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Metabolomics provides a powerful platform to characterize plants at the biochemical
level, allowing a search for underlying genes and associations with higher level
complex traits such as yield and nutritional value. Efficient and reliable methods to
characterize metabolic variation in economically important species are considered of
high value to the evaluation and prioritization of germplasm and breeding lines. In
this investigation, a large-scale metabolomic survey was performed on a collection of
diverse perennial ryegrass (Lolium perenne L.) plants. A total of 2,708 data files, derived
from liquid chromatography coupled to high resolution mass spectrometry (LCMS),
were selected to assess the effectiveness and efficiency of applying high throughput
metabolomics to survey chemical diversity in plant populations. The data set was
generated from 23 ryegrass populations, with 3–25 genotypes per population, and
five clonal replicates per genotype. We demonstrate an integrated approach to rapidly
mine and analyze metabolic variation from this large, multi-batch LCMS data set. After
performing quality control, statistical data mining and peak annotation, a wide range
of variation for flavonoid glycosides and plant alkaloids was discovered among the
populations. Structural variation of flavonoids occurs both in aglycone structures and
acetylated/malonylated/feruloylated sugar moieties. The discovery of comprehensive
metabolic variation among the plant populations offers opportunities to probe into the
genetic basis of the variation, and provides a valuable resource to gain insight into
biochemical functions and to relate metabolic variation with higher level traits in the
species.
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INTRODUCTION

Perennial ryegrass (Lolium perenne L.) is a widespread species in pasture and amenity
settings throughout temperate latitudes. Compared to other forage species such as Festuca
spp., the value of perennial ryegrass generally lies in its rapid establishment, long growing
season, high palatability, and digestibility for ruminant animals (Humphreys et al., 2010).
To date the main focus of ryegrass improvement has been on yield, heading date, disease
resistance, seasonal growth, and persistence (Williams et al., 2007). Perennial ryegrass is an
obligate outcrossing species with limited information on genetic regulation of the targeted
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(often complex) traits. This knowledge limitation may be part of
the reason why the rate of genetic gain for forage yield achieved
in this species has been modest (Brummer and Casler, 2014).

Some of the most important aspects of dissecting a complex
trait is to accurately characterize the target trait and trait
components, and to elucidate genetic and environmental factors
affecting the trait. For example, enhanced grass digestibility
in ruminants is of long standing research interest. Metabolites
associated with aspects of digestibility have been reported
including phenolic acids (Theodorou et al., 1987), lignin (Vogel
and Jung, 2001), and water soluble carbohydrates (Rasmussen
et al., 2012). However, the underlying metabolic mechanism for
digestibility of grasses is far from clear. Global metabotyping, i.e.,
phenotyping at the metabolic level, may offer new opportunities
to identify all the chemical components, followed by modeling
their combined effects on digestibility or other complex traits.
High-throughput metabolomics not only provides the power to
survey natural metabolic variation of known and novel molecules
among and within populations, it also enables accurate detection
of associated genes (Dumas et al., 2007). Across a range of species,
metabolomics has become a powerful platform which can be used
to investigate genetic diversity at the metabolic level (Fernie and
Klee, 2011; Langridge and Fleury, 2011), to draw associations
between metabolic phenotypes and morphological traits (Hu
et al., 2014), and to identify genetic loci (Koulman et al., 2009)
or to clone genes governing the accumulation of biologically
important metabolites (Dumas et al., 2007).

Due to the dynamics and structural complexity of natural
metabolites different analytical platforms have to be employed
to investigate each class of metabolites. Thus, the types of
metabolites that can be measured are necessarily limited
by different analytical methods in extraction, separation
and detection. In this study, a non-targeted metabolomics
platform using liquid chromatography (reversed phase (RP),
hydrophobicity based) coupled to high resolution electrospray
ionization (ESI) mass spectrometry (LCMS) was employed
(Fraser et al., 2014), to enable ready detection of semi-polar
compounds.

In perennial ryegrass, metabolic research interests have
focused on plant-endophyte interactions (Cao et al., 2008;
Rasmussen et al., 2008; Ponce et al., 2009; Qawasmeh et al., 2012),
with little effort pursued on the natural metabolic variation of
the host plant itself. The objectives of this study were: (1) to
evaluate the reproducibility of LCMS-based metabolomics from
large, multi-batch experiments; (2) to study metabolic profiles
within and among ryegrass populations and; (3) to discuss the
opportunities and limitations of high throughput metabolomics
in genetic studies and improvement of ryegrass, and outcrossing
plant species in general.

