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Hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum

alfredii Hance belong to the same species but exhibit contrasting characteristics

regarding hyperaccumulation and hypertolerance to cadmium and zinc. The Illumina

Hiseq 2500 platform was employed to sequence HE and NHE to study the genetic

evolution of this contrasting trait. Greater than 90 million clean reads were obtained

and 118,479/228,051 unigenes of HE/NHE were annotated based on seven existing

databases. We identified 149,668/319,830 single nucleotide polymorphisms (SNPs)

and 12,691/14,428 simple sequence repeats (SSRs) of HE/NHE. We used a branch-

site model to identify 18 divergent orthologous genes and 57 conserved orthologous

genes of S. alfredii Hance. The divergent orthologous genes were mainly involved in

the transcription and translation processes, protein metabolism process, calcium (Ca2+)

pathway, stress response process and signal transduction process. To the best of our

knowledge, this is the first study to use RNA-seq to compare the genetic evolution

of hyperaccumulating and non-hyperaccumulating plants from the same species. In

addition, this study made the sole concrete for further studies on molecular markers

and divergent orthologous genes to depict the evolution process and formation of the

hyperaccumulation and hypertolerance traits in S. alfredii Hance.

Keywords: comparative transcriptome, SSRs, SNPs, divergent orthologous genes, Sedum alfredii Hance,

hyperaccumulator, zinc, cadmium

INTRODUCTION

Given long-term evolution and natural selection, a few plants growing in mining soils for a
long period of time exhibit strong tolerance and hyperaccumulation of heavy metals within a
translocation factor >1. These plants are called hyperaccumulator plants (Baker and Brooks,
1989). Hyperaccumulator plants are ideal candidates for studying heavy metal accumulation
mechanisms and remediation of heavy metals/metalloids from contaminated soils (Reeves and
Baker, 2000). Sedum alfredii Hance is a zinc (Zn)/cadmium (Cd) co-hyperaccumulator. The shoot
Zn concentration of S. alfrediiHance reaches 19,670mg/kg, and the shoot Cd concentration reaches
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9,000 mg/kg (Yang et al., 2002, 2004). However, another ecotype
of S. alfredii is not tolerant to heavy metal, with shoot Zn
concentrations of only 490 mg/kg and leaf Cd concentrations of
533 mg/kg (Ni et al., 2004; Xiong et al., 2004).

The difference in heavy metal accumulation ability between
the two ecotypes may be attributed to different heavy metal
concentrations in the growing environment. Given the strong
selective pressure of heavy metal stress and the dominant
character of tolerance to heavy metal stress, the selection of
tolerance traits between the same species in different growth
conditions have become much faster than usual, leading to
different tolerance and accumulation of heavy metals (Lefèbvra
and Vernet, 1990). The Hyperaccumulating ecotype of S. alfredii
Hance (HE) was found in an old mining region in Quzhou,
Zhejiang Province, China (118◦56′ E, 29◦17′ N) (Yang et al.,
2001, 2002, 2004), which was first mined between the late Ming
Dynasty and the early Qing Dynasty (approximately 300 years
ago). The identification of plant species was confirmed according
to the Arboretum of Zhejiang Province, China (Yang et al., 2002).
HE is a new variety of S. alfredii Hance given the long-term
evolution and natural selection of heavy metals, and it is the
nearest relative to the non-hyperaccumulating S. alfredii Hance
ecotype (NHE) found in the suburb of Hangzhou City (30◦06′N,
120◦12′E), Zhejiang province. However, genomic variation of the
two ecotypes is notable (Chao et al., 2008). Hence, studying the
genetic variation between HE and NHE can help understand key
processes of heavy metal accumulation and provide a valuable
model to investigate the micro-evolution.

