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Although seed vigor is a complex physiological trait controlled by quantitative trait
loci, technological advances in the laboratory are being translated into applications for
enhancing seed vigor in crop plants. In this article, we summarize and discuss pioneering
work in the genetic modification of seed vigor, especially through the over-expression of
protein L-isoaspartyl methyltransferase (PIMT, EC 2.1.1.77) in seeds. The impressive
success in improving rice seed vigor through the over-expression of PIMT provides
a valuable reference for engineering high-vigor seeds for crop production. In recent
decades, numerous genes/proteins associated with seed vigor have been identified. It
is hoped that such potential candidates may be used in the development of genetically
edited crops for a high and stable yield potential in crop production. This possibility is
very valuable in the context of a changing climate and increasing world population.

Keywords: Arabidopsis, cereal crops, genetic modification, protein l-isoaspartyl methyltransferase (PIMT), rice,
reactive oxygen species (ROS), seed vigor and longevity, transgenic seeds

INTRODUCTION

Seed vigor is a complex physiological trait that is necessary to ensure the rapid and uniform
emergence of plants in the field (Ventura et al., 2012), essentially including the seed longevity, the
tolerance of environmental stresses by germination, and the ability to withstand prolonged storage
and CDT. This trait is controlled by many QTLs that are located on different chromosomes, as
found in the model plant Arabidopsis (Clerkx et al., 2004) and in crop plants such as rice (Cui et al.,
2002; Miura et al., 2002), Medicago truncatula (Vandecasteele et al., 2011), and maize (Han et al.,
2014) and is also affected by environmental factors during seed development, harvest, and storage.

Orthodox seeds, such as cereal seeds, undergo desiccation at the end of the maturation
process on the mother plant and maintain their vigor over prolonged time periods (Rajjou
et al., 2012). Because of their desiccation tolerance during dry storage, orthodox seeds are most
commonly used in agriculture. For example, only three crop species (wheat, rice, and maize)
account for more than 50% of all calories consumed by of the global population (Macovei et al.,
2012). In addition to economic and ecological importance, high-vigor seeds are necessary for
seedling establishment and sustainable crop productivity, especially under unfavorable conditions

Abbreviations: CDT, controlled deterioration test; GABA, γ-aminobutyric acid; GM, genetic modification; HSF, heat stress
transcription factor; HSPs, heat shock proteins; isoAsp, L-isoaspartyl residues; LEA, late embryogenesis abundant; OsALDH7,
rice aldehyde dehydrogenase 7; OsPIMT1, rice protein l-isoaspartyl methyltransferase; PIMT, protein l-isoaspartyl
methyltransferase; PLD, phospholipase; QTLs, quantitative trait loci; ROS, reactive oxygen species; SSADH, succinic-
semialdehyde dehydrogenase.
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(Rajjou et al., 2012; Ventura et al., 2012). High-vigor seeds can
improve seed germination and seedling emergence, increase crop
yield and reduce the cost of agriculture production. With the
widespread application of modern mechanized precision sowing
technology for grain (e.g., maize, wheat) production, high-
vigor seeds have become particularly important. In addition,
for seed germplasms conserved in gene banks around the
world, seed vigor and longevity may affect the regeneration
cycle of accessions stored in seed banks. Seeds in long-term
storage, especially under high-temperature and high-moisture
conditions, will eventually lose their viability (Ventura et al.,
2012). High-vigor seeds can survive a prolonged storage
time.

However, the seed vigor trait is often excluded from traditional
breeding programs, which are mostly directed toward high
yield. To increase the vigor of commercial seed lots, the seed
industry practices various invigoration treatments, especially
physical priming methods (review in Ventura et al., 2012;
Araújo et al., 2016). In fact, the potential of GM technology
for enhancing seed vigor has been proposed as the most
effective, economical and sustainable approach (Clerkx et al.,
2004; Vandecasteele et al., 2011; Han et al., 2014). In the
context of classical breeding, the application of GM technology
to agriculturally important crops will play an increasingly
important role in solving some fundamental challenges that
face agriculture, natural resources and the environment. In
this article, we summarize and discuss some pioneering work
in the GM of seed vigor, especially through the approach of
genetic engineering the PIMT (EC 2.1.1.77) in seeds. GM for
improving seed vigor is just transitioning from model plants
to crop plants. Promisingly, numerous genes/proteins associated
with seed vigor, identified over the decades, may be used for the
creation of genetically edited crops for a high and stable yield
potential in crop production. This possibility is very valuable
in the context of a changing climate and increasing world
population.