RESULTS

Data Quality Evaluation of the Detected
Peaks
Thirty-two thousand, two hundred and seventy-three peaks from
positive ESI and 20,838 peaks from negative ESI were detected

from 1,331 to 1,377 samples, including controls, respectively.
For the convenience of discussion, a nomenclature for peaks is
assigned as for example, CP434.2167_4.58, where CP represents
the C18 column in positive ion mode, 434.2167 the measured m/z
and 4.58 the retention time in minutes. Accordingly, CN denotes
peaks from the negative ESI.

After applying a series of quality control filtering, including
peak merging, batch effect normalization, and de-isotoping
procedures 28,043 CP peaks were retained. Overall quality was
evaluated by principal component analysis (PCA) where control
samples (n= 71) are differentiated from all experimental samples
(the PG group, n = 1162) (Figure 1A) in a space spanned by
PC1 (5.2%) and PC2 (4.1%). The separation of control samples
demonstrates the effectiveness of the peak filtering procedures for
correcting the batch effect which was the predominant variation
prior to filtering (Supplementary Figure 1). Similar results were
found for 15,486 CN peaks (Supplementary Figure 2).

Excluding the control samples, a statistical filtering (Kruskal
test, p-values < 0.05) was applied to retain peaks of biological
interest among the 23 populations. This led to 17,579 CP peaks
from 1,162 PG samples. To assess the technical variability and
evaluate the quality of individual peaks, we first calculated
the coefficient of variation (cv) of the five replicates in each
of 233 genotypes, and the median value of cv among all
genotypes. Among all 17,579 CP peaks, 42.1% of peaks exhibited
cv < 0.3 (Figure 1B), indicating appreciable variation but an
adequate number of peaks measured with certainty to justify peak
annotation.

Data quality should comprise both the reproducibility of peak
intensity and the reliability of peak identity. However, in large
scale metabolomics studies peak complexity often confounds
peak identification due to a mixture of compounds within a peak
or the difficulty in peak alignment. In this study, as illustrated in
Figure 2, we follow three criteria for annotation: (1) isotopic peak
presence, e.g., to annotate the peak of interest CP697.1593_4.15,
its isotopic peak (CP698.1630_4.15) must be present in the peak
annotation table; (2) use of the correlation structure of top ranked
peaks to enable a group of peaks, often co-eluting, to be annotated
simultaneously rather than on an individual basis; and (3)
search in the raw data generated from highly expressed samples
and compute the mean mass spectrum of the eluting peak for
spectral interpretation. Any peaks deficient in these aspects of
information are largely excluded from discussion in this study.
As an example (Figure 2), the extracted ion chromatogram
(EIC) of m/z 697.1593 ± 20 ppm was retrieved from a sample
with a strong peak intensity and the mean mass spectrum was
constructed from individual peaks. The mass spectrum of peak
1 at 4.15 min (249 s), with co-eluting ions m/z 287.05, 449.11
indicates the presence of aglycone kaempferol (K) and the release
of hexose (m/z 162) moieties; the loss of m/z 248.05 indicates
the presence of a malonyl hexose (maHex). We assume m/z 162
as glucose (Glc) as it is the most commonly found hexose in
plant flavonoid O-glycosides. Therefore, CP697.1593_4.15 can
be annotated as K-Glc-maGlc, where maGlc represents maHex.
A loss of m/z 146 can be attributed to rhamnose (Rha) because
it is the only deoxyhexose known to form natural flavonoid
conjugates.
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FIGURE 1 | (A) Principal component analysis analysis based on 28,043 CP peaks from 1,162 experimental samples (PG group) and 71 controls (Control group).
(B) Distribution of the coefficient of variation (cv) of all the peaks, evaluated based on the replicates (n = 5) of each genotype.

FIGURE 2 | Illustration of annotation methods. To annotate a targeted peak CP697.1593_4.15, it’s isotopic peak (CP698.1630_4.15) must be present in the
peak annotation table, and the peak retention time must be located in [rtmin, rtmax] in the peak annotation table (step 1); use correlation structure of top ranked
peaks so that highly correlated peaks (r > 0.9) can be annotated together, with co-eluting peaks often assigned as fragment ions (step 2); extracted ion
chromatogram (EIC) of m/z 697.1593 ± 20 ppm was retrieved from a sample with strong peak intensity, the average mass spectrum was constructed from each
individual peak (step 3). Here the mass spectrum of peak 1 at 4.15 (249 s), with co-eluting ions m/z 287.05, 449.11, can be annotated as K-Glc-maGlc. Peak 2 is an
isomeric peak of CP697.1593_4.15, with characteristic ions m/z 287.05, 449.11 and 535.11. The presence of m/z 535.11 (–86) further suggests the presence of a
malonyl group in the molecule.
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FIGURE 3 | UPGMA clustering of 23 ryegrass populations (Euclidean distance metric was used; based on 17, 579 CP peaks). PG238 and Tunisia
populations show profiles distinct from all others.

