
simulation outputs were compared with data from Experiment
1, which was used to parameterize the model, in order to
evaluate the model capacity to simulate the genotypic variability
of whole tree development based on markers effects. Second,
the comparison was performed on data from Experiment 2
which were not used to parameterize the model in order
to evaluate its performance under different environmental
conditions. Simulations were run from budburst until the end of
the growing season. In both experiments and accordingly to what
is observed in the experimental site, budburst date, and the end
of the growing season were set to April, 15 and September, 30,
respectively.

The correlation coefficient, the RMSE, the relative RMSE
(nRMSE), and the bias (BIAS) were used to compare simulations
(si) and observations (oi):

RMSE =

√√√√ 1
n

n∑
i = 1

(oi − si)
2 (11)

nRMSE = RMSE/ō (12)

BIAS =
1
n

n∑
i = 1

(si − oi) (13)

RESULTS

Climatic Data and Phenotypic Traits
The analysis of temperature effect on the RLE showed that the
mixed linear model 4 which includes the effect of TT computed

Frontiers in Plant Science | www.frontiersin.org 5 January 2017 | Volume 7 | Article 2065

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-02065 January 11, 2017 Time: 17:53 # 6

Migault et al. Tree Architecture Simulation from Genomic Information

with the single sine method, TT (see Supplementary Table 2)
had the lowest BIC. Although BIC values between the different
models were close, this sustains the hypothesis of a significant
impact of temperature variations on RLE. Moreover, model 4
includes a genetic effect (βι) on the slope between RLE and
TT (RLEGDD) which also suggests that the slope values were
genetically dependent.

The cumulate daily thermal time (TT) during the growing
season (15 April–31 September) was almost similar between the
two experiments, even though slightly higher in Experiment
1 than in Experiment 2 (2278 and 2234 GDD, respectively).
However, the annual dynamics were different. Indeed, daily
thermal time was strongly higher during the first 30 days and was
slightly lower during summer (June, August, and September) in
Experiment 1 compared to Experiment 2 (Figure 1). For the two
experiments, the highest GDD was observed at the end of July.

As the leaf emergence rate (RLEd) and the probability of
sylleptic lateral emergence directly depends on TT in our model,
the evolution of these two variables followed the daily thermal

FIGURE 1 | Evolution of the thermal time (A) and the rate of leaf
emergence per day (RLEd ) (B) averaged over 5 days (from 2 days before to
2 days after each day in abscissa), the two experiments (Experiment 1: full
line; Experiment 2: dashed line). In (B), the mean value of RLEd on the 116
hybrids is represented with a full line. The dashed lines represent the
maximum and minimum RLEd values recorded on the population.

time. The mean value of the leaf emergence rate expressed
in growing degree-day (RLEGDD) and estimated on data from
Experiment 1 was 0.033 Leaf.GDD−1 which corresponds to
a duration between the emergence of two leaves of 30 GDD
(∼3 days during the first growing month and 2 days during
summer). The mean value of the estimated parameter logasyll was
−1.25. The mean value of logasyll corresponded to a probability of
emergence of a sylleptic lateral on each metamer of 0.095 during
first growing months and of 0.143 during summer.

Compared to Experiment 1, phenotypic values observed in
Experiment 2 were on average 5% higher for the number of leaves
(Nb_Leaves), 12% lower for the trunk length (Trunk_length), and
48% higher for the number of sylleptic laterals (Nb_syll) and
these differences were significant (Table 1). It must be noticed
that the higher number of leaves in Experiment 2 compared to
Experiment 1 is contradictory with the corresponding value of
cumulated daily thermal time which was lower in Experiment 2.

The architectural traits (Nb_Leaves, Trunk_length, and
Nb_syll) and MAppleT parameters (IN_length, Leaf_area,
RLEGDD, and logasyll) showed intermediate (0.38) to high
(0.86) heritabilities in both experiments (Table 1). The highest
heritability values were found for IN_length in Experiment 1.
Heritabilities for Trunk_length were similar whether computed
considering the two experiments together or for each year
separately. Conversely, heritability values were reduced by 26 and
32% for Nb_Leaves and Nb_syll, when considering either both
years together or each year separately.