PHYSIOLOGICAL, BIOCHEMICAL, AND
GENETIC BASES OF SEED VIGOR

Seed vigor is a complex physiological trait involving regulatory
networks that integrate genetic programs, metabolic signals,
and hormonal signaling pathways (Rajjou et al., 2012). Many
QTLs located on different chromosomes have documented
associations with seed vigor. The various candidate genes
identified within these QTLs are mainly involved in the glycolytic
pathway, protein metabolism and signal transduction (Cui
et al., 2002; Miura et al., 2002; Vandecasteele et al., 2011;
Han et al., 2014). Seed vigor also has a close relationship
with seed maturity degree, harvest time, and storage period: it
has a maximum at physiological maturity and then decreases
during storage (Sun et al., 2007). Carbohydrates, proteins,
and mRNAs stored during seed development on the mother
plant assist with hormone signaling pathways, especially the
ABA signaling pathway, to regulate seed germination and
influence seed vigor (Rajjou et al., 2012). ABA participates in

regulating the expression of some seed genes in the mother
plant during seed dehydration, such as LEA proteins, and
inhibits the germination of developing seeds (Williams and
Tsang, 1991). During storage, the seed will always deteriorate
through a series of changes, such as the accumulation of ROS,
lipid peroxidation, loss of cellular membrane integrity, enzyme
inactivation, weak energy metabolism, and DNA degradation
(Kibinza et al., 2006; Parkhey et al., 2012; Ventura et al.,
2012; Xin et al., 2014; Yin et al., 2014; Kong et al., 2015;
Ratajczak et al., 2015).

The loss of seed vigor is a complex normal biological
phenomenon. In research on the mechanism of seed vigor
change, CDT is the main way to simulate the seed aging process
because aging naturally is time-consuming. Proteomics analysis
displays a similar proteome characterization between artificial
and natural aged Arabidopsis seed (Rajjou et al., 2008). However,
a recent study reported substantial differences in scutellum
nuclear content and morphology between the viability loss
of accelerated and naturally aged wheat seed (Ahmed et al.,
2016). Numerous studies have been performed on the process
of seed deterioration in various plant species (e.g., Catusse
et al., 2008, 2011; Galpaz and Reymond, 2010; Han et al., 2014;
Nagel et al., 2014). However, the underlying mechanism remains
unclear. It has become increasingly accepted that ROS damage
to DNA (Vanderauwera et al., 2011), proteins (Rajjou et al.,
2008) and membrane lipids (Roqueiro et al., 2010) plays a role
in seed aging. ROS are continuously generated during seed
development, storage and germination and exist in a state of
dynamic equilibrium in cells under the action of free radical
scavenger enzymes. Thus, the accumulation of ROS could be a
common mechanism in seed deterioration. As a countermeasure,
seed vigor has evolved a sophisticated mechanism (protection,
detoxification, and repair) to protect macromolecules from ROS
damage (review in Rajjou et al., 2012; Ventura et al., 2012).
The possibility of restricting ROS accumulation may be a
promising step toward successfully engineering seed vigor in
crops.

POTENTIAL CANDIDATES OF
GENES/PROTEINS ASSOCIATED WITH
SEED VIGOR TRAIT

Under natural conditions, it is very rare to acquire high-vigor
seeds through natural variation. Traditional breeding has made
great progress in crop improvement; however, the process is
time-consuming, and the genetic resources regarding seed vigor
are limited. Promisingly, with the development of global omics
approaches, such as genomics, transcriptomics and proteomics,
numerous potential candidates (genes/proteins) involved in seed
vigor have been identified with high efficiency in recent decades
(Table 1), though few have been detected in the identified
QTLs associated with seed vigor (Cui et al., 2002; Miura
et al., 2002; Vandecasteele et al., 2011; Han et al., 2014). These
potential candidates may be used in breeding programs and/or
in biotechnological approaches to improve seed vigor and crop
yields.
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TABLE 1 | Candidate proteins/genes for improving seed vigor in plants.