Distinct Metabolic Profiles in
Populations of North African Origin
The median peak intensity among the five clonal replicates
was used to assess clonal variation among the 233 genotypes
(individual plants). Those peaks that are invariant (Kruskal test,
p-value > 0.05) among the 23 populations (including cultivars,
ecotypes and breeding lines) were removed. 17,579 CP peaks and
12,238 CN peaks were consequently retained to investigate the
pattern of variation among the populations.

Based on the 17,579 CP peaks the UPGMA (Unweighted
Pair Group Method with Arithmetic Mean) clustering of 23
ryegrass populations reveals ‘PG238’ and ‘Tunisia’ are clearly
differentiated from the others (Figure 3). Both populations are
of North African origin, ‘PG238’ being a Moroccan ecotype and
‘Tunisia’ a Tunisian ecotype. All other populations are European
and New Zealand cultivars or breeding lines.

An empirical Bayes method (Smyth, 2004) was used to
identify peaks differentiated among the populations. Many
CP/CN peaks were shown to be significantly different, with FDR
(false discovery rate) adjusted p-value < 0.01, among the 23
populations. With a test on the 711 most intense CP peaks
(with mean intensity > 1e5), 551 (77.5%) were found to be
significant and likewise, 86.5% (365/422) of the CN peaks were
significantly different. Here, we only focus on the intense peaks
(which likely give rise to more informative spectra), and use a
ranking algorithm (Ahdesmäki and Strimmer, 2010) to select the
top 50 most differentiated peaks to carry out annotation.

Among the top ranked CP/CN peaks (Supplementary Data
1 and Data 2) many are only present or absent in ‘PG238.’
An example is peak CP667.1858_5.46 (Figure 4), which can

be annotated as isorhamnetin-acetylglucosyl-rhamnoside. Our
annotation reveals that the top ranked CP/CN peaks represent
a class of flavonoids and their derivatives, which can be
characterized by typical fragment ions in mass spectra. Briefly,
the backbone of this class of molecules can be identified by
the characteristic accurate m/z in positive ion mode, with m/z
287.05 of kaempferol (K), m/z 303.05 of quercetin (Q) and
m/z 317.06 of isorhamnetin (I), in protonated form [M+H]+,
respectively. These three main flavonols are commonly found
in Lolium spp., often existing as O-glycosides (Qawasmeh
et al., 2012). Sugar conjugates are also found acetylated with a
typical loss of m/z 204, and acetylhexose is denoted as acGlc,
hereafter. As a result, a number of annotated metabolites,
such as I-acGlc-Rha (CP667.1858_5.46, CN665.2085_5.39),
I-acGlc (CP521.1286_5.89), Q-acGlc-Rha (CP653.1703_5.11)
and Q-acGlc (CP507.1128_5.59, CN505.0985_5.54), are only
present in ‘PG238.’ Among the top ranked peaks (Supplementary
Data 1 and Data 2) are also fragment peaks, which are correlated
and co-eluting, for example CN300.0272_5.55 is a fragment peak
from CN505.0985_5.54.

Another group of metabolites that are absent in both
‘PG238’ and ‘Tunisia’ include K-Glc-maGlc (CP697.1593_4.15,
CP535.1073_4.15, see it’s annotation in Figure 2), and K-Glc
(CP449.1071_4.04, CP287.0545_4.04). K-Glc-maGlc can also
be confirmed by its presence in the top CN peaks as
CN695.133_4.13. Notably, among three isomeric peaks both
CN651.1567_5.07 and CN651.1564_5.29 are present only in
‘PG238,’ whereas CN651.1563_4.13 is absent. Interrogation of
the raw data indicated the two peaks present in ‘PG238’ are
Q-derivatives; and the absent peak is the K-derivative (K-Glc-
maGlc).
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FIGURE 4 | (A) Example of a PG238 specific peak CP667.1858_5.46, annotated as I-acGlc-Rha. The barplot is based on the median averaged peak intensity of all
the samples from the populations. (B) EIC plots of three randomly selected data files from PG238 and Tolosa, respectively. Chromatographic peaks, although
shifting, are well formed in PG238 samples but no signals detected from Tolosa samples.

Further to this, CP288.1590_5.17 is present only in ‘Tunisia.’
We predicted its formula as C17H22NO3 ([M+H]+) and
annotated the peak as thesinine. This peak formed its own group
in peak clustering analysis (Supplementary Data 2). However,
thesinine rhamnoside (The-Rha), detected as CP434.2167_4.80,
among the top ranked peaks (Supplementary Data 1, to be
discussed further in the following section), is only present at a
very low level in ‘Tunisia.’