The analyses of correlations gave similar results if genetic or
phenotypic correlations were considered (Table 2). Correlations
between MAppleT parameters were low. Only the correlations
between RLEGDD and the mean internode length and between
the leaf area and the mean internode length were significant
(P = 0.004 and 0.0003, respectively). As expected, Nb_leaves,
Trunk_length, and Nb_syll were strongly correlated to RLEGDD,
IN_length, and logasyll, respectively. The correlations between
the two experiments for the architectural traits Nb_Leaves,
Trunk_length, and Nb_syll were significant but the correlation
coefficients remained low (from 0.25 to 0.45).

Genomic Prediction and Its Accuracy
QTL detections on BLUPs of IN_length, Leaf_area, RLEGDD, and
logasyll revealed only one QTL for IN_length which was the most
heritable parameters (data not shown). This QTL was located
on LG 12 and explained 16.9% of the genetic variability. It
was associated with the SNP FB_0152374_L12_PA with a LOD
score of 4.67. For the three other variables (RLEGDD, logasyll,
and Leaf_area), no significant QTL could be detected. Because
these variables were under genetic control (moderate to high
heritability), the absence of detected QTL led us to assume that
they were under the control of a high number of markers with
low effect. We therefore tested a genome wide prediction model.

Correlations between mean observed phenotypes and
predicted phenotypes with the genome wide estimation model
and using all genotypes to estimate marker effects was 0.82
for RLEGDD, 0.98 for IN_length, 0.87 for logasyll, and 0.80 for
Leaf_area, respectively (Figure 2). All these correlations were
significant according to Pearson’s test (P < 0.05) showing the
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TABLE 1 | Mean value, standard deviation, mean heritability value (h2
b) with confidence interval (CI) indicated in brackets for five measured variables

(Nb_Leaves, Trunk_length, Nb_Syll, IN_length, and Leaf_area) and two estimated model parameters (RLEGDD, logasyll) on trunks of 116 1-year-old hybrid
apple trees, in experiment 1.

Variable Experiment 1 Experiment 2 All data† Year effect

Mean ± SD h2
b (CI) Mean ± SD h2

b (CI) h2
b (CI)

Nb_Leaves 83.54 ± 9.38 0.50 (0.28,0.65) 87.86 ± 13.20 0.51 (0.29,0.66) 0.38 (0.11,0.57) ∗∗∗

Trunk_length (cm) 168.4 ± 28.5 0.61 (0.44,0.73) 148.4 ± 34.5 0.56 (0.36,0.69) 0.61 (0.44,0.73) ∗∗∗

Nb_Syll 12.38 ± 10.33 0.74 (0.63,0.82) 18.38 ± 12.21 0.70 (0.57,0.79) 0.49 (0.26,0.64) ∗∗∗

IN_length (cm) 2.02 ± 0.28 0.86 (0.80,0.90)

Leaf_area (cm2) 25.54 ± 5.99 0.40 (0.14,0.59)

RLEGDD (Leaf.GDD−1) 0.033 ± 0.003 0.59 (0.40,0.71)

logasyll −1.25 ± 1.03 0.72 (0.59,0.80)

† For analysis on the whole dataset, heritability were estimated using the mixed model with year as fixed effect.
Stars indicated the significance of year effect (∗ if p-value < 0.05; ∗∗ if p-value < 0.01, and ∗∗∗ if p-value < 0.001).
The significance of the year effect is indicated for the three variables that were observed in a second experiment (Experiment 2). See text for abbreviation meaning.

TABLE 2 | Correlation between phenotypic (lower diagonal) and genetic values (upper diagonal) of either measured traits (Nb_Leaves, Trunk_length,
Nb_Syll, IN_length, and Leaf_area) or estimated parameters (RLEGDD, logasyll) on 116 1-year-old hybrid apple trees in the two experiments (Experiments
1 and 2).