To date, only a few researches have been conducted on
the genetic variation of hyperaccumulators, especially S. alfredii
Hance. The Random Amplified Polymorphic DNA (RAPD)
method was used to compared the genomic variation of HE,
NHE and other four species of Sedum and found that HE had
ten RAPD bands related to SH containing compounds and
resisting osmotic stress (Chao et al., 2008). Up to 2008, eight
polymorphic microsatellite markers were developed in HE and
NHE, and the average allele number was 5.25 per locus (Huang
et al., 2008). However, the information of the evolution of S.
alfredii Hance is still limited. Arabidopsis halleri and Noccaea
caerulescens are also Zn/Cd co-hyperaccumulator plants. A cross
between A. halleri and a non-hyperaccumulating, non-tolerant
species A. petraea was made, and their hyperaccumulation and
tolerance characteristics were independent (Macnair et al., 1999).
Three quantitative trait loci (QTLs) were identified, representing
colocalization with HMA4 (Heavy Metal ATPase4), MTP1-A
(Metal Tolerance Protein1-A), and MTP1-B (Metal Tolerance
Protein1-B) (Willems et al., 2007). The cis-regulatory changes and
triplication ofAhHMA4 during evolution were the key factors for
metal hyperaccumulation of A. halleri (Hanikenne et al., 2008).
Five MTP1 paralogues were present in A. halleri, AhMTP1-A1,
-A2, -B, -C, and -D that were the basis of Zn transport and
tolerance, but their evolutionary fates were different (Shahzad
et al., 2010). The results of the cross between different ecotypes
of N. caerulescens demonstrated that two QTLs are related to
root Zn accumulation (Assuncao et al., 2006), explaining 21.7
and 16.6% of the phenotype variation (Deniau et al., 2006). In
addition, three QTLs for Zn and one QTL for Cd accumulation

in shoots were also identified. However, in S. alfredii Hance, the
reproductive organ, stamen and pistil are fused together, making
them difficult to emasculate during crossing for QTL analysis.
Nevertheless, RNA sequencing is considerably easier and less
time consuming; only requiring RNA extraction from tissues.

Comparative transcriptome analysis is a new method to
investigate genotypic variation. Using transcript data, we can
detect the Simple Sequence Repeat (SSR) molecular marker,
which is a convenient tool to study the plant evolution and depict
the gene map (Blanca et al., 2011). In addition, single nucleotide
polymorphism (SNP) loci and orthologous genes, which can
reveal the variance between genotypes, can also be obtained from
transcriptome sequences (Novaes et al., 2008; Blanca et al., 2011).

For hyperaccumulator plants, no research is available using a
comparative transcriptome to study its genetic evolution. Hence,
our research will be the first study to provide ample information
of evolution key factors and lay the foundation to study its
evolution processes further. In this study, we will employ the
comparative transcriptome sequencing method to study the
genetic variation of HE and NHE by analysing their SSRs, SNPs
and orthologous genes.

MATERIALS AND METHODS

Plant Growth and Treatment
HE was obtained from an old Pb/Zn mining region of Quzhou
city in Zhejiang province, and NHE was obtained from a
tea plantation of Hangzhou in Zhejiang province. HE plants
were grown in non-polluted soils for several generations to
reduce the internal metal concentration. We cut the shoots,
removed some leaves and cultured them hydroponically. HE
and NHE were supplied with basal nutrient solution (Zhang
et al., 2016) with or without 100 µM ZnSO4, 500 µM ZnSO4,
or 50 µM CdCl2 for 7 days. The pH of the nutrient solution
was adjusted to 5.8 every other day. The nutrient solution was
continuously aerated and renewed every 3 days. The plants
were grown in a growth chamber with a 16/8-h photoperiod
at 400 µM m−2 s−1, day/night temperatures of 26◦/20◦C, and
humidity of 70/85%. Three biological replicates were performed
for each treatment. The upper shoots and new roots were
harvested separately for transcriptome analysis and placed in
liquid nitrogen immediately.

Libraries Establishment, Illumina
Sequencing, de novo Assembly and
Annotation
Total RNA was extracted from HE and NHE shoots and
roots with RNAout kit (Tiangen, China). First, we assessed the
degradation and contamination of RNA on 1% agarose gels.
The purity of RNA was assessed using the NanoPhotometer R©