To summarize, ryegrass populations can be effectively
separated by mass signals without metabolite identification.
Subsequent peak annotations revealed structural differences in
flavonoids amongst the ryegrass populations, where flavonoid
glycosides uniquely present in ‘PG238’ are all Q (Q-acGlc-Rha,
Q-acGlc) and I derived (I-acGlc-Rha, I-acGlc), but not K derived.
K derived flavonoid glycosides including K-Glc-maGlc and K-Glc
were found absent in both ‘PG238’ and ‘Tunisia.’ The unique
presence of thesinine in the ‘Tunisian’ population indicates
its specific regulation of thesinine, whose relation to The-Rha
remained to be explored.

Metabolic Variation among Populations
Excluding North African Origin
Populations ‘PG238’ and ‘Tunisia’ have very different metabolic
features from the other 21 populations, evident by the qualitative
variation amongst the top 50 ranked CP/CN peaks. To further
assess quantitative differences in metabolic profile among the
rest of the perennial ryegrass populations, we exclude the two
populations from the following analysis.

Linear discriminate analysis was initially applied to all
of the 1,057 samples (genotypes × reps) with 17,579 CP

peaks partly revealing population structures (Supplementary
Figure 3). While discriminate analysis may overfit as it aims
to maximize separation between groups, all the genotypes from
a given population formed a single cluster suggesting good
data quality overall. Using UPGMA clustering analysis we
investigated relationships among the 21 populations, revealing
that the metabolic profile is strongly associated with population
provenance (Figure 5). Largely, two sub-clusters are formed
comprised of populations in cluster A of New Zealand (NZ)
origin and in cluster B of European origin. More specifically, both
the populations ‘Option’ and ‘Premium’ were cultivars bred in
Northern Europe; and ‘GA214’ and ‘FLp0962’ were developed
from similar European accessions. Within cluster A there is
some differentiation between ‘Samson,’ a cultivar bred from NZ-
adapted material, and cultivars and breeding lines wholly- or
partly derived from germplasm originating in the North West
of Spain. ‘PG2020’ originates from crosses between ‘PG238’ and
breeding lines containing NZ and North West Spain germplasm.
‘Hilary’ is a selection from the older NZ cultivar ‘Ruanui.’
Encouraged by the distinct patterns that are associated with
breeding history we then aimed to identify metabolites specific
to populations.

Using the same ranking algorithm described we identified
the top 50 differential CP and CN peaks among these 21
populations. The most varied metabolite, as shown on the top
ranked list (Supplementary Data 3) is The-Rha (Figure 6).
The-Rha is represented by the peak CP434.2167_4.80 and
its fragment peak CP288.159_4.80. Another isomer of The-
Rha, CP434.2167_4.58, highly correlated with CP434.2167_4.80
(r > 0.98, n = 23), is also present in the top list. Two isomers
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FIGURE 5 | UPGMA clustering of 21 populations using Euclidean
distance metric among 17,579 CP peaks. Cluster A represents the
populations of New Zealand (NZ) origin and cluster B of European origin.

of E/Z-thesinine-O-4’-alpha-rhamnoside have been structurally
elucidated in ryegrass (Koulman et al., 2008). By using direct
infusion mass spectrometry (DIMS) The-Rha showed significant
genetic variation between cultivars ‘Samson’ and ‘Impact,’ being
more abundant in ‘Samson’ (Koulman et al., 2009), which is also
seen here (Figure 6).

Among the top varied metabolites is K-Glc-
maGlc, represented by the top peaks CP697.1598_4.04,
CP535.1075_4.04, CP449.1071_4.04, and CP287.0545_4.04.
K-Glc-maGlc, which is absent from ‘PG238’ and ‘Tunisia’ as
shown in the previous section, is present at a low level in ‘GA214,’
and at the highest level in ‘Tolosa.’ The annotation of this CP
peak list indicates that K and its derivatives are notably varied
among the 21 populations.

Annotating the two sets of top ranked peaks (Supplementary
Data 3 and Data 4) demonstrates the challenges in assigning
peaks to metabolites. One challenge is that a peak may represent
a mixture of compounds due to insufficient chromatographic
separation. Peaks in this category include CP859.1917_5.21
(a mixture Q- and K-derivatives), CN695.1332_4.03,

CN695.1468_4.24 [a mixture of chlorogenic acid (CGAs)
derivative and K-derivative]. Other challenges are due to
the limited in-source fragmentation for annotation, for
example CP659.3629_8.94 and CP261.2209_8.94 and the peak
mis-alignment, see discussion as follows.