Experiment 1 Experiment 2

Nb_Leaves Trunk_length Nb_Syll IN_length Leaf_area RLEGDD logasyll Nb_Leaves Trunk_length Nb_Syll

Experiment 1

Nb_Leaves 1 0.41 0.25 −0.21 −0.06 0.77 0.08 0.25

Trunk_length 0.55 1 −0.03 0.80 0.27 0.16 −0.03 0.45

Nb_Syll 0.30 0.09 1 −0.19 0.16 0.28 0.84 0.32

IN_length −0.09 0.77 −0.11 1 0.32 −0.32 −0.08

Leaf_area 0.08 0.26 0.10 0.24 1 −0.03 0.07

RLEGDD 0.60 0.21 0.28 −0.18 −0.003 1 0.07

logasyll 0.15 0.06 0.81 −0.04 0.05 0.05 1

Experiment 2

Nb_Leaves 0.25 1 0.68 0.42

Trunk_length 0.45 0.72 1 0.08

Nb_Syll 0.32 0.41 0.15 1

Significant correlations according to Pearson’s test are indicated in bold.

ability of the genome wide model to estimate parameter values
from SNP markers. However, the prediction accuracies were
notably lower using the cross validation methods (Figure 2).
The mean accuracy from the 10-fold cross validation was
0.26 for RLEGDD, 0.30 for IN_length, 0.15 for logasyll, and
0.31 for Leaf_area, respectively. The standard deviation of the
accuracy from the 10-fold cross validation was very high for
the four variables: 0.23 for RLEGDD, 0.30 for IN_length, 0.35 for
logasyll, and 0.24 for Leaf_area. The accuracy obtained using the
“leave-one-out” cross validation were 0.20 for RLEGDD, 0.30 for
IN_length, 0.25 for logasyll, and 0.30 for Leaf_area.

Simulation of 1 Year-Old Genotypes
under Two Environmental Conditions
Simulations with MAppleT were performed under
environmental conditions of Experiments 1 and 2. Under
the environmental conditions of Experiment 1 (experiment
used to parameterize MAppleT), correlations between observed

and simulated values were equal to 0.65 for Nb_Leaves, 0.83
for Trunk_Length, and 0.80 for Nb_syll (Figure 3). These
correlations were significant according to Pearson’s test
(P < 0.05). The normalized RMSE (nRMSE) was low for the
Nb_leaves (8%) and Trunk_length (10%) but high for Nb_syll
(63%). The Nb_syll was correctly predicted for the genotypes
with low number of sylleptic laterals but the difference between
observation and simulation increased for genotypes with more
than 10 sylleptic laterals. On average, the number of sylleptic
was slightly overestimated (by 0.86). Conversely, Nb_leaves
and Trunk_length were on average underestimated by 2.29 and
8.42 mm, respectively. The distribution of sylleptic laterals along
the trunk was more homogeneous in the simulated population
than in the observed one (Figure 4). Indeed, a large variation in
this frequency that was not simulated by the model was observed
along trunk between 10 and 30 nodes. However, the highest
frequency of sylleptic laterals was obtained within the same
internode rank zone (∼ at rank 25) and the decrease after node
rank 40 was correctly simulated.
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FIGURE 2 | Accuracy of the genome wide predictions obtained using
116 1-year-old hybrid apple trees of a segregating population as
training set, with a Leave-one-out cross validation and a 10-fold cross
validation for four parameters (IN_length, Leaf_area, RLEGDD, and
logasyll) of the MAppleT model. The error bar for the 10-fold cross
validation was computed from the 10 values of correlations between the
observed and predicted value of the validation population. For each fold, 90%
of the population was randomly chosen as the training population and the
other 10% were used as the validation population. For the leave-one-out
cross validation, each phenotype was predicted using marker effects
estimated on the whole population excluding this genotype. The accuracy
was calculated once as the correlation between predicted and observed
phenotypes for the whole population.

