OPEN ACCESS

Edited by:

Jun Yu,

Beijing Institute of Genomics, China

Reviewed by:

Yong Xu,

National Engineering Research Center for Vegetables, China Yongqing Li, South China Botanical Garden, Chinese Academy of Sciences, China

*Correspondence:

Xilin Hou
hx@njau.edu.cn
${ }^{\dagger}$ These authors have contributed equally to this work.

Specialty section:

This article was submitted to Plant Genetics and Genomics, a section of the journal Frontiers in Plant Science
Received: 26 August 2016
Accepted: 28 February 2017
Published: 17 March 2017

Citation:

Yan C, Duan W, Lyu S, Li Y and Hou X (2017) Genome-Wide Identification, Evolution, and Expression Analysis of the ATP-Binding Cassette Transporter Gene Family in Brassica rapa. Front. Plant Sci. 8:349.
doi: 10.3389/fpls. 2017.00349

Genome-Wide Identification, Evolution, and Expression Analysis of the ATP-Binding Cassette Transporter Gene Family in Brassica rapa

Chao Yan ${ }^{1 \dagger}$, Weike Duan ${ }^{1,2 \dagger}$, Shanwu Lyu ${ }^{1}$, Ying Li ${ }^{1}$ and Xilin Hou ${ }^{1 *}$
${ }^{1}$ State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China,
${ }^{2}$ School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China

ATP-binding cassette (ABC) proteins can act as transporters of different substrates across biological membranes by hydrolyzing ATP. However, little information is available about ABC transporters in Brassica rapa, an important leafy vegetable. In the present study, we carried out genome-wide identification, characterization and molecular evolution analyses of $A B C$ gene family in B. rapa and 9 other plant species. A total of 179 B. rapa $A B C$ genes (BraABCs) were identified. Among them, 173 BraABCs were identified on 10 chromosomes. Based on phylogenetic analysis and domain organization, the BraABC family could be grouped into eight subfamilies. BraABCs in the same subfamily showed similar motif composition and exon-intron organization. Common and unique cis-elements involved in the transcriptional regulation were also identified in the promoter regions of BraABCs. Tissue-expression analysis of BraABCs demonstrated their diverse spatiotemporal expression profiles. Influences of the whole genome triplication (WGT) on the evolution of BraABCs were studied in detail. BraABCs were preferentially retained compared with their neighboring genes during diploidization after WGT. Synteny analysis identified 76 pairs of syntenic BraABC paralogs among the three subgenomes of B. rapa, and 10 paralog pairs underwent positive selection with ω (= Ka/Ks) ratios greater than 1. Analyses of the expression patterns of syntenic BraABC paralogs pairs across five tissues and under stress treatments revealed their functional conservation, sub-functionalization, neo-functionalization and pseudogenization during evolution. Our study presents a comprehensive overview of the ABC gene family in B. rapa and will be helpful for the further functional study of BraABCs in plant growth, development, and stress responses.

[^0]
INTRODUCTION

ATP-binding cassette (ABC) transporters constitute one of the largest gene families that are ubiquitously present in all living organisms, from prokaryotes to humans (Dassa and Bouige, 2001). The majority of ABC proteins that have been characterized are ATP-dependent, and membrane-bound transporters are able to translocate a wide range of molecules through intra- and extracellular membranes (Higgins, 1992). Plant genomes are characterized by a large number of ABC genes (ABCs) encoding for more than 100 ABC transporters, which is more than most other organisms, that are involved in a broad range of biological functions (Kang et al., 2011).

The possession of a nucleotide-binding domain (NBD) is usually used to define ABC proteins (Verrier et al., 2008). There are several highly conserved motifs within the NBD domain, including the Walker A and Walker B sequences, the $A B C$ signature motif, the H loop and the Q loop (Higgins and Linton, 2004). Apart from the NBD domain, ABC proteins also contain hydrophobic transmembrane domains (TMDs). Several transmembrane α-helices are generally present in TMDs. NBDs usually act as energy providers for substrate translocation or non-transport processes by ATP-binding and ATP- hydrolyzing. TMDs function as recognizers and channels for substrates to translocate the lipid bilayer (Sánchez-Fernández et al., 2001). In eukaryotes, there are two common arrangements for ABC transporters: full-sized transporters and half-sized transporters. The structure of canonical ABC transporters (full-sized ABCs) contains four domains: two NBDs and two TMDs in a single polypeptide. Half-sized transporters consist of only two domains (1 TMD and 1 NBD). Half-sized ABCs have to form homo- or heterodimers to conduct the function of the substrate pump. ABC proteins lacking a TMD are usually not involved in transmembrane transport.

Several categorization methods have been proposed to classify ABC proteins, of which the Human Genome Organization (HUGO) scheme has currently been widely adopted to classify human and plant ABC proteins (Dean et al., 2001; Verrier et al., 2008). According to the HUGO scheme, eukaryotic ABC proteins are divided into eight subfamilies based on the NBD phylogenetic relationship, homologous relationship and domains organization: from $A B C$ subfamily A (ABCA) to $A B C$ subfamily $\mathrm{H}(\mathrm{ABCH}) . \mathrm{ABCH}$ was identified in arthropod genomes, but is absent in fungi, mammals and plants (Annilo et al., 2006; Dermauw and Van Leeuwen, 2014). Recently, ABC subfamily I (ABCI) containing the "prokaryotic"-type ABCs was found in plants but is absent in most animal genomes (Verrier et al., 2008).

[^1]In total, nine subfamilies (ABCA-ABCI) have been identified, and eight of them (ABCA-ABCG and ABCI) are present in plant genomes (Kang et al., 2011). Proteins of the ABCA-ABCD subfamilies have a forward direction for domains organization (TMD-NBD). Relatively, the proteins of the ABCG and ABCH subfamilies contain the reverse domain organization (NBDTMD). While ABCE and ABCF proteins consist of only two NBDs, these proteins are characterized as soluble proteins. ABCI proteins usually possess only one single domain, mainly NBD or TMD. The genetic evidence indicates that some of these single domains encoded by ABCI proteins can assemble into functional multi-subunit ABC transporters (Verrier et al., 2008).

The functions of ABC proteins in humans have been extensively studied. In addition to acting as active transporters, some ABCs function as ion channels, receptors or are even involved in mRNA translation and ribosome biogenesis. In humans, ABCs are also identified as having multidrug resistances in cancer cells; for example, proteins within the $A B C B$ and ABCG subfamilies can protect cells from hydrophobic xenobiotics (Sarkadi et al., 2006). In plants, ABCs were initially identified as transporters participating in detoxification processes (Martinoia et al., 1993). Subsequently, an increasing number of plant ABCs have been functionally characterized as far away from detoxification functions. Plant ABCs participate in many important physiological and developmental processes; furthermore, the transport substrates of plant ABCs are divergent and include conjugated compounds, phytohormones, primary products, lipids and lipophilic compounds (Kang et al., 2011).

The evolution of the angiosperm genome is characterized by polyploidization through whole-genome duplication (WGD), followed by diploidization, which is typically accompanied by considerable homoeologous gene loss (Stebbins, 1950). A number of polyploidy events have been identified along different lineages of flowering plants. After polyploidy, duplicated genes experience different fates over evolutionary time. Most likely, one copy of paralogous genes loses or becomes pseudogenes (Lynch and Conery, 2000, 2003). However, numerous functional importance duplicated gene pairs can survive by undergoing tens of millions of years of natural selection (Schnable et al., 2009; Schmutz et al., 2010). Gene categories whose products include transcription factors, ribosomal proteins or protein kinases are preferentially retained (Blanc and Wolfe, 2004; Maere et al., 2005). This can be explained by the gene dosage hypothesis, positing that genes whose products interact with one another or in networks tend to be dosage sensitive and would be over-retained (Thomas et al., 2006; Birchler and Veitia, 2007). In sum, duplicated genes undergo one of the following evolutionary fates: functional conservation (in which both copies maintain the same function), sub-functionalization (the ancestral function is subdivided between copies), neo-functionalization (one copy acquires a new function) or pseudogenization (one copy becomes unexpressed or functionless) (Lynch and Conery, 2000).

Brassicaceae is a large plant family containing ~ 338 genera and 3,700 species (Bailey et al., 2006). Owing to its remarkable species, genetic and physiological diversity, as well as significant economic potential, Brassicaceae has
become a model for polyploidy and evolutionary studies. In Brassicaceae, Arabidopsis underwent three WGD events after its lineage diverged from the monocot lineage: the paleohexaploidy (γ) duplication shared with most dicots and two subsequent genome duplications (α and β) since its divergence from Carica papaya (Bowers et al., 2003). B. rapa, a diploid Brassica species, not only shared the three paleo-polyploidy events with Arabidopsis but also underwent a further whole genome triplication (WGT) since its divergence from Arabidopsis 13 to 17 million years ago (Town et al., 2006). After the WGT, B. rapa has undergone considerable fractionation: the 41,174 genes in the B. rapa genome are considerably fewer than would be expected from a simple WGT of the $\sim 27,000$ genes in the Arabidopsis genome (Wang et al., 2011). The extent of gene loss varies among the three subgenomes. The LF (least fractionated) subgenome retains $\sim 70 \%$ of the genes found in Arabidopsis, whereas the MF1 (medium fractionated) and MF2 (most fractionated) subgenomes retain ~ 46 and 36%, respectively (Wang et al., 2011). B. rapa, because of its close relationship with Arabidopsis and representative WGT event, has thus become an excellent model for studying the evolution of genome structure and gene fate after WGD.

As a superfamily, ~ 22 out of 130 Arabidopsis ABCs (AtABCs) have been functionally characterized in the model plant. B. rapa is an important leafy vegetable in the Brassicaceae family; however, little information about the ABC gene family is available in B. rapa. The objective of the present study was to conduct a genome-wide identification and characterization of the ABC gene family in B. rapa. We carried out comprehensive studies of the ABC gene family in B. rapa for the first time, including the phylogenetic relationships, chromosomal locations, gene structures, cis-elements, and expression profiles of BraABCs in different tissues. Influences of WGT on the evolution of BraABCs were also analyzed, including the retention and conservation of BraABCs after WGT and syntenic BraABC paralog pairs among three subgenomes of B. rapa. Expression patterns of syntenic paralog BraABCs in different tissues and under various abiotic stresses were also determined to investigate their molecular evolutionary fates. Our findings provide a basis for better understanding of the function and evolutionary history of BraABCs and will help to further investigate the detailed molecular and biological functions of BraABCs.

MATERIALS AND METHODS

Data Sources and ABC Sequences Retrieval

The B. rapa annotated genome sequences were downloaded from the Brassica database (BRAD; http://brassicadb.org/brad/; Cheng et al., 2011). Several datasets and multiple steps were used to conduct a whole-genome search. Hmmsearch from the HMMER program (3.0) (Eddy, 1998) was used to search the Brassica rapa genome to identify putative ABCs containing the ABC transporter domain (PF00005), the ABC-2 transporter domain
(PF01061), the ABC transporter transmembrane region domain (PF00664), the CYT domain (PF01458) or the mce related protein domain (PF02470) at a threshold of $E<1 \mathrm{E}^{-4}$. The Hidden Markov Model (HMM) profiles of these domains were downloaded from the Pfam 27.0 database (http://Pfam.sanger.ac. uk/; Finn et al., 2013). Then, we manually verified the candidate ABCs using the SMART database (http://smart.embl-heidelberg. de/; Letunic et al., 2012), and sequences with obvious errors and/or lengths of less than 100 amino acids were manually removed.