(IMPLEN, CA, USA), and the concentration of RNA was
measured using Qubit R© RNA Assay Kit in Qubit R© 2.0
Flurometer (Life Technologies, CA, USA). RNA integrity was
assessed using the RNA Nano 6000 Assay Kit of the Agilent
Bio-analyzer 2100 system (Agilent Technologies, CA, USA). A
total amount of 1.5 µg of qualified RNA per sample was used
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to establish the HE and NHE libraries, separately. Sequencing
libraries were generated using the NEBNext R© UltraTM RNA
Library Prep Kit for Illumina R© (NEB, USA). Briefly, mRNA
was purified using magnetic beads and divalent cations under
elevated temperature. First strand cDNA was synthesized using
random hexamer primers and RNase H. Second strand cDNA
synthesis was performed using DNA polymerase I and RNase
H. The library fragments were purified with AMPure XP system
(Beckman Coulter, Beverly, USA) to select cDNA 150–200 bp in
length. Library quality was assessed on the Agilent Bioanalyzer
2100 system (Agilent Technologies, CA, USA).

HE and NHE library preparations were sequenced on an
Illumina Hiseq 2500 platform and 125-bp paired-end reads were
generated. First, raw data in the fastq format were processed,
and clean data were obtained using Trimmomatic (Lohse et al.,
2012) by removing reads containing adapter, reads containing
ploy-N and low quality reads from raw data. All the downstream
analyses were based on clean data with high quality. HE andNHE
sequences were assembled separately. Transcriptome assembly
was accomplished based on the left files and the right files using
Trinity (Grabherr et al., 2011) with min_kmer_cov set to 2 by
default, and all other parameters were set to default. The longest
transcripts of each gene were chosen as unigenes. The length of
transcripts and unigenes were calculated.

The unigenes were annotated based on the following seven
databases: Nr (NCBI non-redundant protein sequences), Nt
(NCBI non-redundant nucleotide sequences), Pfam (Protein
family), KOG (eukaryotic Ortholog Groups), Swiss-Prot (A
manually annotated and reviewed protein sequence database),
KO (KEGG Ortholog database) and GO (Gene Ontology). The
e-values cut-off of NR, NT and Swiss-Prot were 1e-5, and the
e-value cut-off of KOGwas 1e-3 using NCBI blast 2.2.28+. The e-
values cut-off of KEGG, Pfam and GO were 1e-10, 0.01 and 1e-6,
using KAAS, hmmscan and blast2go, respectively. According to
the GO annotation, the unigenes of each ecotype were classified
into biological process, cell component and molecular function.
Based on the KOG annotation, the unigenes of HE andNHEwere
classified into 26 groups, respectively. The number of unigenes
of HE and NHE under the second level of KEGG ortholog
were calculated. The CDS detection followed the following two
steps: (i) The unigenes were blast against the Nr and Swiss-port
databases, and an open-reading frame (ORF) was extracted and
translated into a peptide sequence; (ii) The unigenes without
align results or hits against the not-predicted sequences would
be predicted the ORF and translated into peptide sequence with
the standard codon table using ESTSCAN software (3.0.3).

SNPs Calling and SSRs Detection
Picard - tools v1.41 and samtools v0.1.18 were used to establish
the index of referenced transcriptome assembly sequence. The
clean reads of each sample obtained from HE or NHE were
mapped to transcriptome assembly sequence of HE or NHE to
generate the bam files. The ReorderSam.Jar tool implemented
in Picard—tools was used for hierarchical ranking for bam
files. SortSam.Jar implemented in Picar—tool was used to sort
and AddOrReplaceReadGroups. Jar was used to add identified
information to bam file to fulfil1 the file format for GATK

variation detection. SNP calling was performed by GATK2
(McKenna et al., 2010) software. Raw vcf files were filtered
with the GATK standard filter method and other parameters
(clusterWindowSize: 10; MQ0 ≥ 4 and (MQ0/ (1.0∗DP)) > 0.1;
QUAL < 10; QUAL < 30.0 or QD < 5.0 or HRun > 5), and only
SNPs with quality > 30 and distance > 5 were retained.

SSRs of the transcriptome were identified using MISA
(http://pgrc.ipk-gatersleben.de/misa/misa.html) with the default
parameters, and the minimum repeats of mono-, di-, tri-, tetra-
, penta-, and hexanucleotide motifs were 10, 6, 5, 5, 5, and 5,
respectively. The distribution densities of different SSRs types in
transcriptome were calculated.