The performance of the model was also evaluated by
comparing observed and predicted values obtained from
simulations under the environmental condition of Experiment 2
which was not used to estimate marker effects. In Experiment
2, correlations between observed and simulated values were
lower than in Experiment 1 (Figure 5). Correlations were low
but significant for Trunk_length (0.30) and Nb_syll (0.29). The
correlation was not significant for Nb_Leaves (0.10). The nRMSE
obtained for Nb_leaves, Trunk_length, and Nb_syll were 20, 21,
and 83%, respectively.

The total number of leaves was more strongly underestimated
in Experiment 2 than Experiment 1 (bias was −9.45 and
−2.29, respectively). This discrepancy resulted from the average
number of leaves observed in Experiments 1 and 2 (83.57 and
87.86, respectively) which were not in accordance with the
lower cumulate thermal time observed in Experiment 2 than
in Experiment 1. Despite of the strong underestimation of the
number of internodes (corresponding to the number of leaves),
the trunk length was overestimated in Experiment 2, unlike
Experiment 1. This probably results from an overestimation
of the mean individual internode length in Experiment 2.
Indeed, mean internode length in MAppleT was identical
in the two simulations whereas their observed values were
higher in Experiment 1 than in Experiment 2 (2.02 and
1.69 cm, respectively). The number of sylleptic laterals was
highly underestimated in Experiment 2 (bias was −5.01). This
is probably due to the underestimation of the leaf emergence

FIGURE 3 | Comparison of observed and simulated phenotypes for the
variable Nb_Leaves (A), Trunk_length (B), and Nb_Syll (C). Simulations were
performed using climatic conditions of Experiment 1. The dashed line
represents the regression line and the full line represents the 1:1 line.

rate which in turn affects the probability of sylleptic emergence
(Equation 1).

The 1-year-old apple trees simulated in the environmental
condition of Experiment 1 exhibited a large range of phenotypes.
Genotypes with high number of leaves and high trunk length or
with low number of leaves and high trunk length were simulated
(Figure 6). This suggests low correlations between the simulated
traits. Indeed, the simulated architectural traits were slightly
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FIGURE 4 | Distribution of the mean frequency of sylleptic laterals
along the trunks for 116 1-year-old apple trees either simulated (full
line) or observed (dashed line) in Experiment 1.

correlated (Table 3) with correlation coefficients similar to those
observed (Table 2). The correlations between the architectural
traits obtained from simulations in the two climatic conditions
were close to 1 (Table 3) probably showing that the model did
not generate large GxE interaction.

DISCUSSION

This paper presents a proposition for linking a FSPM, MAppleT,
with genetic information on growth and branching model
parameters, estimated on an apple tree segregating population.
Mean heritability values of architectural traits (trunk length,
number of leaves, and number of sylleptic laterals) were estimated
with two independent datasets which provided similar results.
However, heritability values were lower than those obtained by
Segura et al. (2006), on a subsample of 50 hybrids of the same
progeny, observed at the same age (1-year-old) but planted in
a different year (2003) and with three replicates per genotype
(Segura et al., 2006). Even though heritability values were similar
in Experiments 1 and 2, both phenotypic and genetic correlations
between these experiments were low. This suggests that the
proportion of phenotypic variation explained by the genotype
is constant but also that the genetic values vary between years.
This could result from differences in the climatic conditions in
the plantation years, from the variability in the plant material
obtained after grafting and from the existence of large GxE
interactions. This GxE interaction has been previously observed
in clonally propagated plants (Alspach and Oraguzie, 2002;
Chagné et al., 2014). Nevertheless, having re-multiplied the same
progeny several times is quite unique for a perennial crop in
which a single orchard and a low number of replicates per
genotype are often considered. Our results suggest that part of the
GxE interaction could result from propagation effect and confirm
that more attention should be paid in the future to the phenotypes
repeatability, through multi-sites or multi-years experiments, in

FIGURE 5 | Comparison of observed and simulated phenotype for the
variable Nb_Leaves (A), Trunk_length (B), and Nb_Syll (C). Simulations were
realized using climatic conditions of Experiment 2. The dashed line represents
the regression line and the full line represents the 1:1 line.

order to improve our understanding of the potential sources of
variability (Myles et al., 2009).