While it is challenging to establish systematic approaches
to evaluate the reliability of peak identification among a large
number of samples, our prior knowledge of the chemical
structures of The-Rha in ryegrass (Koulman et al., 2008) offers
a unique opportunity to examine this empirically. With its
theoretical mass of 434.2173 [M+H]+ and a 20 ppm window,
we found six peaks detected and captured in the peak annotation
table. These six peaks have only m/z < 1.4 ppm error from
the theoretical mass, but with much wider variation in peak
retention, from 3.88 to 4.80 min. Although only two peaks
can be discerned in each individual sample (Figure 7A), when
all 20 samples from ‘Samson,’ run in 18 different batches,
are taken together it becomes impossible to differentiate the
retention time of the two peaks across batches (Figure 7B). As
a result, six peaks were assigned in peak detection instead of
two. Chromatographic peak mis-alignment may be unavoidable
for closely eluted peaks in multi-batch experiments. Different
peak alignment algorithms may be employed to evaluate their
performance but can be time-consuming for large data sets
(see Discussion). We undertook peak aggregation analysis
by summing up all the detected isomeric peaks when the
identification of isobaric metabolites among samples is evaluated
as uncertain.

We performed a peak aggregation analysis of quercetin
(Q), isorhamnetin (I), and kaempferol (K) (Figure 8). This
confirmed the observation based on individual peak analysis,
that ‘PG238’ samples had high levels of Q and I. Figure 8C
also confirms the extensive variation of K compared to Q and
I among the populations (F-test, p-value < 2.2e−12), with
‘Tunisia’ having the lowest level of K and ‘PG2020’ having
the largest within-population variation. However, it was noted
that K, exhibiting complex chromatographic behavior, was not
differentiated from its isomeric flavone luteolin using this coarse-
level quantification.

Peak aggregation analysis was also performed for CGAs, which
are represented by peaks CN353.0873_3.84, CN353.0874_4.06,
CN353.0873_4.20, and CN353.0875_5.39 and their derivatives
(Supplementary Data 4). CGAs are abundant in perennial
ryegrass which has three isomers (Qawasmeh et al., 2012). Under
this experimental condition three well-formed peaks for CGAs
(353.0867, calculated m/z, [M-H]−) can be seen among samples.
However, in total 55 peaks of 353.0867 (±10 ppm) were detected
here due to misalignment from 3.5 to 4.5 min across samples.
Peak aggregation analysis of CGA (CN353.0875) demonstrates
that there is no difference among the 21 populations (F-test,
p-value = 0.93). Of the four peaks among the top list only
CN353.0875_5.39 shows a distinct profile, with the highest
level present in ‘PG2020’ and lower or at the baseline noise
level among other populations. The EIC data interrogation
showed this peak can be sufficiently separated from the other
three peaks. CN353.0875_5.39 is a relatively weak peak but
consistently present in ‘PG2020’ genotypes (Supplementary
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FIGURE 6 | Distribution of thesinine rhamnoside (CP434.2167_4.80) abundance among the populations. PG238 and Tunisia lack this compound. Wider
variation occurs within the FLp0962, PG2020, GA214, and FLp641 population samples.

FIGURE 7 | (A) Two isomeric peaks of The-Rha eluted at 4.63 min (278 s) and 4.83 min (290 s) in one sample; (B) The two peaks superimposed from all the 20
Samson samples, run in 18 different batches.

Figure 4). CN353.0875_5.39, co-eluting with 515.12, could be
annotated as CGA glycoside due to the neutral loss of m/z 162.

Perloline, one of the known alkaloids present in the Lolium
and Festuca species, was detected as CP333.1174_5.28 (FDR
adjusted p-value < 0.01), with 18 ppm error from the calculated
m/z 333.1234, [M+H]+, and present as a single chromatographic
peak in individual samples. CP333.1174_5.28 is not on the top
50 significant peaks (Supplementary Data 3) but among the list
of significant peaks based on empirical Bayes, suggesting more
informative metabolic variation can be mined from the data.

To summarize, plant alkaloids and kaempferol derived
flavonoids are notably varied among the 21 populations. The

population-level variation of The-Rha and perloline revealed here
expands our knowledge on the magnitude of their variation in
ryegrass. A CGA glycoside was found to be unique to ‘PG2020’
but CGAs were invariant among the populations. Structural
variation of sugar moieties in flavonoids may contribute
to ryegrass population differentiation. As examples, K-Glc-
maGlc is most abundant in ‘Tolosa’ and K-Glc-feruloylGlc
(Supplementary Data 5) is most abundant in ‘Samson,’ but both
compounds are present at various levels, even down to noise level,
in other populations.