Plant species Target proteins/genes Reference

Repair proteins/genes

Arabidopsis thaliana AtLIG6, AtLIG4, AtOGG1 Waterworth et al., 2010; Chen et al., 2012

Medicago truncatula MSR, MtOGG1, MtFPG, MtTFIIS Macovei et al., 2011a,b; Châtelain et al., 2013

Protective proteins/genes

A. thaliana ATEM6, PLDα1, LEA14, XERO1, RAB18, HSP70, HSP 20,
HSP17.7

Gallardo et al., 2001; Manfre et al., 2006, 2009; Devaiah
et al., 2007; Hundertmark et al., 2011

Oriza sativa OsHSP18.2 Kaur et al., 2015

Triticum aestivum HSPs Helm et al., 1989

Zea mays HSP18, HSP 17.2, HSP 16.9, LEA-3, EMB564, PR2,
Opaque2, MT1

Revilla et al., 2009; Wu et al., 2011

Glycine max PLDα Lee et al., 2012

Helianthus annuus HaHSFA9 Prieto-Dapena et al., 2006

Nelumbo nucifera NnHSP17.5 Zhou et al., 2012a

Beta vulgaris HSP17, PP2A, 14-3-3, Glycine betaine Catusse et al., 2008, 2011

M. truncatula HSP 18.2, HSP17.4, GroEL, RPN1, sHSP20 Yacoubi et al., 2011; Châtelain et al., 2012

Detoxification proteins/genes

A. thaliana SSADH, MSD1, CAT1, HPT1, APX4, AtDLAH, RBOH-B,
MST, VTE

Bouché et al., 2003; Sattler et al., 2004; Rajjou et al., 2008;
Müller et al., 2009; Xi et al., 2010; Seo et al., 2011; Wang
et al., 2014

O. sativa OsALDH7, ACCase, PI3K Shin et al., 2009; Talai and Sen-Mandi, 2010; Liu et al.,
2012

Hordeum vulgare PER1 Stacy et al., 1999

Z. mays 2-Cys Prx BAS1, TPX, GST, GLO, SOD4, CAT3 Revilla et al., 2009; Wu et al., 2011

N. nucifera NnANN1, NnMT2a, NnMT2b, NnMT3 Chu et al., 2012; Zhou et al., 2012b

Nicotiana tabacum CuZnSOD, APX Lee et al., 2010

M. truncatula Annexin, SOD, Trx, AhpC, 1-Cys Prx, GST, Prx, MSR Yacoubi et al., 2011, 2013; Châtelain et al., 2013

Others

A. thaliana eIFiso4F, RSL1, Gln1, Gln2 Lellis et al., 2010; Bueso et al., 2014; Guan et al., 2015

Beta vulgaris ICL, SAM, Cys synthase, caleosin Catusse et al., 2008, 2011

G. max Tu1, Tu2, 1-a Wang et al., 2012

O. sativa OsLOX Suzuki and Matsukura, 1997; Wang et al., 2008

Repair Proteins
The formation of isoAsp, arising from both the deamidation
of L-asparaginyl residues and the isomerization of L-aspartyl
residues, is a frequent chemical modification that alters
protein structure and leads to a loss of function (Lowenson
and Clarke, 1992). The PIMT counteracts such damage by
catalyzing the conversion of isoAsp to normal Asp in a
variety of organisms, including plants (reviewed in Clarke,
2003). The PIMT-mediated protein repair mechanism represents
a good example that has been successfully engineered for
enhanced seed vigor (see below: case of PIMT, Table 2).
For orthodox seeds, DNA damage, caused by ROS stress,
occurs during seed dehydration and storage, leading to vigor
loss. It is generally recognized that enhanced seed vigor and
successful priming depend on DNA repair mechanisms activated
during imbibition (Ventura et al., 2012). In Arabidopsis, the
plant-specific DNA ligase VI (AtLIG6 and AtLIG4) is an
important determinant of seed vigor and longevity under
adverse germination conditions; atlig6 and atlig6::atlig4 mutants
show significant hypersensitivity to CDT, displaying delayed
germination and reduced seed vigor (Waterworth et al., 2010).
A bifunctional DNA glycosylase/apurinic/apyrimidinic lyase,

AtOGG1, is involved in base excision repair for eliminating
8-oxo-G from DNA, and the over-expression of AtOGG1
enhances seed longevity and abiotic stress tolerance (Chen
et al., 2012). These DNA repair pathways represent potential
targets for the generation of crops with improved seed vigor
traits.

Protective Proteins
Protective molecules such as LEA proteins and HSPs are generally
associated with desiccation tolerance and longevity and are
accumulated in the maturation phase during seed development.
These stress-related proteins may also play a role in seed vigor.

Transgenic Arabidopsis seeds over-accumulating a HSF
exhibit enhanced accumulation of HSPs and improved tolerance
to aging (Prieto-Dapena et al., 2006). Knockout mutation
in ATEM6 of the Arabidopsis group 1 LEA family resulted
in a premature phenotype, demonstrating that ATEM6
protein is associated with water retention/loss during seed
maturation; however, it might not be required in mature
seeds for viability or efficient germination (Manfre et al.,
2006, 2009). Dehydrins are LEA proteins that accumulate
during seed maturation and in response to abiotic stresses
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TABLE 2 | Physiological consequences of altering PIMT accumulation in plant seeds.