Previous studies aiming at linking FSPM with genetic
information have been based on QTL effects only (Xu et al.,
2011). Here, the marker effects were estimated first with interval
mapping methods but a few QTLs could be detected. This
contrasts with previous studies (Segura et al., 2007, 2009) and
could result from a lack of precision of either genotypes or
phenotypes and from the large GxE interaction.
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FIGURE 6 | Graphical outputs of MAppleT simulations for nine apple
tree genotypes with contrasting architectures. The position of trunk base
of the virtual trees on each axis of the graphic indicates their number of leaves
on the trunk (Nb_Leaves, X-axis) and the trunk length (Trunk_length, Y-axis),
respectively. The values of the number of leaves, trunk length, and number of
sylleptic laterals (Nb_Syll) are indicated under each virtual tree.

To overcome this, our strategy was to perform a genome wide
estimation of marker effects for the four studied parameters.
Correlations between estimated and observed values from the
genome wide prediction model were high, showing that the

model was able to estimate genotypic differences from SNP
polymorphisms. However, during the cross validation, the
accuracy was much lower even though similar to previous studies
on apple (Kumar et al., 2012; Muranty et al., 2015) or on
other species (Rutkoski et al., 2013; Fodor et al., 2014). This
highlights the limit of our genome wide prediction model to
predict phenotypic values for genotypes that are not included
in the training set. The prediction model accuracy is influenced
by the density of the genetic map (Kumar et al., 2012; Heslot
et al., 2013), the population size (Brito et al., 2011), and the
heritability of traits (Combs and Bernardo, 2013; Muranty et al.,
2015). Among the arguments mentioned above, the population
size is probably the most limiting factor in the present study. In
that context, high throughout methods such as airborne imagery
(Virlet et al., 2014) or 3D laser scanning (Boudon et al., 2014)
could be useful to provide phenotypic data related to plant
functioning or architecture on large sets of genotypes. Other
statistical models used to predict markers effects could also be
tested. Bayesian models that include a selection of variables
together with a shrinkage parameter for marker effects could be
tested in order to reduce the risk of over-fitting. Indeed, this over-
fitting problem could explain the low ability of our modeling
approach to predict genotypes that were not included in the
training set (de los Campos et al., 2013). Nevertheless, even if
these methods could be relevant, several studies have compared
the predictions for the different statistical methods and have
shown similar accuracy whatever the method used (e.g., Resende
et al., 2012; Fodor et al., 2014).

The predicted values of four MAppleT parameters (IN_length,
Leaf_area, RLEGDD, and logasyll) were used to simulate tree
development with MAppleT and three integrative traits
(Nb_Leaves, Trunk_length, and Nb_syll) were considered for
validating our approach. The RMSE was low for the three
variables when the genotypes were simulated in climatic
conditions of Experiment 1, used to parameterize the genome
wide model. This demonstrates the feasibility and relevance of
the approach, i.e., including genetic information into a FSPM.
As expected, the number of sylleptic laterals was correctly
simulated for Experiment 1, consistently with the fact that this
variable was used to estimate the probability of sylleptic lateral
emergence. Moreover, the node ranks along the trunks at which

TABLE 3 | Correlations between architectural traits simulated with MAppleT and genotypic marker effects for 116 1-year-old hybrid apple genotypes in
two experimental climatic conditions.

Experiment 1 Experiment 2

Nb_Leaves Trunk_length Nb_Syll Nb_Leaves Trunk_length Nb_Syll

Experiment 1

Nb_Leaves 1 0.34 0.26 0.99

Trunk_length 1 −0.09 0.99

Nb_Syll 1 0.98

Experiment 2

Nb_Leaves 1 0.35 0.26

Trunk_length 1 −0.10

Nb_Syll 1

Significant correlations according to Pearson’s test are indicated in bold.
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the frequency of sylleptic laterals was the highest was similar
to observations. The decrease in sylleptic frequency after node
rank 40 was also consistent with observations. This supports the
assumption we made of a close relationship between the RLE
and the sylleptic branching probability. However, the sylleptic
laterals were more homogeneously distributed along the trunks
in the simulated population than in observations. This suggests
that the link between the RLE and the sylleptic branching could
be stronger or more complex than modeled in this study. Further
refinements in the link between the dynamics of primary growth
and immediate branching, considering non-linear relationships
between RLE and branching probability (Génard et al., 1994),
could be considered.