As a further note, to assess whether these population-
level variations are consistent across seasons and under
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FIGURE 8 | Peak aggregation analysis of (A) quercetin ([M+H]+, 303.0499 m/z, 15 peaks); (B) isorhamnetin ([M+H]+, 317.0656 m/z, 15 peaks) and (C)
kaempferol ([M+H]+, 287.0550 m/z, 23 peaks).

various environments we have conducted peak validation with
samples harvested in a different year (Supplementary Data
6). The results demonstrated two metabolites (K-Glc-maGlc
and CGA glycoside) identified and annotated in this study
were reproducible between two environments indicating the
robustness of our statistical data mining procedures. The
magnitude of population-level variation documented here serves
as a resource to research how these metabolic variations are
associated with high level traits or modulated by genetic
regulation..

DISCUSSION

High-throughput metabolomics was demonstrated here as
an effective tool in screening a diverse collection of plant
germplasm for metabolic variation. However, to make
such methods a routine practice in understanding complex
traits at the metabolic level, and in searching for genes
responsible for the metabolic variation, it is important to

acknowledge both the opportunities and limitations of these
methods.

Addressing Peak Annotation Problems to
Facilitate Biological Interpretation
Many thousands of peaks can be generated from high-throughput
LCMS platforms. Currently, it is the common practice to use
statistical testing and/or machine learning ranking algorithms
to identify a smaller set of peaks for closer inspection of their
chemical identities. This practice falls short of the demand to
understand metabolism underlying trait expression in plants.
When a large number of statistically significant peaks are
identified, peak annotation remains a bottleneck in metabolomics
studies (Wishart, 2011; Cao et al., 2013, 2015). Detailed mining
and evaluation of chemical features from data, such as isotopic
patterns, adduct ions, in-source fragmentation patterns, and
co-eluting behavior must be undertaken for peak annotation,
and it is still challenging to automate such complex annotation
processes. Database searching is often used for annotation but,
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in our experience, this is more effective for modular molecules
such as lipids (Cao et al., 2013). For small metabolites we have to
collect more annotation features including tandem mass spectra
(MS2) of targeted ions or predicted retention time, to arrive
at MSI (Metabolomics Standard Initiative) level 2 identification
(Sumner et al., 2007). An unexpected list of metabolites under
a particular biological context is usually found, indicating that
the extent of our picture of cellular metabolism is incomplete
(Patti et al., 2012). The long list of unknown peaks of biological
relevance strongly suggest more effort needs to be invested
into “peakomics” before the full value of metabolomics can
be realized. Peakomics should aim to understand the massive
number of peaks generated from LCMS data, to devise a set
of algorithms to integrate chemical features that can be mined
from the data, and to draw associations of the mined chemical
features with known metabolites. In this study, along with the
data processing pipelines we maintained a peak annotation
table for chemical features, and built a spectral database in
text format to enable quick evaluation of peak identity in
future studies. Although we handle isotopic peaks effectively, we
need to improve our grouping algorithms to handle co-eluting
peaks and to tackle peak deconvolution in high throughput
LCMS.

Batch effect is perhaps the largest source of variation in
metabolomics and analytical chemistry. Much research has been
done on normalizing such systematic biases, but the aim has
been exclusively to normalize peak intensity. As we have shown
here mis-alignment across a large number of batches can lead
to enormous uncertainty in peak identity. Peak identification
and quantification are two sides of the same coin – wrong
assignment of peaks can lead to a spurious list of significant
peaks. Although we have approached the use of the predicted
retention time for peak annotation (Cao et al., 2015), its reliable
use in peak annotation can still be challenging in multi-batch
LCMS experiments (Abate-Pella et al., 2015). There are no
universal algorithms that can address all the problems. We have
proposed and used peak aggregation analysis as a compromise
approach. Different platform offers different level of resolution
in metabolite identification. Once again taking The-Rha as an
example, it is routinely identified by DIMS as nominal or accurate
mass, by HILLIC-MS as a single peak (Cao et al., 2015) and by
C18 LCMS as two isobaric metabolites. As for the metabotyping
purpose further studies need to be conducted to evaluate how
quantification can be compared across platforms and what level
of details are required.

When quantification of isobaric metabolites is of a critical task
in metabotyping dedicated algorithms should be developed to
properly group isomeric peaks across batches based on EIC data.
Some directions for this development may include using prior
knowledge to group peaks if the number of isomeric peaks is
known, as in the case for The-Rha. In addition, if MS2 data are
available to support two peaks with wide retention time variation
being the same metabolite (Cao et al., 2013), such information
can be exploited to improve peak alignment. Finally, statistical
modeling of EIC data may suggest the number of isomeric
peaks that can be assigned with confidence. Only with accurate
identification the quantification of isobaric metabolites can be

ensured, then research into their biological regulation can be
proceeded.