Multiple Alignment and Phylogenetic Analysis of the ABC Gene Family

Amino acid sequences of the ABC-transporter domain (PF00005) were extracted according to their locations in ABC proteins. Multiple alignments of ATPase domain sequences were conducted using ClustalW (Thompson et al., 1997) of the MEGA6 (Tamura et al., 2013) software with the default options. The phylogenetic trees were constructed using the maximum likelihood (ML) method in MEGA6 with the Jones, Taylor, and Thornton (JTT) amino acid substitution model. One thousand bootstrap replications were performed in each analysis. The remaining parameters were set to the defaults.

Conserved Motifs Identification and Exon-Intron Structure Analysis

Conserved motifs of ABC proteins were identified using the local MEME software version 4.9.0 (Bailey et al., 2009), with the following parameter settings: maximum number of motifs $=15$, and optimum motif width $=10-200$ residues; the other parameters were the defaults. The coding sequences (CDSs) and the DNA sequences were used to predict the exon-intron structure of ABCs using the Gene Structure Display Server 2.0 (GSDS 2.0) (http://gsds.cbi.pku.edu.cn; Hu et al., 2015).

Cis-Elements Analysis and Proteins Interaction Network Prediction

All of the promoter sequences ($2,000 \mathrm{bp}$ upstream of initiation codon "ATG") of BraABCs were extracted from the B. rapa genome according to the Generic File Format (GFF) file. Then, the cis-regulatory elements of promoters for each gene were identified by PLACE Web Signal Scan-PLACE (https://sogo.dna.affrc.go.jp/cgi-bin/sogo.cgi?lang=en\&pj=640\& action=page\&page=newplace). The interaction network of BraABC proteins was constructed by applying STRING software (Search Tool for the Retrieval of Interacting Genes/Proteins, http://string-db.org/).

Gene Chromosomal Location, Gene Synteny Analysis, and Syntenic BraABCs Paralogs Pair Identification

Chromosomal locations of BraABCs were drawn from top to bottom on B. rapa chromosomes according to their positions in genome annotation. The Perl in-house program was used to draw the location images of BraABCs on chromosomes.

Syntenic relationships of ABCs between Arabidopsis and B. rapa were identified by searching "syntenic gene" in the Brassica database (BRAD) (Cheng et al., 2011). Then, the Circos program (Krzywinski et al., 2009) was applied to present the syntenic relationships on their chromosomes.

After the identification of the BraABCs, syntenic BraABCs paralogs pairs among the three B. rapa subgenomes were identified by searching "syntenic gene" in BRAD (Cheng et al., 2011). The non-synonymous substitution rate (Ka), the synonymous substitution rate (Ks) and the $\omega(=K a / K s)$ of paralog pairs were estimated by KaKs_Calculator 2.0 (Wang et al., 2010). The duplication date of paralog pairs was estimated according to formula $\mathrm{T}=K s / 2 \lambda$, assuming a clock-like rate (λ) of 1.5 synonymous substitutions per 10^{8} years for B. rapa (Koch et al., 2000).

Expression Pattern Analysis

To analyze the expression patterns of BraABCs in different tissues, we used the reported Illumina RNA-seq data by Tong et al. (2013). Of the dataset, five tissues, including the roots, stems, leaves, flowers and siliques of B. rapa accession Chiifu-401-42 were analyzed. Gene expression levels were quantified by FPKM (Fragments Per Kilobase of transcript per Million fragments mapped) values. An expression cluster of BraABCs in the five tissues was generated by Cluster 3.0 (http://bonsai.hgc. jp/~mdehoon/software/cluster/software.htm), and the cluster results were shown using Tree View software (http://jtreeview. sourceforge.net/). The RNA-seq dataset was also used to analyze the expression profiles of syntenic paralog pairs in different tissues.

To investigate the expression patterns of syntenic BraABC paralog pairs under normal and abiotic stress conditions, the cultivar Chiifu-401-42 was cultivated in potting soil at $24 / 16^{\circ} \mathrm{C}$, with a photoperiod of $14 / 10 \mathrm{~h}$ for day/night in a growth chamber. Five-leaf-stage plants were used to conduct different abiotic stress treatments under continuous time (6,12 , and 24 h). Hormone treatment was performed with $100 \mu \mathrm{M} \mathrm{ABA}$; for drought stress treatment, the pots were irrigated with 15% (w/v) polyethylene glycol PEG and kept standing in the irrigation solution for 30 min under normal growth conditions; salt treatment was performed with 250 mM NaCl . After the treatments, the total RNAs were isolated from young leaves using an RNA kit (TaKaRa, Dalian, China). The RNAs were reverse transcribed into cDNA with a PrimeScript RT reagent Kit (TaKaRa, Dalian, China). Six pairs of syntenic paralogs were randomly selected to conduct qRT-PCR. The B. rapa actin gene Bra028615 was used as an internal control. Primers for qRT-PCR were designed using Beacon Designer 7. The qRT-PCR experiments were performed with three biological and technical replicates. The SYBR Premix Ex Taq kit ${ }^{\circledR}$ (TaKaRa, Dalian, China) was used to detect gene expression according to the manufacturer's recommendations on the One-step Real-Time PCR System Time PCR Detection System (Applied Biosystems, Foster City, CA, USA). The cycling profile was as follows: $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 94^{\circ} \mathrm{C}$ for 10 s for 40 cycles, and $58^{\circ} \mathrm{C}$ for 30 s , followed by a melting curve analysis at $65^{\circ} \mathrm{C}$ for 10 s for 61 cycles. The relative gene expression levels were
analyzed using the comparative Ct value method (Heid et al., 1996).

RESULTS

Genome-Wide Identification, Phylogenetic Analysis, and Classification of ABC Genes in B. rapa

To explore all of the putative ABCs in the B. rapa genome, the HMM profiles of the ABC-transporter domain, the ABC-2 transporters domain, the ABC transporter transmembrane region domain, the CYT domain and the mce related protein domain were employed as queries to search against the protein database of B. rapa using the Hmmsearch program. A total of 179 BraABCs, which contained at least one of the above domains, were identified (Table 1). Among the 179 BraABC proteins, 162 proteins contained one or more NBD domains, and an additional 17 proteins without NBD domains were assigned to ABCI, based on the domain composition of the ABC proteins (Verrier et al., 2008).

Understanding the evolutionary relationship between BraABC proteins and AtABC proteins could contribute to classifying and assessing the potential functions of BraABCs. The NBD domains of the 162 BraABC proteins and 117 AtABC proteins (117 AtABC proteins contained the NBD domain) were aligned, and an unrooted phylogenetic tree was constructed by MEGA6 using the Maximum Likelihood (ML) method with 1,000 bootstraps. The AtABC proteins of each subfamily were grouped together, whereas the proteins of ABCI were dispersive in the phylogenetic tree. Overall, BraABC proteins followed the phylogenetic pattern of Arabidopsis (Supplementary Figure 1). Based on the phylogenetic relationship with AtABCs, BraABCs were also divided into eight subfamilies: $\mathrm{ABCA}, \mathrm{ABCB}, \mathrm{ABCC}$, $\mathrm{ABCD}, \mathrm{ABCE}, \mathrm{ABCF}, \mathrm{ABCG}$ and ABCI . $\mathrm{ABCG}, \mathrm{ABCB}, \mathrm{ABCI}$, and $A B C C$ were the largest subfamilies containing $63,38,30$, and 21 members, respectively. $\mathrm{ABCA}, \mathrm{ABCE}$, and ABCF included 11, 7 , and 7 members, respectively. Only 2 members were identified in ABCD (Table 1). The protein domain organizations of BraABCs in each subfamily were consistent with that of Arabidopsis (Verrier et al., 2008).

Similarly, Hmmsearch searches were also conducted in the selected angiosperms: P. trichocarpa, G. max, A. lyrate, C. papaya, V. vinifera, B. distachyon, O. sativa, and A. trichopoda. The number of identified ABCs in these species ranged from 113 to 271 (Figure 1). There were 271 ABCs existing in the G. max genome, while the members in other species ranged from 113 in C. papaya, 130 in Arabidopsis, 132 in A. lyrate, 137 in A. trichopoda, 138 in B. distachyon, 141 in O. sativa, 179 in B. rapa, 181 in V. vinifera and 204 in P. trichocarpa. The identified ABCs in these species are listed in Supplementary Table 1.

To gain insight into the evolutionary history and relationship of ABCs in plants, we constructed a phylogenetic tree using ABCs of six representative species, including Arabidopsis (Verrier et al., 2008), B. rapa, C. papaya, V. vinifera, O. sativa, and A. trichopoda. In contrast with the ABCA-ABCG members, some ABCI proteins lacked the NBD domain, and some ABCI

TABLE 1 | Basic information about the ABC transporter gene family in B. rapa.