Plant species Methodology Main findings and altered seed traits Reference

A. thaliana T-DNA insertion line with increased
PIMT1 expression and transgenic lines
with altered PIMT1 expression

The physiological role of AtPIMT1 in seed vigor and longevity has been
established in Arabidopsis.
The higher PIMT1 amount in pimt1-1 seeds correlates with lower
isoAsp accumulation in vivo and increases both seed longevity and
germination vigor, and vice versa.
Germination % after 8 days storage (40◦C, 15–20% humidity): 52 and
25% for WT seeds; 80 and 50% for the pimt1-1 mutant seeds,
monitored at 4 days after sowing.

Ogé et al., 2008

Cicer arietinum Seed-specific Over-expression of
CaPIMT1 and CaPIMT2 in Arabidopsis

The role of CaPIMT2 in seed vigor and longevity has been elucidated.
CaPIMT2 enhances seed vigor and longevity by repairing abnormal
isoAsp in the seed nuclear proteome.
Germination % after 4 days of CDT, control seeds, 10–14%; CaPIMT1
and CaPIMT2 transformed seeds, 80–90%.

Verma et al., 2013

O. sativa Overexpressing OsPIMT1 lines and
OsPIMT1 RNAi lines

The role of OsPIMT1 in seed vigor and longevity has been elucidated.
Germination % after 21 days of CDT, overexpressing OsPIMT1
transgenic seeds, increased 9–15%; OsPIMT1 RNAi lines, rapid loss of
germination.

Wei et al., 2015

Transgenic rice and Arabidopsis lines
with altered expression of OsPIMT1
and OsPIMT2

The PIMT-mediated protein repair mechanism during seed development
and aging in rice has been elucidated, i.e., OsPIMTs repairs
antioxidative enzymes and proteins that restrict ROS accumulation, lipid
peroxidation, and so on, thus contributing to seed vigor and longevity.
Transgenic rice overexpressing OsPIMT1 and OsPIMT2 exhibits
improved seed vigor and longevity.
Germination % after 4 days of CDT, control seeds, 8% (maximum);
OsPIMT1, OsPIMT2, and 1OsPIMT2 transformed seeds, 43–48%.

Petla et al., 2016

in vegetative tissues. A twofold reduction in seed-specific
dehydrin (LEA14, XERO1, and RAB18) by RNAi reduced
seed longevity and viability in Arabidopsis (Hundertmark
et al., 2011). Phospholipase D, which cleaves phospholipids
and generates phosphatidic acid (PA), is involved in the
early stages of seed deterioration. The accumulation of PA
in seeds triggers damage at the level of cellular membranes
and storage lipids. Depletion of the Arabidopsis PLDα1 gene,
encoding a member of the lipid-hydrolyzing phospholipase
D family, resulted in seeds with lower levels of lipid
peroxides and increased tolerance to aging (Devaiah et al.,
2007).

Detoxification Proteins
This class of proteins performs the degradation and/or
elimination of endogenous and exogenous toxins, such as ROS.
In particular, to eliminate ROS, cells develop a number of
ROS scavengers such as superoxide dismutase, peroxidase, and
vitamins. Enhanced seed longevity has been reported through
the elimination of ROS by over-accumulated ROS scavengers in
transgenic seeds (e.g., Lee et al., 2010).

Three genes (NnMT2a, NnMT2b, and NnMT3) from
sacred lotus that encode metallothioneins, cysteine-rich
small proteins involved in ROS scavenging, were highly
expressed in germinating sacred lotus seeds and dramatically
upregulated in response to high salinity and oxidative stresses
(Zhou et al., 2012b). Moreover, transgenic Arabidopsis seeds
overexpressing NnMT2a and NnMT3 displayed a remarkably
improved resistance to accelerated aging treatment, indicating
their significant roles in seed germination vigor (Zhou et al.,
2012b).

The mitochondrial SSADH is one of the three enzymes
involved in the GABA shunt. In plants, the role of the
GABA shunt in protection against oxidative stress has been
demonstrated (Bouché et al., 2003). The presence of SSADH
in dry seeds suggests that the GABA shunt is involved in
the control of seed longevity or/and germination. Mutations
in the OsALDH7 gene resulted in seeds that were more
sensitive to artificial aging conditions and accumulated more
malondialdehyde than wild-type seeds, implying that this enzyme
plays a role in maintaining seed viability by detoxifying the
aldehydes generated by lipid peroxidation (Shin et al., 2009).