Consistently with the discrepancy between the number of
leaves and the GDD in the two observation years, the comparison
of the integrated variables simulated and observed with the
climatic conditions of Experiment 2 generated high RMSE. As
previously stated for peach tree by Davidson et al. (2015), our
results confirm that modeling the leaf emergence rate based
on GDD is not sufficient, in particular for trees grown in field
conditions. Other environmental factors are likely to affect the
RLE in open field conditions, such as the soil resource availability.
Since the emergence of sylleptic laterals depended in our model
on the leaf emergence rate only, discrepancy was also obtained
for this variable when simulated with Experiment 2 conditions.

Despite these limitations and the necessity of further
improvements of the predictions based on genome wide
information, the MAppleT model including the genotypic
marker effects simulate genotypes with contrasting architectures
for which correlations among simulated architectural traits
were similar to observations. This suggests that the different
hybrid genomes corresponding to different trait recombination
were correctly taken into account. The existence of numerous
recombination of architectural traits in F1 hybrids and the
difficulties that this generates for the qualitative assessment
of hybrid architecture was previously underlined by Segura
et al. (2009). The presented approach thus opens a new way
to experiment the consequences of genome recombination
on integrated phenotypes. However, further evaluation on the
agronomic performance of each genotype when the tree will
be mature would be useful to complement the present study.
Even though quantitative genetic models allows studying the
genetic determinism of several traits jointly though multi-traits
approaches (e.g., Mathews et al., 2008; Alimi et al., 2013), the
exploration of several, possibly not correlated, traits remains a
challenge to facilitate the exploration of plant ideotypes (Martre
et al., 2015). Indeed, ideotypes are by definition composed of
several desirable traits. FSPMs, by providing simulations of plant
architecture and allowing the investigation of the impact of
architectural traits on integrative traits such as light interception
or biomass production (e.g., Da Silva et al., 2014) constitute a
powerful tool to assess phenotype performance.

The integration of other environmental factors in the present
modeling approach would be necessary to extent the domain
of validity and to further analyze GxE interactions. This could
be achieved by integrating other environmental response curves
and adding the effects of each individual environmental factor

on plant growth processes as done for instance by Reymond
et al. (2003), Hammer et al. (2006), or Casadebaig et al.
(2011). Alternative approaches including an intermediate plant
variable that takes into account the combined effects of many
environmental factors could be relevant. In this way, functional
structural plant models considering the impact of C source-
sink balances on plant and organ growth through a variable
(the index of competition for carbon) reflecting the internal
trophic state of the plant have been proposed (e.g., Luquet et al.,
2006; Mathieu et al., 2009; Pallas et al., 2013). Such approaches
could be appropriate to reduce the risk of overestimating the
environmental effects that result from the additive models used
in above mentioned studies (Reymond et al., 2003; Hammer
et al., 2006; Casadebaig et al., 2011). In this present study, the
RLE could be considered as an intermediate variable since it
determines the branching probability. Presently, RLE was affected
by temperature, only but its use as an intermediate variable could
be tested under other environmental constraints such as water
stress.

Finally, the extension of such models coupling FSPM and
genetic information to larger germplasms and to the generation
of a new simulated mapping population, as recently proposed in
rice (Xu and Buck-Sorlin, 2016), will likely be a new research
avenue in interface with eco-physiology, process-based, and
gene-based modeling (Technow et al., 2015). For perennials,
the extension to multi-years development of trees will represent
another complexity that could be tackled based on knowledge on
genetic determinisms over years (Segura et al., 2008, 2009).
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