Gene	Locus name	Subfamily	Chromosome	Position	Length (aa)	Exon number	MW (kDa)	PI	TMs
BraABCA1	Bra033785	ABCA	A01	14252485-14257069	942	16	105.64	8.62	7
BraABCA2	Bra000236	ABCA	A03	10073306-10085122	1842	40	204.53	6.66	13
BraABCA3	Bra012931	ABCA	A03	21458462-21462337	529	10	65.54	7.98	2
BraABCA4	Bra012928	ABCA	A03	21470698-21474908	927	15	102.56	8.37	6
BraABCA5	Bra012927	ABCA	A03	21475917-21479405	615	10	67.56	8.99	6
BraABCA6	Bra018113	ABCA	A06	10311197-10315562	942	16	105.32	8.2	7
BraABCA7	Bra018114	ABCA	A06	10319900-10323172	629	10	71.59	8.78	2
BraABCA8	Bra018115	ABCA	A06	10325041-10329173	926	15	104.29	9.14	7
BraABCA9	Bra018116	ABCA	A06	10341780-10346225	986	15	108.65	7.07	6
BraABCA10	Bra019513	ABCA	A06	12666176-12670670	893	18	100.88	9.16	5
BraABCA11	Bra015049	ABCA	A07	3961325-3965509	893	15	100.58	8.97	5
BraABCB1	Bra011043	ABCB	A01	4272644-4275279	687	3	76.09	9.63	5
BraABCB2	Bra013936	ABCB	A01	8540846-8546690	1234	12	135.54	9.34	12
BraABCB3	Bra033043	ABCB	A02	21713331-21718585	1244	7	135.72	8.06	11
BraABCB4	Bra006776	ABCB	A03	5011490-5015371	724	16	80.12	9.78	5
BraABCB5	Bra023087	ABCB	A03	8624046-8629351	1339	10	146.73	7.63	12
BraABCB6	Bra000136	ABCB	A03	9481070-9486731	1403	11	154.91	6.33	12
BraABCB7	Bra012621	ABCB	A03	23170309-23175454	1247	12	134.94	7.06	11
BraABCB8	Bra019135	ABCB	A03	26140733-26146345	1241	13	136.31	7.93	10
BraABCB9	Bra014756	ABCB	A04	2832718-2839592	1400	11	154.27	5.96	11
BraABCB10	Bra028221	ABCB	A04	6791848-6795123	641	16	69	8.73	5
BraABCB11	Bra017216	ABCB	A04	15986960-15992620	1338	10	146.67	7.49	10
BraABCB12	Bra040475	ABCB	A04	18946035-18950787	1287	10	138.86	6.96	9
BraABCB13	Bra004484	ABCB	A05	370135-375843	1284	10	138.67	6.69	9
BraABCB14	Bra005036	ABCB	A05	3097621-3103960	1408	11	155.55	6.08	11
BraABCB15	Bra019907	ABCB	A06	3774311-3781400	1225	13	134.18	7.17	10
BraABCB16	Bra025425	ABCB	A06	21585065-21593092	1241	9	136.65	8.6	9
BraABCB17	Bra025359	ABCB	A06	22003874-22010062	1252	9	136.75	8.16	10
BraABCB18	Bra025331	ABCB	A06	22120036-22124400	1139	5	124.69	9.1	8
BraABCB19	Bra025328	ABCB	A06	22135599-22140199	1069	4	117.26	9.15	6
BraABCB20	Bra025326	ABCB	A06	22155393-22160709	1244	7	135.98	8.31	11
BraABCB21	Bra003445	ABCB	A07	13221037-13227556	1254	11	136.3	7.11	11
BraABCB22	Bra003950	ABCB	A07	15930698-15934778	699	17	77.98	9.21	4
BraABCB23	Bra003490	ABCB	A07	16736177-16741372	1292	10	139.66	6.55	11
BraABCB24	Bra010464	ABCB	A08	14658571-14663250	683	15	74.27	9.58	5
BraABCB25	Bra030503	ABCB	A08	21539124-21543766	1276	10	137.17	7.76	9
BraABCB26	Bra039056	ABCB	A09	1349788-1355315	690	4	75.74	9.81	5
BraABCB27	Bra039055	ABCB	A09	1364841-1379565	1415	13	155.12	7.2	8
BraABCB28	Bra039042	ABCB	A09	1451543-1458438	1252	9	136.71	8.59	10
BraABCB29	Bra032864	ABCB	A09	12328042-12339538	1228	9	134.18	9.61	11
BraABCB30	Bra032856	ABCB	A09	12379011-12383707	1239	9	134.36	9.35	12
BraABCB31	Bra032855	ABCB	A09	12384484-12384840	118	1	12.87	10.28	0
BraABCB32	Bra027534	ABCB	A09	13505446-13513218	1224	7	133.68	8.47	9
BraABCB33	Bra017539	ABCB	A09	16196016-16200573	1031	11	112.89	8.99	11
BraABCB34	Bra017540	ABCB	A09	16208131-16208877	216	2	23.56	6.03	0
BraABCB35	Bra033331	ABCB	A10	4205096-4210047	1266	10	136.17	7.82	9
BraABCB36	Bra002664	ABCB	A10	8338410-8342848	722	17	79.74	9.83	5
BraABCB37	Bra002094	ABCB	A10	11533544-11539264	1231	11	133.9	7.68	10
BraABCB38	Bra009500	ABCB	A10	16942154-16944882	633	9	68.89	10.07	2
BraABCC1	Bra023893	ABCC	A01	20873809-20879204	1447	11	160.61	7.36	14

(Continued)

TABLE 1 | Continued

Gene	Locus name	Subfamily	Chromosome	Position	Length (aa)	Exon number	MW (kDa)	PI	TMs
BraABCC2	Bra001488	ABCC	A03	16641078-16647142	1493	8	165.31	6.38	14
BraABCC3	Bra001490	ABCC	A03	16652692-16657965	1479	8	163.98	6.37	14
BraABCC4	Bra012617	ABCC	A03	23184921-23191874	1430	34	159.84	7.71	14
BraABCC5	Bra005402	ABCC	A05	5277561-5285323	1626	25	182.29	6.16	14
BraABCC6	Bra032248	ABCC	A05	12374900-12379965	1441	10	161.25	7.82	16
BraABCC7	Bra031267	ABCC	A05	16535804-16541428	1464	12	161.77	7.24	14
BraABCC8	Bra034706	ABCC	A05	21060822-21066705	1473	9	165.09	6.73	14
BraABCC9	Bra018722	ABCC	A06	2328689-2334077	1518	8	169.98	7.92	17
BraABCC10	Bra014879	ABCC	A07	5640904-5648508	1512	26	169.85	8.9	10
BraABCC11	Bra003402	ABCC	A07	13033974-13039675	1494	10	167.28	7.89	15
BraABCC12	Bra010773	ABCC	A08	16342602-16351477	1590	26	178.4	6.7	14
BraABCC13	Bra036682	ABCC	A09	5678744-5684163	1439	10	159.56	6.84	12
BraABCC14	Bra032386	ABCC	A09	21844669-21853187	1444	22	161.84	6.81	12
BraABCC15	Bra032385	ABCC	A09	21859808-21868932	1623	27	182.28	6.53	14
BraABCC16	Bra007434	ABCC	A09	29185025-29191292	1451	11	162.27	7.94	10
BraABCC17	Bra007695	ABCC	A09	30432248-30437756	1537	9	171.27	8.41	15
BraABCC18	Bra015291	ABCC	A10	2670172-2675455	1508	9	167.65	7	12
BraABCC19	Bra039348	ABCC	Scaffold000164	42040-47798	1463	8	163.82	6.42	12
BraABCC20	Bra039368	ABCC	Scaffold000164	156063-161062	1477	8	164.53	6.65	16
BraABCC21	Bra039369	ABCC	Scaffold000164	161873-166792	1437	8	161.31	7.23	12
BraABCD1	Bra033548	ABCD	A01	11206302-11209035	693	8	78.75	7.8	4
BraABCD2	Bra010652	ABCD	A08	15787520-15795700	1433	27	160.49	8.97	2
BraABCE1	Bra013385	ABCE	A01	5318724-5321407	581	11	65.6	8.32	0
BraABCE2	Bra021494	ABCE	A01	24963925-24966374	603	9	68.21	8.15	0
BraABCE3	Bra001515	ABCE	A03	16793599-16796264	603	9	67.88	8.33	0
BraABCE4	Bra012553	ABCE	A03	23587642-23590415	605	11	68.45	7.58	0
BraABCE5	Bra017243	ABCE	A04	15778643-15785578	757	15	84.08	6.4	0
BraABCE6	Bra020966	ABCE	A08	10894669-10897411	605	11	68.39	7.76	0
BraABCE7	Bra032841	ABCE	A09	12469694-12475157	456	7	51.42	8.52	0
BraABCF1	Bra023575	ABCF	A02	4001828-4003954	596	4	66.88	6.27	0
BraABCF2	Bra031898	ABCF	A02	27222260-27225249	687	5	77.16	6.66	0
BraABCF3	Bra006648	ABCF	A03	4464031-4466477	605	4	68.25	6.52	0
BraABCF4	Bra014809	ABCF	A04	3297356-3299134	592	1	65.93	5	0
BraABCF5	Bra027728	ABCF	A09	6603238-6607304	762	16	84.5	6.14	0
BraABCF6	Bra007079	ABCF	A09	27184498-27186654	718	1	80.11	6.04	0
BraABCF7	Bra009072	ABCF	A10	15137399-15140335	674	8	76.11	7.5	0
BraABCG1	Bra013916	ABCG	A01	8428094-8429815	573	1	63.89	9.47	6
BraABCG2	Bra026352	ABCG	A01	9839191-9841673	638	4	70.99	8.66	6
BraABCG3	Bra021173	ABCG	A01	23581848-23590158	1413	19	160.02	8.04	13
BraABCG4	Bra028729	ABCG	A02	2341235-2346157	752	10	82.82	9.45	6
BraABCG5	Bra022614	ABCG	A02	8526894-8528663	589	1	65.72	9.56	7
BraABCG6	Bra007999	ABCG	A02	12431267-12436434	659	4	72.91	9.29	7
BraABCG7	Bra026514	ABCG	A02	19834330-19837326	668	5	74.66	9.36	6
BraABCG8	Bra028945	ABCG	A03	5542028-5547011	1147	14	127.51	8.77	4
BraABCG9	Bra023065	ABCG	A03	8472384-8479166	1429	19	161.73	7.51	12
BraABCG10	Bra000469	ABCG	A03	11249683-11255770	1404	20	157.39	9.24	11
BraABCG11	Bra013141	ABCG	A03	20225924-20227822	632	1	70.96	9.59	5
BraABCG12	Bra012797	ABCG	A03	22187168-22194238	1371	21	155.08	7.85	13
BraABCG13	Bra019051	ABCG	A03	26553817-26556403	637	4	70.86	9.64	6
BraABCG14	Bra014773	ABCG	A04	2952295-2954552	710	2	79.25	7.02	7
BraABCG15	Bra014774	ABCG	A04	2977504-2983724	633	4	70.12	8.53	3

(Continued)

TABLE 1 | Continued

Gene	Locus name	Subfamily	Chromosome	Position	Length (aa)	Exon number	MW (kDa)	PI	TMs
BraABCG16	Bra014775	ABCG	A04	3002630-3004729	699	1	77.75	8.29	6
BraABCG17	Bra014776	ABCG	A04	3021734-3028035	1284	2	143.14	9.37	11
BraABCG18	Bra033441	ABCG	A04	4220746-4230833	1132	17	127.34	6.65	5
BraABCG19	Bra034314	ABCG	A04	11848732-11855032	1420	23	161.65	8.34	13
BraABCG20	Bra034385	ABCG	A04	12263721-12272343	689	10	76.15	8.72	6
BraABCG21	Bra021598	ABCG	A04	13305142-13311183	1429	20	160.31	8.51	11
BraABCG22	Bra017241	ABCG	A04	15804449-15818281	2270	36	257.03	6.09	13
BraABCG23	Bra017198	ABCG	A04	16083910-16091064	1472	22	167.13	8.24	13
BraABCG24	Bra017193	ABCG	A04	16099619-16101847	742	1	82.05	9.41	6
BraABCG25	Bra005048	ABCG	A05	3166613-3168847	744	1	82.44	9.36	7
BraABCG26	Bra005051	ABCG	A05	3177024-3178868	614	1	67.92	10.13	7
BraABCG27	Bra005207	ABCG	A05	4010569-4016591	1423	22	161.28	6.92	13
BraABCG28	Bra005208	ABCG	A05	4017374-4024058	1415	22	160.09	8.32	13
BraABCG29	Bra005224	ABCG	A05	4108683-4113352	1032	13	114.98	9.06	6
BraABCG30	Bra037088	ABCG	A05	9949465-9955806	1395	24	157.63	8.7	11
BraABCG31	Bra038121	ABCG	A05	10351210-10356004	1054	13	117.35	8.74	6
BraABCG32	Bra030437	ABCG	A05	11199344-11202776	692	8	76.9	9.62	7
BraABCG33	Bra033878	ABCG	A05	14752718-14755091	641	5	71.73	8.73	6
BraABCG34	Bra031249	ABCG	A05	16677313-16681012	691	8	77.25	9.57	6
BraABCG35	Bra027171	ABCG	A05	19501072-19510210	1922	21	214.77	8.2	15
BraABCG36	Bra039669	ABCG	A06	615172-622258	1131	17	126.02	8.62	7
BraABCG37	Bra039668	ABCG	A06	623049-628079	1086	13	120.54	9.06	5
BraABCG38	Bra018911	ABCG	A06	1309663-1313997	630	9	70.25	9.69	5
BraABCG39	Bra026157	ABCG	A06	5834476-5845414	1462	10	164.84	8.18	13
BraABCG40	Bra026156	ABCG	A06	5847994-5853304	1444	9	162.85	7.87	13
BraABCG41	Bra026124	ABCG	A06	5958546-5964576	1413	19	159.5	7.26	13
BraABCG42	Bra025944	ABCG	A06	6859917-6863030	676	10	75.41	9.08	6
BraABCG43	Bra025424	ABCG	A06	21597809-21603945	1401	21	159	9.04	13
BraABCG44	Bra025152	ABCG	A06	23183495-23186962	495	5	54.41	9.81	0
BraABCG45	Bra011981	ABCG	A07	10786658-10789875	732	10	81.15	8.83	7
BraABCG46	Bra003137	ABCG	A07	11540111-11546317	1476	22	166.42	7.19	12
BraABCG47	Bra003208	ABCG	A07	11881016-11883287	707	2	78.84	8.58	7
BraABCG48	Bra003527	ABCG	A07	13638753-13643759	1440	7	162.09	8.14	13
BraABCG49	Bra003903	ABCG	A07	15648029-15654679	650	4	71.86	8.58	7
BraABCG50	Bra016095	ABCG	A07	19433991-19439446	661	4	72.22	8.94	7
BraABCG51	Bra030948	ABCG	A08	1007674-1009440	588	1	66.2	9.77	7
BraABCG52	Bra014326	ABCG	A08	1588811-1592015	737	11	80.54	5.52	3
BraABCG53	Bra016584	ABCG	A08	19155230-19158138	701	10	78.34	9.05	6
BraABCG54	Bra016669	ABCG	A08	19501741-19507488	1437	9	162.15	8.49	15
BraABCG55	Bra023202	ABCG	A09	20771853-20775484	727	6	80.93	9.04	7
BraABCG56	Bra007006	ABCG	A09	26775470-26782652	946	6	104.76	9.64	6
BraABCG57	Bra007141	ABCG	A09	27530807-27533042	708	2	78.87	8.05	6
BraABCG58	Bra002941	ABCG	A10	6596284-6598609	260	6	29.01	5.4	0
BraABCG59	Bra002234	ABCG	A10	10746710-10748152	480	1	54.6	6.9	6
BraABCG60	Bra008817	ABCG	A10	13968960-13971140	726	1	80.27	10.01	6
BraABCG61	Bra009203	ABCG	A10	15623186-15628005	755	9	83.41	9.75	5
BraABCG62	Bra035353	ABCG	Scaffold000104	110989-113136	715	1	79.84	7.54	6
BraABCG63	Bra039378	ABCG	Scaffold000164	191507-194585	681	9	77.46	8.59	5
BraABCl1	Bra011442	ABCl	A01	2152914-2154414	273	5	29.68	7.3	0
BraABCl2	Bra039560	ABCl	A01	11870454-11879989	1330	9	150.68	5.82	0
BraABCl3	Bra033786	ABCl	A01	14243301-14249351	298	4	32.71	8.9	0