GENETIC MODIFIED SEEDS FOR
ENHANCED VIGOR: CASE OF PIMT

In seeds, proteins are prone to aging damage during normal aging
and CDT. To date, a successful approach to enhanced seed vigor
involves enhancing the accumulation of PIMT in seeds. However,
no specific proteins have been assigned to the identified QTLs
associated with seed vigor. The history of this effort provides
an excellent example of how scientific problem solving can be
brought to bear on applications in agriculture.

Mudgett and Clarke (1993, 1994) first discovered PIMT
activity in plants and proposed that PIMT might be involved in
seed survival by preventing isoAsp accumulation in the proteins
of aging and stressed seeds. PIMT has since been detected
in a wide range of plants and cloned in Arabidopsis, wheat,
chickpea and rice, and the numbers are still increasing. In
plants, PIMT is encoded by two different genes (PIMT1 and
PIMT2) (Xu et al., 2004), which display distinct expression
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patterns but similar biochemical properties (Thapar et al., 2001).
Later, Ogé et al. (2008) validated the role of this enzyme in
both seed vigor and longevity by altering the expression of
PIMT1 in Arabidopsis. Their findings implicate PIMT1 as a
major endogenous factor that limits isoAsp accumulation in seed
proteins, thereby improving seed traits such as longevity and
vigor. Recently, the role of PIMT in seed vigor and longevity
has been evaluated in chickpea (Cicer arietinum) (Verma et al.,
2013) and rice (Oriza sativa) (Wei et al., 2015; Petla et al., 2016).
Notably, transgenic rice constitutively overexpressing OsPIMT1
and OsPIMT2 exhibited improved seed vigor and longevity (Petla
et al., 2016).

Although the seed vigor trait depends on a wide range
of physical, chemical, molecular and QTLs, the PIMT repair
pathway improves seed vigor in rice by restricting the formation
of deleterious isoAsp and repairing damaged proteins, not
through direct DNA or lipid protection (Petla et al., 2016).
This finding implies the efficacy of making high-vigor rice seeds
through a target-gene approach. However, it remains to be
observed whether this approach can work in the field or whether
other single-gene manipulations can also produce such effects.
Moreover, the effect of enhanced PIMT expression on other seed
traits, e.g., nutrient value, potential health risk as food and feed,
and plant phenotypes, must be extensively evaluated. In addition,
the exploitation of such PIMT-mediated improvement of seed
vigor in other important crops could have a huge impact on
the agricultural economy. The successful case of over-expressed
PIMT enhancing seed vigor proves a good guide for other
potential candidates.

CONCLUDING REMARKS AND
PERSPECTIVE

Currently, achieving food supply security with limited arable
land is a major global challenge due to the changing climate and
increasing global population. The approach of modifying PIMT
in seed tissues provides a rational means of creating high-vigor
seeds for crop production. Its application to important cereals
such as wheat, rice, and maize may have a dramatic impact
on global food security. Despite substantial progress, many
questions still remain. The possible effect of enhanced seed vigor
obtained by the over-expression of PIMT and other proteins on
the nutritional value of crops is unclear. It remains to be assessed
whether a GM seed with enhanced vigor shares similar health and
nutritional characteristics with its conventional counterpart.

While numerous potential candidates (genes/proteins)
associated with seed vigor are available, their roles in improving
seed vigor must be validated by reverse genetics on large-scale
samples before translation into application in agriculturally
relevant crop species. The rapid development of new genome-
editing techniques enables the precise modulation of traits of
interest with unprecedented control and efficiency. Among
the current genome-editing tools, CRISPR is easy, rapid and
inexpensive, exhibiting a broad applicability of plant genome
editing for the development of designer crops (review in
Khatodia et al., 2016). However, it is important to remember
that the safe use of GM food or feed requires an assessment
of health risks and environmental effect (Araki and Ishii,
2015).

At present, there are no reports on the application of CRISPR
in manipulating seed vigor in plants. Genome-editing techniques
represent a promising tool for manipulating the accumulation
of proteins associated with seed vigor in a seed-specific manner
and should greatly reduce the time needed to obtain valuable
crop varieties. Thus, the creation of such transgenic seeds
and their subsequent application in agriculture is crucial for
better feeding a rapidly growing population in a changing
climate.

Seed quality is the basis of agricultural production. High-
quality seeds are an unremitting pursuit for every seed producer.
GM technology is an effective, economical and sustainable way
to improve seed vigor, change seed color or shape, or boost
nutrient components and other agronomic traits for crops. The
application of GM technology will sharply change the face of
agriculture.
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