Metabotyping Offers New Opportunities
to Characterize Complex Traits
Phenotypic evaluation of the collected germplasm is a
prerequisite for germplasm prioritization or breeding
program design but it is not straightforward and often indirect.
Metabotyping, dissecting a phenotype at the metabolic level,
potentially enables more precise evaluation of forage quality
traits than those of traditionally used assessments such as
fiber content, metabolizable energy, etc. On the other hand,
metabolites themselves may form the end phenotype which
could be directly selected for. For example, the presence of
defense compounds may be used to select for disease resistance.

The diversity of alkaloids and flavonoids is well understood
in plants (Harborne, 1977). Alkaloids are believed to function
in plant defense (Ziegler and Facchini, 2008) and flavonoids
play a role in plant adaptation to the environment (Mouradov
and Spangenberg, 2014). Our results showed that flavonoids
and their derivatives are diverse among ryegrass populations
and seem to be adaptive to local environments, which suggests
this class of compounds is potentially responsive to selection.
Greater understanding of the genetic regulation of this class
of compounds in ryegrass will be our next step. Fortunately,
we can learn from model species where the genetic control
of flavonoids has been well documented, especially with the
aid of metabolomics and genomics platforms (Saito et al.,
2013). It becomes clear that genes are involved not only in
the formation of aglycone structures but also their subsequent
modifications. Extensive flavonoid variation was uncovered in
the ryegrass populations, and the variation lies not only in
the type of aglycones but also in sugar modifications. This
provides information that will enable us to explore new frontiers
in developing our understanding of the genetic basis of their
regulation in ryegrass. First, we will need to draw associations
between this class of compounds and higher level traits,
e.g., in maize, the C-glycosyl flavones maysin and apimaysin
are involved in corn earworm resistance (McMullen et al.,
1998). Second, we can design experiments to research the
genetic basis (of qualitative or quantitative nature) of a set
of flavonoids and alkaloids in ryegrass that were revealed in
this study. Third, we can specifically look into the function
of acetylated/malonylated/feruloylated flavonols in ryegrass, as
these decorated flavonoid glucosides have been shown to facilitate
the transportation and accumulation of flavonoids in cellular
compartments (Zhao et al., 2011).

The-Rha, as a metabolic trait, is subjected to genetic control
in L. perenne with a strong QTL (quantitative trait locus)
located in the linkage group 4 (Koulman et al., 2009). Although
structurally elucidated its relation to high level traits such as
pasture persistence remains unknown. Perloline also exhibits
broad variation among the 23 populations (Supplementary
Figure 5), and in contrast, functions of this alkaloid were reported
in literature Intraspecific differences were observed earlier by
Butler (1962); and a few major genes were reported to contribute
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to perloline heritability (Buckner et al., 1973). Because of its
inhibitory effect on ruminal digestion developing low perloline
forage has long been a breeding goal (Cornelius et al., 1974).
Metabotyping a wide range of germplasm, therefore, may offer
new opportunities to identify materials for developing low-
perloline populations.

Phenotypic characterization often remains simplistic and the
main bottleneck to understanding the genetic basis of traits
(Myles et al., 2009). Metabotyping was demonstrated as an
effective tool for us to understand metabolic variation within
and between ryegrass populations, and may serve as a bridge
to understanding the manifestation of economically important
traits (Cao et al., 2012). A combined use of high throughput
genotyping and metabotyping should provide a new avenue for
us to discover novel associations between allele frequency and
metabolic variation in ryegrass populations. Such integration
will enable us to conduct targeted molecular breeding of the
metabolites that contribute to the adaptive or nutritive value of
forage species.

MATERIALS AND METHODS

Plant Materials
Twenty-three populations were selected from a large collection
of breeding lines, cultivars and wild ecotypes, which was
designed for genetic association mapping. In this paper we
refer to cultivars, breeding lines or ecotypes as populations, and
each individual plants from population as genotypes due to
the nature of high heterozygosity in perennial ryegrass. These
23 populations were selected to ensure that more than three
genotypes were included from each population and five clonal
replicates of each genotypes were available for population-level
analysis. In total 233 genotypes from these populations were
selected for this investigation (Supplementary Table 1). Seeds of
all ryegrass material were treated by heat and fungicide to ensure
that they were endophyte-free. All plants were grown in pots
and placed outdoors at AgResearch Grasslands Research Centre,
Palmerston North, New Zealand.