(Continued)

TABLE 1 | Continued

Gene	Locus name	Subfamily	Chromosome	Position	Length (aa)	Exon number	MW (kDa)	PI	TMs
BraABCl4	Bra034089	ABCI	A01	27521492-27524437	810	7	89.58	4.82	0
BraABCl5	Bra022481	ABCI	A02	9506899-9508775	329	10	35.97	8.46	0
BraABCl6	Bra034020	ABCI	A02	10133904-10156797	5408	60	611.88	5.02	0
BraABCl7	Bra033064	ABCI	A02	21580642-21581082	146	1	15.7	9.88	0
BraABCl8	Bra005714	ABCI	A03	252367-253876	301	6	34.45	10.34	0
BraABC/9	Bra005733	ABCI	A03	342459-347749	1104	8	123.03	7.18	0
BraABCI10	Bra001297	ABCI	A03	15733735-15737050	809	8	89.55	4.85	0
BraABCl11	Bra001373	ABCI	A03	16049519-16054747	970	13	107.23	6.1	0
BraABCI12	Bra025641	ABCI	A04	7327396-7328438	208	4	23.56	8.94	0
BraABCl13	Bra005049	ABCI	A05	3167954-3168847	297	1	33.65	9.46	6
BraABCI14	Bra035791	ABCI	A05	17228607-17232934	777	10	85.93	7.69	1
BraABCI15	Bra029859	ABCI	A05	21964512-21970206	950	13	105.22	5.54	0
BraABCI16	Bra029795	ABCI	A05	22242003-22245164	809	8	89.54	4.8	0
BraABCl17	Bra010169	ABCI	A06	20423304-20425052	477	2	52.95	5.89	0
BraABCl18	Bra003123	ABCI	A07	11453085-11457040	810	8	89.86	4.79	0
BraABCI19	Bra004271	ABCI	A07	17733376-17734681	264	2	28.83	5.03	0
BraABCl20	Bra010588	ABCI	A08	15346788-15355544	1939	9	217.72	4.96	0
BraABCl21	Bra030549	ABCI	A08	21373671-21375232	291	6	32.53	6.51	0
BraABCl22	Bra027807	ABCI	A09	6028957-6029646	229	1	25.86	10.52	0
BraABCl23	Bra027825	ABCI	A09	9029114-9029966	225	2	24.65	9.86	2
BraABCl24	Bra027530	ABCI	A09	13544344-13546011	277	6	30.88	7.58	0
BraABCl25	Bra029516	ABCI	A09	17422682-17424419	552	2	61.27	5.81	0
BraABCl26	Bra006978	ABCI	A09	26635532-26639138	811	8	89.98	4.91	0
BraABCl27	Bra026759	ABCI	A09	33595619-33596262	132	2	15.22	8.98	3
BraABCl28	Bra008779	ABCI	A10	13812509-13814463	274	10	30.39	9.21	0
BraABCl29	Bra009601	ABCI	A10	17396600-17398343	325	6	36.53	8.62	0
BraABCl30	Bra040852	ABCI	Scaffold000281	30428-32476	195	4	22.15	8.94	0

MW, molecular weight; PI, isoelectric point; TMs, transmembrane helices number.

FIGURE 1 | Distribution of ABCs in different plant species and subfamilies. Information regarding genome duplication or triplication was obtained from the Plant Genome Duplication Database. The phenotypic picture of each species was obtained from Phytozome 10. Ptr, Gma, Ath, Aly, Bra, Cpa, Vvi, Bdi, Osa, and Atr are the abbreviations of P. trichocarpa, G. max, A. thaliana, A. Iyrate, B. rapa, C. papaya, V. vinifera, B. distachyon, O. sativa, and A. trichopoda, respectively.
members were scattered in the phylogenetic tree, although they contained the NBD domain. Therefore, our phylogenetic tree was constructed using the NBD domains of ABCA-ABCG
members from these species. As shown in Figure 2, seven distinct clades were clearly distinguished based on the tree topology, namely $\mathrm{ABCA}, \mathrm{ABCB}, \mathrm{ABCC}, \mathrm{ABCD}, \mathrm{ABCE}, \mathrm{ABCF}$,

FIGURE 2 | Phylogenetic relationships among ABCs in six plant species, including Arabidopsis, B. rapa, C. papaya, V. vinifera, 0. sativa, and \boldsymbol{A}. trichopoda. The unrooted tree was constructed by MEGA6 using the maximum-likelihood (ML) procedure with 1,000 bootstrap replicates. The tree can be divided into seven major clades (ABCA-ABCG). All subfamilies have been labeled by different colors.
and ABCG, suggesting that these groups have diverged prior to the divergence of angiosperm. Next, the copy number of ABCs in each subfamily of these species was quantified (Figure 1). In each
studied species, the copy numbers of different subfamilies varied greatly. For the copy numbers of subfamilies in all of the studied species, we found that $A B C B, A B C C, A B C G$, and $A B C I$ were the larger subfamilies. $\mathrm{ABCA}, \mathrm{ABCD}, \mathrm{ABCE}$, and ABCF contained a small number of members, and the copy numbers of $A B C D$, $A B C E$, and $A B C F$ were relatively constant. B. rapa has undergone a further WGT since its divergence from Arabidopsis. Compared with Arabidopsis, the expansion of the ABC gene family in B. rapa was largely the result of the expansion of $A B C s$ in $A B C B, A B C C$, ABCG , and ABCI (Figure 1).

The 179 BraABCs were designated as BraABCA1 through BraABCI30 according to their respective subfamily and their location on the chromosome (Table 1). The comprehensive information of BraABCs, including the locus name, gene location, predicted protein length, exon number, molecular weight (MW), isoelectric point (PI) and transmembrane helices number (TMs), is listed in Table 1. The size of the BraABC proteins varied from 118 (BraABCB31) to 5,408 (BraABCI6) amino acids, with an average of ~ 984 amino acids. There were few differences in the protein lengths of $A B C C, A B C E$ and $A B C F$, whereas the protein lengths of $A B C B, A B C G$ and $A B C I$ changed greatly. The MWs of the BraABC proteins ranged from 12.87 kDa (BraABCB31) to 611.88 kDa (BraABCI6). The variation range of PI was from 4.79 (BraABCI18) to 10.52 (BraABCI22), indicating that these BraABC proteins might exist and function in different parts of the cells. Most of the BraABC proteins (162 out of $179,90.5 \%$) presented multiple exons and sixty proteins (33.5\%) that contained more than 10 exons. The majority of the BraABC proteins contained transmembrane helices (TMs), except for all of the $A B C E$ and $A B C F$ proteins as well as parts of the ABCI proteins. The ubiquity of TMs was in accordance with the transmembrane transport functions of ABCs. Pairwise comparisons of the full-length BraABC protein sequences within each subfamily were conducted. The protein sequences within $A B C A, A B C B$, and $A B C I$ exhibited higher identities than other subfamilies (Supplementary Figure 2). In contrast, the sequence identities of $A B C D$ and $A B C G$ were lower, indicating that the degree of sequence divergence of the two subfamilies was higher than other subfamilies. The other families, such as $\mathrm{ABCC}, \mathrm{ABCE}$, and ABCF exhibited medium sequence identities.

Chromosomal Locations and Tandem Array of BraABCs

A total of 173 BraABCs were located on the ten chromosomes (96.7%), and the other 6 genes were located on unanchored scaffolds (Figure 3). The BraABCs were unevenly distributed on the ten chromosomes. The largest number of BraABCs was found on chromosome A09 (26 genes), followed by A03 (25 genes). Chromosomes A06 and A05 also contained more than 20 BraABCs (22 and 21, respectively). In contrast, chromosomes A04, A01, A07, A10, A08, and A02 contained 18, 14, 14, 12, 11 , and 10 BraABCs, respectively. Our results indicated that BraABCs within each subfamily were also unevenly distributed on the ten chromosomes.

Simultaneously, we further identified tandem arrays of BraABCs along the 10 B. rapa chromosomes. A tandem array was

A07
(22.59 Mb)

Unknown Chromosome

BraABCC19	Scaffold000164	BraABCG62	Scaffold000104
BraABCC20	Scaffold000164	BraABCG63	Scaffold000164
BraABCC21	Scaffold000164	BraABCI30	Scaffold000281

FIGURE 3 | Chromosomal locations of BraABCs. Chromosome numbers and lengths are represented at the bottom of each chromosome. Tandem arrays of BraABCs are marked in purple. Six BraABCs could not be anchored onto a specific chromosome.
defined as multiple members of BraABCs occurring within the same or neighboring intergenic regions. As shown in Figure 3, 11 BraABCs clusters (genes marked in purple) containing 28 tandemly duplicated genes were identified on chromosomes A03, A04, A05, A06, and A09.

Motif Composition and Exon-Intron Organization of BraABC Proteins

To better understand the conservation and diversity of motif compositions and gene structures of BraABCs, the conserved motifs and exon-intron organization of BraABCs were analyzed.

The conserved motifs of BraABC proteins in ABCA-ABCG were analyzed using MEME software, and we identified 15 conserved motifs (Figure 4). The lengths of the conserved motifs were between 26 and 154 amino acids. The number of the conserved motifs in each BraABC protein varied from 1 to 8. Several motifs were widely spread among BraABC proteins; for instance, motifs 1 and 3 were present in the most proteins of ABCA-ABCG. In contrast, other motifs were specific to only one or two subfamilies. For example, motifs $4,5,8$, and 12 were specific to $A B C B$ and $A B C C$, motifs 10 and 15 were specific to $A B C B$, and motif 14 was specific to ABCA. ABCG contained the specific motifs $2,6,7,9,11$, and 13 , and these motifs were

FIGURE 4 | Conserved motifs of BraABCs according to the evolutionary relationship. The conserved motifs were elucidated using MEME with complete protein sequences. Different motifs are represented by different colors, numbered 1-15 at the bottom. The black lines represent the non-conserved sequences.
probably required for specific protein functions. The varieties of motif compositions in different subfamilies suggested sources of functional differentiation in BraABCs during the evolutionary process. BraABC proteins grouped into the same subfamily exhibited similar motif characteristics, suggesting functional similarities for members in the same subfamily. Logos of the 15 identified motifs are shown in Supplementary Figure 3.

We also analyzed the exon-intron organizations of BraABCs using GSDS 2.0. Similar to the motif composition, most of the BraABCs within the same subfamily generally exhibited similar gene structure in terms of the numbers and lengths of introns and exons. Moreover, BraABCs that had a closely phylogenetic relationship and shared a more similar gene structure (Supplementary Figure 4).

Conservation of BraABCs following the Whole Genome Triplication Event

To explore the influences of WGT on the evolution of BraABCs, we studied the conservation of BraABCs after WGT. After diverging from Arabidopsis, the gene number of the B. rapa genome was $\sim 42,000$, which is considerably lower than the simple triplication of the $\sim 30,000$ genes in the Arabidopsis genome. Therefore, substantial genes must have been lost (fractionation) in B. rapa after triploidization (Wang et al., 2011). To evaluate the fractionation extent of BraABCs, we compared the retention of BraABCs relative to the set of 3,580 neighboring genes (10 on either side), flanking the 179 BraABCs (Supplementary Table 2). In comparison, 47.2% of BraABCs were retained in one copy, which was greater than the retention of neighboring genes (38.7%). A similar percent (33.7 and 30.6%, respectively) of BraABCs and neighboring genes were retained in the two copies. And more BraABCs (19.1\%) were retained in the three copies than their neighboring genes (9.2\%) (Figure 5A).

The triplicated B. rapa genome can be divided into three subgenomes: LF, MF1, and MF2. The subgenomes were grouped based on the level of gene loss relative to Arabidopsis since the WGT 13-17 MYA. Compared with their neighboring genes, more BraABCs were significantly retained in all three subgenomes. Consistent with the whole genome level, BraABCs distributed in the LF subgenome were more than two other subgenomes (Figure 5B). Given the well-conserved synteny between Arabidopsis and B. rapa (Cheng et al., 2012), in our study, there were four collinear relations for ABCs between B. rapa and Arabidopsis: a single copy of BraABC to a single copy of Arabidopsis (SB to SA); a tandem array of BraABCs to a tandem array of Arabidopsis (TB to TA); a single copy of BraABC to a tandem array of Arabidopsis (SB to TA); and a tandem array of BraABCs to a single copy of Arabidopsis (TB to SA). The four syntenic relations were presented using the Circos program (Figure 5C). On the whole, BraABCs were preferentially retained, consistent with the gene balance hypothesis and demonstrating the significance of ABCs in B. rapa.

Cis-Elements of BraABCs Involved in Transcriptional Regulation

To identify cis-elements related to transcriptional regulation, 2 kb promoter regions for each of the 179 BraABCs were identified. Gaps existed in the promoter regions of 13 BraABCs after assembling the B. rapa genome. Therefore, these BraABCs were excluded in the following study. Next, we applied the Plant Cisacting Regulatory DNA Elements (PLACE) website to analyze the

FIGURE 5 | Retention of BraABCs and their neighboring genes (10 flanking genes on either side of BraABCs) in B. rapa. (A) Retention by the number of homologous copies in the syntenic region. (B) Retention of homologs among the three subgenomes of B. rapa. (C) Collinear correlations of $A B C$ s between Arabidopsis and B. rapa. The B. rapa and Arabidopsis chromosomes are colored according to the inferred ancestral chromosomes following an established convention. SA, SB, TA, and TB are the abbreviations of a single copy of Arabidopsis, a single copy of BraABC, a tandem array of Arabidopsis and a tandem array of BraABCs, respectively. The four collinear correlations of $S B$ to $S A$, TB to TA, SB to TA, and TB to SA are represented by blue, red, black, and yellow lines, respectively.
cis-elements and identified a total of 291 different cis-elements in all of the studied BraABCs.

A total of 13 common cis-regulatory elements were identified in all of the promoter regions of the BraABCs, which were highly conserved among all of the studied BraABCs (Table 2). Two common cis-regulatory elements, WRKY71OS and GT1CONSENSUS were responsive to plant hormones, including ABA, GA, and SA, suggesting that ABA, GA, and SA could affect the expression levels of BraABCs. Some common cis-regulatory elements were responsive to stresses, such as pathogens (WRKY71OS) and wounds (WBOXNTERF3). Of the 13 common cis-regulatory elements, GATABOX, IBOXCORE, and GT1CONSENSUS were required for transcriptional regulation by light. DOFCOREZM participated in carbon metabolism, and GATABOX played a role in molecular light switching; therefore, we speculated that BraABCs were likely to participate in energy metabolism. Two common cis-elements, POLLEN1LELAT52 and GTGANTG10, were required for transcriptional regulation in pollen, suggesting that BraABCs might be involved in the reproductive process.

We also identified unique cis-element sequences that are present in the promoter regions of unique BraABCs. In total, 40 unique cis-elements were identified in the promoter regions of the 36 BraABCs (Supplementary Table 3). Interestingly, 3 unique
cis-elements (ACGTSEED3, ABREMOTIFIOSRAB16B, and VOZATVPP) were presented in only BraABCF3. BraABCG18 and BraABCB10 both contained two unique cis-elements. There was only one unique cis-element present in the other 33 BraABCs. The unique cis-element of these genes indicated their expression specificity.

Gene Expression of BraABCs in Different Tissues

To characterize the expression patterns of individual BraABCs in different tissues, we used publicly available RNA-Seq data of different tissues as a resource (Tong et al., 2013). A heat map displaying the expression profiles of BraABCs in roots, stems, leaves, flowers and siliques was generated, and the BraABCs were clustered by their expression patterns. As shown in Figure 6A, the majority of BraABCs presented different expression patterns, whereas a few of them exhibited similar expression patterns. A total of 165 BraABCs (92.2\%) were determined as being expressed in at least one tissue, and 117 BraABCs (65.4\%) expressed in all tissues, including 3 ABCA genes, 26 ABCB genes, 19 ABCC genes, 2 ABCD genes, 5 ABCE genes, 6 ABCF genes, 37 ABCG genes and 19 ABCI genes. Relatively, the expression of 14 BraABCs was not detected in any of the five tissues. Some BraABCs also exhibited tissue-specific expression, and there were

TABLE 2 | Common putative cis-elements identified in the promoter sequences of BraABCs.

Cis-element	Signal sequence	SITE	Expression pattern
CAATBOX1	CAAT	S000028	Seed
ARR1AT	NGATT	S000454	Response regulator
WRKY71OS	TGAC	S000447	GA, ABA, PR proteins, plant defenses
DOFCOREZM	AAAG	S000265	Leaf, shoot, carbon metabolism
WBOXNTERF3	TGACY	S000457	Wound
NODCON2GM	CTCTT	S000462	Nodule
GATABOX	GATA	S000039	Leaf, shoot, light, molecular
light switches			
IBOXCORE	GATAA	S000199	Leaf, shoot, light regulation
POLLEN1LELAT52	AGAAA	S000245	Pollen
CACTFTPPCA1	YACT	S000449	C4 plant, mesophyll
TAAAGSTKST1	TAAAG	S000387	Guard cell, K+ influx channel
GT1CONSENSUS	GRWAAW	S000198	Leaf, shoot, light, SA
GTGANTG10	GTGA	S000378	Pollen

$8,4,4,5$, and 1 tissue-specific BraABCs in the roots, stems, leaves, flowers and siliques, respectively (Figure 6B), suggesting that these genes may play specific roles in the relevant tissues. As shown in Figure 6A, some genes of $A B C A, A B C B$, and $A B C G$ exhibited variable expression profiles throughout the five tissues, such as BraABCA10, BraABCB13, and BraABCG25. In contrast, the majority of genes in $\mathrm{ABCC}, \mathrm{ABCD}, \mathrm{ABCE}, \mathrm{ABCF}$, and ABCI presented relatively consistent expression levels across the five tissues, such as BraABCC18, BraABCD2, BraABCE6, BraABCF1, and BraABCI14. As shown in Figure 6A, we found the expression profiles of BraABCs in the roots exhibited large differences compared with the other four tissues, whereas similar expression patterns of BraABCs were observed for the stems and leaves, and the flowers and siliques.

Syntenic BraABC Paralog Pairs among the Three Subgenomes of B. rapa

The three subgenomes of B. rapa are the evolutionary products of WGT and a lot of synteny blocks among them. Syntenic paralogs are genes that are located in the syntenic fragments. Syntenic BraABC paralog pairs among LF, MF1, and MF2 were identified by searching "syntenic gene" in the BRAD (Cheng et al., 2011). In total, 76 pairs of BraABC syntenic paralogs were identified among the three subgenomes (Table 3). Synonymous ($K s$) and non-synonymous ($K a$) values were calculated to explore the selective pressures on these paralog pairs. We found that the $\omega(=K a / K s)$ ratios of 10 syntenic paralogs (13.16\%) were more than 1 , indicating positive selection on these BraABC paralogs. The ABCC21_ABCC3 pair had the highest ω ratios, with a ratio of 1.9264 . The rest of the paralogs were under purifying selection, with ω ratios lower than 1 . Among them, the ω ratios of 22 paralog pairs were lower than 0.1 , suggesting that these gene pairs underwent strong purifying selection stress, making the functions of these paralog pairs trend toward relative similarity. Furthermore, the duplication time of these paralogs
pairs were estimated by using a relative $K s$ measure as a proxy for time. The estimated duplication time of BraABC paralog pairs indicated that it spanned from 3.45 to 42.2 MYA , with an average duplication time of $\sim 15.13 \mathrm{MYA}$, which was consistent with the recent WGT time of B. rapa (13-17 MYA) (Wang et al., 2011).