Metabolomic Assay and Data Analysis
Pipeline
Plants were harvested after 3 weeks regrowth (to mimic rotation
grazing) by cutting all the tissues 4 cm above the pot surface,
predominantly consisting of the leaf blades. Samples in this
study were harvested in May 2012, late autumn in New Zealand.
Control samples were derived from a bulk sample consisting of
a collection of ryegrass materials that may contain endophyte.
These control samples were formed to monitor systematic
variations such as run order effect and batch effect. Sample
preparation and Metabolomics lab analyses followed protocols
previously reported (Fraser et al., 2014). Briefly, ground plant
material (50 mg) was extracted in 50:50 acetonitrile-water (v/v),
and analyzed by RP LC-MS via a Thermo Exactive mass
spectrometer (Q-Exactive MS, Thermo, Waltham, MA, USA)
with ESI. RP LC–MS analysis was performed using an Agilent
RRHD SB-C18 column (150 mm × 2.1 mm, 1.8 µm) with

a gradient elution of water containing 0.1% formic acid and
acetonitrile containing 0.1% formic acid at a 400 µl/min flow
rate. Samples were run in both positive and negative ionization
mode as separate chromatographic runs. MS data were collected
in profile mode over the mass range of m/z 60–1200.

The large number of biological samples had to be assayed in
multiple batches. The biological samples (Supplementary Table 1)
selected for this investigation were run in 36 randomized batches
over 9 months. Data files generated from all the genotypes
discussed above, and control samples from each batch, were
subjected to data analysis. In total, 1,260 data files (plus 71
controls) in positive ionization mode and 1,297 data files (plus
80 controls) in negative ionization mode, were analyzed.

The profile (positive and negative ionization) mode data
were converted into centroid mode using ProteoWizard tools
(Holman et al., 2014). Peak detection, alignment, grouping and
missing value filling procedures were conducted using the XCMS
package (Smith et al., 2006) with key parameter settings as
follows: peak detection was carried out on the centroid data
using the “centWave” algorithm with peakwidth = 3:15 and
ppm = 20; peak alignment was undertaken using the “obiwarp”
method with default parameters and; peaks were grouped using
the density-based approach. The resulting peak intensity tables
were de-isotoped by CAMERA (Kuhl et al., 2012) and using
our in-house peak de-isotoping procedures. Our de-isotoping
of peak groups ([M], [M + 1], [M + 2]) was implemented
as follows: the ion series of the peak group must be within
±20 ppm m/z window and eluting at approximately the same
retention time (±0.2 min); in addition, the peak intensity of the
group must be highly correlated (Pearson’s correlation coefficient
r > 0.9) among all the samples, and the ratios of the detected
peak intensities must satisfy the criteria: [M]/[M + 1] > 2 and
[M + 1]/[M + 2] > 2. Software is available from https://github.
com/AgResearch/peakOmics. Only the monoisotopic ion [M] of
the series was retained for subsequent data analysis.

Batch effect was corrected using a parametric empirical Bayes
methods (Johnson et al., 2007) using batch as a covariate.
Additional filtering (F-test, p-values < 0.05) was further used to
remove peaks still with the significant batch effect.

Among the replicates (n = 5), the most varied replicated
groups were identified (cv > 0.2). The outliers were removed
within the replicated groups if the modified Z-scores were
>3.0, where modified Z-score is defined as Zi = 0.6745∗[xi –
median(x)]/mad(x) and where mad is the median of absolute
deviation (Iglewicz and Hoaglin, 1993). Invariant peaks among
the ryegrass populations (Kruskal test, p-value > 0.05) were also
removed.

Various statistical procedures such as PCA, clustering analysis,
ranking algorithms were employed to extract information in each
data-mining step in Results.

Metabolite Annotation
After two de-isotoping procedures (CAMERA method, and our
in-house method) a peak annotation table (including detected
m/z, rt, m/z range, rt range, adduct, isotopic peaks of each
peak) was created for annotation purposes throughout the study.
Different annotation strategies were used for different classes of
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compounds. For flavonoid glycosides, in-source fragmentation
patterns usually provide sufficient information for the annotation
(von Roepenack-Lahaye et al., 2004; Abrankó et al., 2011;
Pinheiro and Justino, 2012). In this study, annotation is
performed on the aglycone types and the type and number
of sugar moieties, but not on the glycosylation position nor
inter-glycosidic linkages in glycan moieties. For other small
metabolites such as plant alkaloids, we exploit data on the
accurate mass, expected retention time, formula prediction
and matched isotopic patterns for the annotation as detailed
previously (Cao et al., 2015) along with published results.
The spectral data supporting all the annotated metabolites
mentioned in this publication were provided as a NIST
(National Institute of Standards and Technology) MSP
library and are available from https://github.com/AgResearch/
peakOmics.
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