Evolutionary Fates Prediction of Syntenic BraABC Paralog Pairs

Profiling gene expression may provide an ample amount of information about the mode and tempo of duplicated genes. To predict the evolutionary fates of syntenic BraABC paralog pairs, we took advantage of the deep RNA-Seq data of B. rapa to investigate their expression profiles in different tissues, including roots, stems, leaves, flowers and siliques (Tong et al., 2013). Generally, if a Pearson correlation coefficient (PCC) of the two factors is greater than 0.6 , we can infer that they have a close positive correlation. Among the 76 pairs of paralogs, 27 pairs had positive expression correlations across the five tissues, which were greater than 0.6 measured by the PCCs (Figure 7). Such high positive correlations among these paralog pairs probably indicated functional conservation or sub-functionalization for these paralog pairs after duplication. Simultaneously, 40 pairs of syntenic paralogs were negatively correlated with negative PCC values or exhibited little correlation with small positive PCC values in gene expression, suggesting neo-functionalization for these paralog pairs. Furthermore, there were 9 pairs of paralogs in which one copy of each pair did not express in any of the 5 tissues. Therefore, there were no available (NA) results of PCCs for these paralog pairs. Among the 9 paralog pairs, 8 pairs were composed of genes from two different subfamilies, and one copy of each of these paralog pairs was the ABCI gene. Interestingly, all of these ABCI genes were not expressed in any of the studied tissues, indicating that they probably became pseudogenes. Therefore, pseudogenization of these 9 pairs of paralogs may occur during evolution.

From the cluster of different tissues, the leaves clustered with the stems and the flowers clustered with the siliques in the heat map of BraABC paralog pairs indicated a similar expression profile (Figure 7). Taking an overall view of the cluster for BraABC paralog pairs, paralog pairs with similar evolutionary fates tended to further cluster together, confirming that the expression patterns of paralog pairs were related to their evolutionary fates after duplication. Approximately 42.1\% (32 out of 76) of the paralog pairs presented no less than a two-fold expression difference (absolute value of $\log _{2}$ FPKM ratio ≥ 1) in all of the studied tissues. In brief, the expression correlation analysis of syntenic paralog pairs showed their functional roles in functional conservation, sub-functionalization, neofunctionalization and pseudogenization in the BraABC gene family.

We also investigated the expression patterns of syntenic BraABC paralog pairs under ABA, drought and salt stresses with qRT-PCR. Three pairs of conserved or sub-functional paralogs and three pairs of neo-functional paralogs were randomly selected to study their expression patterns. Primers for qRTPCR are listed in Supplementary Table 4. As shown in Figure 8,

FIGURE 6 | Expression patterns of BraABCs in five tissues. (A) Heat map of expression profiles (in $\log _{2}$-based FPKM) for BraABCs in the five tissues of roots, stems, leaves, flowers, and siliques. The expression levels are represented by the color bar. (B) Venn diagram analysis of the tissue-expression of BraABCs.

TABLE $3 \mid K a / K s$ calculation of each pair of syntenic BraABC paralogs among three subgenomes.

Syntenic paralog pairs	S-Sites	N -Sites	Ka	$K s$	Ka/Ks	Selection pressure	Duplication time (MYA)
ABCI7_ABCB28	101.7	312.3	0.0361	0.2692	0.1340	Purify selection	8.97
ABCA7_ABCA1	426.3	1430.7	0.1214	0.6921	0.1754	Purify selection	23.07
ABCA7_ABCA10	387.3	1325.7	0.2713	1.1081	0.2449	Purify selection	36.94
ABCA8_ABCA1	637.9	2110.1	0.1567	0.6438	0.2433	Purify selection	21.46
ABCG55_ABCG33	459.5	1457.5	0.0181	0.3379	0.0534	Purify selection	11.26
ABCA8_ABCA10	548.6	1884.4	0.3411	0.7180	0.4751	Purify selection	23.93
ABCI3_ABCA10	184.7	634.3	0.2605	0.9483	0.2747	Purify selection	31.61
ABCB36_ABCB4	513.5	1622.5	0.0358	0.3744	0.0955	Purify selection	12.48
ABCC21_ABCC3	833.1	2877.9	0.4073	0.2114	1.9264	Positive selection	7.05
ABCC8_ABCC3	907.0	2972.0	0.3718	0.2640	1.4083	Positive selection	8.80
ABCG39_ABCG54	998.5	3303.5	0.0407	0.4111	0.0991	Purify selection	13.70
ABCC14_ABCC12	828.4	2879.6	0.4574	0.3221	1.4202	Positive selection	10.74
ABCC14_ABCC10	934.3	2995.7	0.0773	0.4210	0.1836	Purify selection	14.03
ABCB18_ABCB27	795.6	2522.4	0.0923	0.5602	0.1647	Purify selection	18.67
ABCC20_ABCC3	1,022.8	3318.2	0.0711	0.3866	0.1838	Purify selection	12.89
ABCB13_ABCB12	918.0	2913.0	0.0214	0.3618	0.0592	Purify selection	12.06
ABCG21_ABCG10	998.9	3207.1	0.0312	0.3336	0.0935	Purify selection	11.12
ABCG44_ABCG7	357.6	1103.5	0.0806	0.2724	0.2959	Purify selection	9.08
ABCC20_ABCC2	948.6	3050.4	0.1483	0.1105	1.3417	Positive selection	3.68
ABCC8_ABCC2	972.1	3176.9	0.2673	0.7469	0.3578	Purify selection	24.90
ABCC21_ABCC2	946.1	3055.9	0.3096	0.6745	0.4590	Purify selection	22.48
ABCB35_ABCB25	854.1	2598.9	0.1366	0.1034	1.3209	Positive selection	3.45
ABCC15_ABCC10	935.2	3144.8	0.3639	0.5253	0.6928	Purify selection	17.51
ABCC12_ABCC10	969.0	3225.0	0.2990	0.8343	0.3583	Purify selection	27.81
ABCG6_ABCG49	482.0	1453.0	0.0674	0.4778	0.1411	Purify selection	15.93
ABCA8_ABCl3	190.6	658.4	0.1729	0.4297	0.4024	Purify selection	14.32
ABCE1_ABCE4	403.6	1336.4	0.0159	0.3465	0.0458	Purify selection	11.55
ABCE1_ABCE6	403.8	1336.2	0.0128	0.3867	0.0332	Purify selection	12.89
ABCG42_ABCG53	477.8	1541.2	0.0167	0.3074	0.0544	Purify selection	10.25
ABCG14_ABCG47	503.7	1587.3	0.1408	0.8319	0.1693	Purify selection	27.73
ABCA1_ABCA10	556.0	1850.0	0.3796	0.3834	0.9900	Purify selection	12.78
ABCG35_ABCG3	974.6	3264.4	0.0445	0.3155	0.1410	Purify selection	10.52
ABCA7_ABCl3	187.0	650.0	0.2065	0.4738	0.4358	Purify selection	15.79
ABCC15_ABCC12	1,120.0	3644.0	0.0265	0.3014	0.0880	Purify selection	10.05
ABCC8_ABCC20	904.9	3043.1	0.3938	0.2233	1.7637	Positive selection	7.44
ABCB11_ABCB5	958.6	3031.4	0.0232	0.4174	0.0555	Purify selection	13.91
ABCC8_ABCC21	1,000.5	3268.5	0.1138	0.6474	0.1758	Purify selection	21.58
ABCB17_ABCB28	904.7	2851.3	0.0149	0.4701	0.0316	Purify selection	15.67
ABCB14_ABCB6	1,006.1	3190.9	0.0231	0.3068	0.0754	Purify selection	10.23
ABCl15_ABCl11	638.6	2133.4	0.0367	0.3204	0.1147	Purify selection	10.68
ABCl16_ABCl4	556.1	1861.9	0.0032	0.2802	0.0115	Purify selection	9.34
ABCl16_ABCl10	557.1	1864.0	0.0059	0.3252	0.0182	Purify selection	10.84
ABCG2_ABCG13	455.1	1455.9	0.0457	0.2647	0.1725	Purify selection	8.82
ABCE4_ABCE6	419.3	1395.7	0.0072	0.3489	0.0206	Purify selection	11.63
ABCI4_ABCl10	558.7	1865.3	0.0032	0.2760	0.0117	Purify selection	9.20
ABCG16_ABCG47	506.8	1587.2	0.0779	0.3979	0.1959	Purify selection	13.26
ABCG15_ABCG47	324.9	1016.1	0.2803	0.1506	1.8615	Positive selection	5.02
ABCG17_ABCG47	420.4	1373.6	0.3868	0.2192	1.7644	Positive selection	7.31
ABCA9_ABCl3	170.8	552.2	0.4139	0.5472	0.7564	Purify selection	18.24
ABCB17_ABCI7	101.8	312.2	0.0361	0.2976	0.1213	Purify selection	9.92

(Continued)

TABLE 3 | Continued

Syntenic paralog pairs	S-Sites	N -Sites	Ka	Ks	Ka/Ks	Selection pressure	Duplication time (MYA)
ABCA6_ABCI3	190.8	649.2	0.1545	0.6303	0.2452	Purify selection	21.01
ABCl29_ABCl8	203.3	675.7	0.0279	0.3872	0.0720	Purify selection	12.91
ABCF6_ABCF4	405.4	1346.6	0.0617	0.4685	0.1317	Purify selection	15.62
ABCG41_ABCl27	86.6	309.4	0.0364	0.4439	0.0821	Purify selection	14.80
ABCA6_ABCA1	656.7	2,169.3	0.0777	0.3726	0.2086	Purify selection	12.42
ABCA9_ABCA1	459.7	1,547.3	0.5582	0.9212	0.6060	Purify selection	30.71
ABCA6_ABCA10	585.3	1,934.7	0.2449	1.1391	0.2149	Purify selection	37.97
ABCA9_ABCA10	441.0	1,446.0	0.6087	0.6633	0.9177	Purify selection	22.11
ABCG57_ABCG16	506.5	1,581.6	0.0697	0.3955	0.1764	Purify selection	13.18
ABCG57_ABCG15	350.3	1,068.7	0.1476	0.6815	0.2165	Purify selection	22.72
ABCG57_ABCG17	467.6	1,476.4	0.2053	1.2659	0.1622	Purify selection	42.20
ABCC7_ABCC1	918.1	2,984.9	0.1512	0.1284	1.1774	Positive selection	4.280
ABCB18_ABCB26	436.6	1,384.4	0.2332	0.1448	1.6106	Positive selection	4.83
ABCG22_ABCG9	983.5	3,297.5	0.0375	0.4045	0.0926	Purify selection	13.48
ABCB2_ABCB8	890.4	2,802.6	0.0566	0.3556	0.1592	Purify selection	11.85
ABCG28_ABCG23	972.9	3,257.1	0.0592	0.4121	0.1437	Purify selection	13.74
ABCG27_ABCG23	977.1	3,279.9	0.0649	0.3697	0.1755	Purify selection	12.32
ABCE2_ABCE3	416.3	1,392.7	0.0879	0.6704	0.1311	Purify selection	22.35
ABCG50_ABCG49	488.3	1,455.7	0.0566	0.4861	0.1164	Purify selection	16.20
ABCG45_ABCG20	485.2	1,554.8	0.0363	0.4193	0.0867	Purify selection	13.98
ABCG57_ABCG47	513.3	1,598.7	0.0484	0.4063	0.1192	Purify selection	13.54
ABCG40_ABCG54	997.6	3,304.4	0.0432	0.4119	0.1050	Purify selection	13.73
ABCG50_ABCG6	493.9	1,474.1	0.0617	0.5136	0.1202	Purify selection	17.12
ABCG61_ABCG4	550.0	1,697.0	0.0279	0.3461	0.0806	Purify selection	11.54
ABCG57_ABCG14	480.0	1,551.0	0.2200	0.3336	0.6596	Purify selection	11.12
ABCl26_ABCl18	554.5	1,872.5	0.0322	0.3497	0.0920	Purify selection	11.66

S-Sites, number of synonymous sites; N-Sites, number of non-synonymous sites; Ka, non-synonymous substitution rate; Ks, synonymous substitution; MYA, million years ago.
a range of expression profiles of the selected BraABCs were observed after exposure to ABA, drought and salt stress. Some paralog pairs exhibited similar expression patterns, whereas others presented different expression profiles. The paralog pairs with positive expression correlations measured by PCCs across the five tissues also had positive correlations under the stress treatments (Figures 8A-C), which also indicated the functional conservation or sub-functionalization in these paralog pairs. Similarly, paralog pairs which exhibited negative correlations across the studied tissues also presented negative correlations under the stress treatments (Figures 8D-F), suggesting that these paralog pairs were neo-functional. On the whole, the expression correlations of the selected syntenic BraABC paralog pairs across the five tissues were consistent with those under the stress treatments.

Interaction Network Analysis among BraABC Proteins

The interaction network of BraABC proteins, including the functional and physical interactions, were examined using STRING software and the corresponding database to retrieve the protein interactions. As shown in Figure 9, a dense interaction network formed among the BraABC proteins. Most of the

BraABC proteins were involved in interaction relations with other proteins, except for BraABCA4, BraABCA9, BraABCG18, and several $A B C I$ proteins. Interaction relations not only existed among proteins within the same subfamily but also among proteins from different subfamilies. Though interacting frequently with proteins in other subfamilies, some ABCB proteins did not interact with proteins of $A B C B$, shown as being surrounded by the yellow curve in Figure 9. The majority of proteins located in the center of the network were ABCG proteins, indicating that these proteins had more complex interaction relations with other BraABC proteins. The gene dosage hypothesis predicts that genes will be preferentially retained if their products are dose sensitive, interacting either with other proteins or in networks (Thomas et al., 2006; Birchler and Veitia, 2007). Consequently, ABCG genes were probably more preferentially retained compared with genes of other subfamilies during evolution. Indeed, ABCG had the largest number of genes among all of the BraABC subfamilies.

DISCUSSION

Due to their sessile nature, plants have evolved complex movement systems to establish steep concentration gradients

FIGURE 7 | Expression profiles of syntenic BraABC paralog pairs in the five tissues of roots, stems, leaves, flowers, and siliques. The color bar on the bottom represents the $\log _{2}$-based ratio of FPKM values of the two genes in each paralog pair. The values in the bracket are Pearson correlation coefficients (PCCs) of paralog pairs measured by their expressions. NA stands for no available results for PCCs.

FIGURE 8 | Comparisons of the expression profiles of six pairs of syntenic BraABC paralogs across nine time points (in hours) after ABA, drought and salt stress treatments. (A-F) Are the expression profiles of the selected six pairs of syntenic paralogs under different stress treatments at different time points, respectively. Each column represents the mean of three independent experiments, each with three replicates. The R_{T} and R_{S} are the Pearson correlation coefficients (PCCs) of paralog pairs measured by their expressions across different tissues and under different stress treatments, respectively.
of solutes across cellular membranes to adapt to the variable environment. The particularly large complement of ABC proteins play a major role (George and Jones, 2012). ABC proteins are involved in various biological processes and are ubiquitous in all living organisms. To date, most research into the functions of ABCs has focused on Arabidopsis and rice, whereas studies are limited in terms of other non-model plants like B. rapa (Kang et al., 2011). In our research, we conducted comprehensive studies of ABCs in B. rapa, including whole genome-wide identification, evolutionary relationships, chromosomal locations, structural investigation, conservation after WGT and expression patterns in different tissues and under different stress treatments.

In this study, we systematically identified 179 BraABCs, representing 0.43% of the annotated protein coding genes in B. rapa (Wang et al., 2011). Gene duplication events are important to the rapid expansion and evolution of gene families. Furthermore, segmental duplication and tandem duplication are known to be major duplication modes for gene family expansion (Cannon et al., 2004). Previous studies revealed that B. rapa not
only shared three paleo-polyploidy events with Arabidopsis but also underwent a further WGT event since its divergence from Arabidopsis 13 to 17 MYA (Town et al., 2006). In our study, the average duplication time of syntenic BraABC paralog pairs was 15.13 MYA, which was close to the recent WGT date of B. rapa. A total of 87 BraABCs were contained in the 76 pairs of BraABC syntenic paralogs among three subgenomes stemming from WGT. Simultaneously, 28 BraABCs were found to be located as 11 tandem arrays on chromosomes (Figure 3). Taken together, syntenic paralog analysis and chromosomal distribution revealed that the expansion of the ABC gene family in B. rapa could be attributed to the recent WGT and tandem duplication. Similarly, the expansion of other gene families in plants, such as the PG of Populus, the bZIP of apple and the ST of pear are also associated with WGD/segmental and tandem duplications (Yang et al., 2013; Li et al., 2015; Zhao et al., 2016).

The phylogenetic tree demonstrated that BraABCs can be divided into eight subfamilies (ABCA-ABCG and ABCI) (Supplementary Figure 1). All subfamilies, except ABCI, were clustered together in the phylogenetic tree constructed from

ABCs of B. rapa and Arabidopsis, whereas the ABCI genes containing the NBD domain were scattered in the phylogenetic tree. This topology is similar to that of the phylogenetic tree constructed from the ABCs of maize (Pang et al., 2013). The dispersed distribution in the phylogenetic tree and non-uniform domain organization of ABCI genes indicated
that the functions of ABCI are more divergent than other subfamilies. The subfamily classification was further supported by the results of domain organization, exon-intron structure and motif composition.

The evolution complexity of angiosperm genomes has been characterized by polyploidization through WGD followed by
diploidization. Studies of Arabidopsis and its close relative B. rapa can provide fundamental insights into the evolutionary patterns of plant genomes. After triploidization, there is considerable gene loss (fractionation) in B. rapa, and is consistent with the widespread gene loss after WGD events in other eukaryotes (Sankoff et al., 2010). In theory, the number of ABCs in the newly formed hexaploid B. rapa genome would be three-fold as in Arabidopsis, whereas only 179 BraABCs were identified, indicating that some BraABCs were lost following WGT. The gene balance hypothesis predicts that genes whose products participate in macromolecular complexes, signaling networks or transcription, are more likely to be retained, avoiding network imbalances associated with the loss of one member (Thomas et al., 2006; Birchler and Veitia, 2007). In B. rapa, the ABCs were biased and preferentially retained. The preferential retentions of BraABCs were consistent with the gene balance hypothesis and demonstrate that BraABCs play key roles in the adaptation of B. rapa. In the interaction network of BraABC proteins (Figure 9), the ABCG proteins were highly connected with other BraABC proteins. Simultaneously, ABCG had the largest number of genes among all subfamilies, suggesting that ABCG genes were probably more preferentially retained during evolution. In turn, the preferential retention of ABCG genes supports the reliability of the gene balance hypothesis.

Evidence has demonstrated that ABC genes are involved in plant growth, development and stress tolerance. AtABCB1, a member of AtABC, can participate in auxin transport, and AtABCB1 overexpressing plants develop longer hypocotyls (Sidler et al., 1998; Noh et al., 2001). AtABCG25 is involved in abscisic acid transport and response (Kuromori et al., 2010). OsABCC1, a rice transporter, is involved in detoxification and reduce arsenic in rice grains (Song et al., 2014). Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis (Kim et al., 2010). Gene expression patterns provide important clues for gene functions. Thus, we conducted expression analysis for all BraABCs in the roots, stems, leaves, flowers and siliques tissues using public RNA-seq data (Tong et al., 2013). Most of the BraABCs (92.2\%) were expressed in at least one of the five tissues. Some BraABCs exhibited tissuespecific expression patterns (Figure 6B), indicating that they might play specific roles in the relevant tissues. Cis-elements in the promoters of genes can be bound by transcription factors and involved in gene expression regulation. To further understand the possible transcriptional regulation mechanisms of BraABCs, we scanned the common cis-regulatory elements, which were conserved in the promoter regions of all of the studied BraABCs. Among the identified 13 common cis-elements, WRKY71OS was responsive to ABA. However, in our qRT-PCR experiments, the expression profiles of some BraABCs and the presence of WRKY71OS in their promoters were not in good agreement under ABA treatment. Some BraABCs was down-regulated under ABA treatment or nearly unresponsive to ABA at some time points, such as BrABCB13, BrABCB12, BrABCB11, $B r A B C B 5$, and BrABCG45 (Figure 8). This suggests that the induction of these BraABCs might result from the functions of a complex array of cis-elements, and some unidentified ciselements might play a vital role in regulating the expression
of these BraABCs under ABA treatment. Furthermore, this indicates that BraABCs have both shared, as well as distinct regulatory modules in response to ABA treatment. Moreover, of the identified common cis-elements, DOFCOREZM and GATABOX were related to carbon metabolism and molecular light switching, respectively, indicating that BraABCs probably participated in energy metabolism. Combining gene expression results with common cis-elements of BraABCs, we further confirmed the important roles of BraABCs during growth, development and stress response.

Altogether, 76 pairs of BraABC syntenic paralogs were identified among the three subgenomes. The average duplication time of the 76 pairs of paralogs was 15.13 MYA , which was consistent with the generated time of the three subgenomes (Wang et al., 2011). According to the ratio of non-synonymous to synonymous substitutions $\omega(=K a / K s)$, the selection type acting on the coding sequences can be measured. Ka/Ks ratios of 22 paralogs pairs were <0.1, indicating that these paralog pairs were under strong purifying selection pressures. Furthermore, their functions were potentially more constrained with limited functional divergence occurring after duplication. It is worth noting that the ω ratios of 10 pairs of paralogs were >1, representing positive selection and fast evolutionary rates in these BraABC paralogs at the protein level. This is different from other gene families in plants, such as PG of Populus, BURP of Medicago and ACD of tomato, which contain a few or even no paralog pairs undergoing positive selection (Yang et al., 2013; Li et al., 2016; Paul et al., 2016), and a relatively large percentage of BraABC paralogs pairs underwent positive selection in our study. We deduced genes of these paralog pairs might evolve some new functions to adjust to their living environment.

Four possible fates have been suggested for the evolution of gene duplication: functional conservation, sub-functionalization, neo-functionalization and pseudogenization (Lynch and Conery, 2000). Expression correlation analysis of syntenic BraABC paralog pairs across different tissues and under stress treatments could help reveal their functional roles in evolutionary fates. Our results indicate that all four fates turned up among the 76 pairs of paralogs. The high positive correlations of the 27 paralog pairs suggest the conservation of ancestral gene functions or sub-functionalization through the division of labor by retaining different parts of their ancestral functions. In contrast, 40 pairs of paralogs had small positive PCCs or negative PCCs, indicating that neo-functionalization and added functional diversity were likely to occur for the BraABC gene family. In particular, among the 9 pairs of paralogs undergoing pseudogenization, 8 pairs were composed of genes from two different subfamilies. Furthermore, ABCI genes were contained in each of these 8 pairs of paralogs. Interestingly, all of these ABCI genes had probably already become pseudogenes. Genes of ABCA-ABCG included multidomains, whereas the ABCI genes generally contained only one domain, mainly NBD or TMD. We speculated that the ABCI genes in these eight paralog pairs were generated from the domain loss of genes in ABCA-ABCG. In short, the functions of genes in the BraABC gene family were enhanced and expanded through gene duplications. However, further functional analyses of BraABCs are still needed to determine which evolutionary
fate the syntenic paralogs pairs undergo during the process of sequence and functional evolution.

In conclusion, we performed the first genome-wide analysis of the ABC gene family in B. rapa, and a total of 179 BraABCs were identified. Phylogenetic relationships, gene structures and cis-regulatory elements of BraABCs were studied in detail. Expression patterns of BraABCs were also characterized in different tissues and under different stresses. Furthermore, the conservation of BraABCs and the evolutionary fates of syntenic BraABC paralog pairs following WGT were studied. Our results could help to further investigate the biological functions of BraABCs in plant growth, development, and stress response.

AUTHOR CONTRIBUTIONS

CY, WD, and XH conceived and designed the experiments.
CY and SL performed the experiments. CY, WD, YL, and XH

REFERENCES

Annilo, T., Chen, Z.-Q., Shulenin, S., Costantino, J., Thomas, L., Lou, H., et al. (2006). Evolution of the vertebrate ABC gene family: analysis of gene birth and death. Genomics 88, 1-11. doi: 10.1016/j.ygeno.2006.03.001
Bailey, C. D., Koch, M. A., Mayer, M., Mummenhoff, K., O'Kane, S. L., Warwick, S. I., et al. (2006). Toward a global phylogeny of the Brassicaceae. Mol. Biol. Evol. 23, 2142-2160. doi: $10.1093 / \mathrm{molbev} / \mathrm{msl} 087$
Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-W208. doi: 10.1093/nar/gkp335
Birchler, J. A., and Veitia, R. A. (2007). The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19, 395-402. doi: $10.1105 /$ tpc. 106.049338
Blanc, G., and Wolfe, K. H. (2004). Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679-1691. doi: $10.1105 /$ tpc. 021410
Bowers, J. E., Chapman, B. A., Rong, J., and Paterson, A. H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433-438. doi: 10.1038/nature01521
Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., and May, G. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 4:10. doi: 10.1186/1471-2229-4-10
Cheng, F., Liu, S., Wu, J., Fang, L., Sun, S., Liu, B., et al. (2011). BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol. 11:136. doi: 10.1186/1471-2229-11-136
Cheng, F., Wu, J., Fang, L., and Wang, X. (2012). Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front. Plant Sci. 3:198. doi: 10.3389/fpls.2012.00198
Dassa, E., and Bouige, P. (2001). The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol. 152, 211-229. doi: 10.1016/S0923-2508(01)01194-9
Dean, M., Hamon, Y., and Chimini, G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid Res. 42, 1007-1017. doi: 10.1101/gr.gr-1649r
Dermauw, W., and Van Leeuwen, T. (2014). The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem. Mol. Biol. 45, 89-110. doi: 10.1016/j.ibmb.2013.11.001
Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics 14, 755-763. doi: 10.1093/bioinformatics/14.9.755
Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., et al. (2013). Pfam: the protein families database. Nucleic Acids Res. 42, D222-D230. doi: 10.1093/nar/gkt1223
analyzed data. CY and XH wrote the manuscript. All authors read and approved the manuscript.

ACKNOWLEDGMENTS

This work was supported by Science and Technology Pillar Program of Jiangsu Province (BE2013429), the Agricultural science and technology independent innovation funds of Jiangsu Province [CX(13)2006] and Science and Technology Pillar Program of Jiangsu Province (BE2 012325).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2017. 00349/full\#supplementary-material

George, A. M., and Jones, P. M. (2012). Perspectives on the structure-function of ABC transporters: the switch and constant contact models. Prog. Biophys. Mol. Biol. 109, 95-107. doi: 10.1016/j.pbiomolbio.2012.06.003
Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996). Real time quantitative PCR. Genome Res. 6, 986-994. doi: 10.1101/gr.6.10.986
Higgins, C. F. (1992). ABC transporters: from microorganisms to man. Ann. Rev. Cell Biol. 8, 67-113. doi: 10.1146/annurev.cb.08.110192.000435
Higgins, C. F., and Linton, K. J. (2004). The ATP switch model for ABC transporters. Nat. Struct. Mol. Biol. 11, 918-926. doi: 10.1038/nsmb836
Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., and Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31, 1296-1297. doi: 10.1093/bioinformatics/btu817
Kang, J., Park, J., Choi, H., Burla, B., Kretzschmar, T., Lee, Y., et al. (2011). Plant ABC transporters. Arabidopsis Book 9:e0153. doi: 10.1199/tab. 0153
Kim, D. Y., Jin, J. Y., Alejandro, S., Martinoia, E., and Lee, Y. (2010). Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol. Plant 139, 170-180. doi: 10.1111/j.1399-3054. 2010.01353.x

Koch, M. A., Haubold, B., and Mitchell-Olds, T. (2000). Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and Related Genera (Brassicaceae). Mol. Biol. Evol. 17, 1483-1498. doi: 10.1093/oxfordjournals.molbev.a026248
Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al. (2009). Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639-1645. doi: 10.1101/gr.092759.109
Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., et al. (2010). ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci. U.S.A. 107, 2361-2366. doi: 10.1073/pnas. 0912516107
Letunic, I., Doerks, T., and Bork, P. (2012). SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40, D302-D305. doi: 10.1093/nar/gkr931
Li, Q., Zhang, N., Zhang, L., and Ma, H. (2015). Differential evolution of members of the rhomboid gene family with conservative and divergent patterns. New Phytol. 206, 368-380. doi: 10.1111/nph. 13174
Li, Y., Chen, X., Chen, Z., Cai, R., Zhang, H., and Xiang, Y. (2016). Identification and expression analysis of BURP domain-containing genes in Medicago truncatula. Front. Plant Sci. 7:485. doi: 10.3389/fpls.2016.00485
Lynch, M., and Conery, J. S. (2000). The evolutionary fate and consequences of duplicate genes. Science 290, 1151-1155. doi: 10.1126/science.290.549 4.1151

Lynch, M., and Conery, J. S. (2003). The evolutionary demography of duplicate genes. J. Struct. Funct. Genomics 3, 35-44. doi: 10.1023/A:10226966 12931

Maere, S., De Bodt, S., Raes, J., Casneuf, T., Van Montagu, M., Kuiper, M., et al. (2005). Modeling gene and genome duplications in eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 102, 5454-5459. doi: 10.1073/pnas. 0501102102
Martinoia, E., Grill, E., Tommasini, R., Kreuz, K., and Amrhein, N. (1993). ATPdependent glutathione S-conjugate'export'pump in the vacuolar membrane of plants. Nature 364, 247-249. doi: 10.1038/364247a0
Noh, B., Murphy, A. S., and Spalding, E. P. (2001). Multidrug resistance-like genes of arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13, 2441-2454. doi: 10.1105/tpc.13.11.2441
Pang, K., Li, Y., Liu, M., Meng, Z., and Yu, Y. (2013). Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.). Gene 526, 411-428. doi: 10.1016/j.gene.2013.05.051
Paul, A., Rao, S., and Mathur, S. (2016). The α-crystallin domain containing genes: identification, phylogeny and expression profiling in abiotic stress, phytohormone response and development in tomato (Solanum lycopersicum). Front. Plant Sci. 7:426. doi: 10.3389/fpls.2016.00426
Sánchez-Fernández, R. O., Davies, T. E., Coleman, J. O., and Rea, P. A. (2001). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 276, 30231-30244. doi: 10.1074/jbc.M103104200
Sankoff, D., Zheng, C., and Zhu, Q. (2010). The collapse of gene complement following whole genome duplication. BMC Genomics 11:313. doi: 10.1186/1471-2164-11-313
Sarkadi, B., Homolya, L., Szakács, G., and Váradi, A. (2006). Human multidrug resistance $A B C B$ and $A B C G$ transporters: participation in a chemoimmunity defense system. Physiol. Rev. 86, 1179-1236. doi: 10.1152/physrev. 0003 7.2005

Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183. doi: 10.1038/nature08670
Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112-1115. doi: 10.1126/science. 1178534
Sidler, M., Hassa, P., Hasan, S., Ringli, C., and Dudler, R. (1998). Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10, 1623-1636. doi: 10.1105/tpc.10.10.1623
Song, W. Y., Yamaki, T., Yamaji, N., Ko, D., Jung, K. H., Fujii-Kashino, M., et al. (2014). A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc. Natl. Acad. Sci. U.S.A. 111, 15699-15704. doi: 10.1073/pnas. 1414968111
Stebbins, C. J. (1950). Variation and Evolution in Plants. New York, NY: Columbia University Press.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. doi: $10.1093 / \mathrm{molbev} / \mathrm{mst} 197$

Thomas, B. C., Pedersen, B., and Freeling, M. (2006). Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 16, 934-946. doi: $10.1101 / \mathrm{gr} .4708406$
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. doi: 10.1093/nar/25.24.4876
Tong, C., Wang, X., Yu, J., Wu, J., Li, W., Huang, J., et al. (2013). Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics 14:689. doi: 10.1186/1471-2164-14-689
Town, C. D., Cheung, F., Maiti, R., Crabtree, J., Haas, B. J., Wortman, J. R., et al. (2006). Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348-1359. doi: 10.1105/tpc.106.041665
Verrier, P. J., Bird, D., Burla, B., Dassa, E., Forestier, C., Geisler, M., et al. (2008). Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci. 13, 151-159. doi: 10.1016/j.tplants.2008.02.001
Wang, D., Zhang, Y., Zhang, Z., Zhu, J., and Yu, J. (2010). KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics 8, 77-80. doi: 10.1016/S1672-0229(10)60008-3
Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., et al. (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035-1039. doi: 10.1038/ng. 919
Yang, Z. L., Liu, H. J., Wang, X. R., and Zeng, Q. Y. (2013). Molecular evolution and expression divergence of the Populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants. New Phytol. 197, 1353-1365. doi: 10.1111/nph. 12107
Zhao, J., Guo, R., Guo, C., Hou, H., Wang, X., and Gao, H. (2016). Evolutionary and expression analyses of the apple basic leucine zipper transcription factor family. Front. Plant Sci. 7:376. doi: 10.3389/fpls.2016.00376

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Yan, Duan, Lyu, Li and Hou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

[^0]: Keywords: Brassica rapa, ATP-binding cassette transporter, phylogenetic analysis, whole genome triplication, gene expression, evolutionary fate

[^1]: Abbreviations: ABC, ATP-binding cassette; ABCA, ABC subfamily A; $A B C B, A B C$ subfamily $B ; A B C C, A B C$ subfamily $C ; A B C D, A B C$ subfamily $D ; A B C E, A B C$ subfamily $E ; A B C F, A B C$ subfamily $F ; A B C G, A B C$ subfamily G; $A B C H, A B C$ subfamily H; $A B C I, A B C$ subfamily $I ; A B C s, A B C$ genes; AtABC, Arabidopsis ABC; AtABCs, Arabidopsis ABC genes; BraABC, Brassica rapa ABC ; BraABCs, Brassica rapa ABC genes; ML, maximum-likelihood; MYA, million years ago; NBD, nucleotide-binding domain; PCCs, Pearson correlation coefficients; PEG, polyethylene glycol; qRT-PCR, quantitative real-time PCR; TMD, transmembrane domains; WGD, whole genome duplication; WGT, whole genome triplication.