Identification of Orthologous Genes
The CDSs of each unigene were extracted and translated into
amino acid sequences. Blast-based approach performs all-to-
all BLAST before ortholog classification. All-to-all BLASTP was
conducted for all amino acid sequences with a cut-off e-value of
1e−5. Orthologous groups were constructed from the BLASTP
results using OrthoMCL v2.0.3 (Li et al., 2003) with default
settings. The CDS of Vitis vinifera was used as an internal
reference, and the CDS of A. thaliana was used as an external
reference. The orthologous groups sequences were one-to-one
blasted against the CDS of V. vinifera and A. thaliana using
Muscle 3.8.31. The Ka/Ks ratios, which indicate the ratios of non-
synonymous rate (Ka) to synonymous rate (Ks), were calculated
by PAML (Yang, 2007). The non-synonymous rate indicates the
number of non-synonymous substitutions per non-synonymous
site. The synonymous rate indicates the number of synonymous
substitutions per synonymous sites. Synonymous refers to the
nucleotide substitutions that do not change the encoded amino
acid, and non-synonymous refers to the nucleotide substitutions
that change the amino acid. We used a branch-site model (model
= 2, Nsites = 2) in the codeml program in the PAML package
to detect the signatures of selection on individual codons in a
specific branch (Zhang et al., 2005). The HE branches were set
as the foreground branch, and the optimized branch-site model
was used. A likelihood ratio test (LRT) compared a model with
positive or purified selection on the foreground branch with a
null model in which no significant selection occurred on the
foreground branch and calculated the statistic to obtain a P-
value. With P-values less than 0.05, the genes with Ka/Ks >

1 were identified as divergent orthologous genes, which evolve
under positive selection. Genes with Ka/Ks < 0.1 were identified
as conserved orthologous genes that were purified under heavy
selection constraint likely due to a conserved function. The
orthologous genes with 0.1<Ka/Ks< 1were identified as neutral
orthologous genes. The analysis logic flow is presented in Figure
S1 online.

KEGG Pathway Enrichment of Orthologous
Genes
The divergent and conserved orthologous genes were annotated
based on seven databases. KOBAS (Mao et al., 2005) software was
used to test the statistical enrichment of divergent and conserved
genes ortholog groups in KEGG pathways. The P-values in the
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significance tests (corrected P-value < 0.05) were corrected via
false discovery rate (FDR).

Sequencing Confirmation
To confirm the accuracy of the Illumina Hiseq 2500 platform
sequence and Trinity assembly, we randomly chose 15 divergent
orthologous genes from both HE and NHE, and resequenced
these genes using Sanger sequencing. The primers were designed
using Primer 3 (Koressaar and Remm, 2007). We used 55◦C as
the annealing temperature, and sequencing was conducted with
an ABI BigDye R© Terminator kit on an ABI 3730 DNA Analyzer.
Primer information is presented in Table S1.

Heavy Metal Analysis
The remaining shoots and roots were used to determine Zn
and Cd concentration by Inductively Coupled Plasma Mass
Spectroscopy (ICP-MS) (Agilent, USA). We used GBW10014
(GSB-5) CRM Cabbage as an internal reference. The Zn
concentration detected in CRMCabbage was 27.23 mg/kg, which
was in the range of the standard value of 26 ± 2 mg/kg, and
the Cd concentration detected in CRM Cabbage was 31 µg/kg,
which was in the range of the standard value of 35 ± 6 µg/kg.
The heavy metal concentration was statistically analyzed using
student’s t-test and ANOVA.

RESULTS

Transcriptome Sequence and Assembly
The morphological phenotypes of HE and NHE are comparable
on normal growth conditions (Figure 1A). When supplied with
100 µM Zn or 50 µM Cd, the HE plants did not exhibit any
toxicity symptoms with green leaves and white roots. However,
the NHE plants exhibited severely toxic symptoms with stale
leaves and brown roots. HE accumulated greater than 20,000
mg/kg Zn in shoots when supplied with 100 µM Zn for 7 days,
and its shoots also accumulated more than 3,500 mg/kg Cd when
supplied with 50µMCd. However, NHE accumulated only 1,422
mg/kg Zn or 857mg/kg Cd in shoots when supplied with 100µM

Zn or 50 µM Cd. In addition, Zn was mainly stored in roots of
NHE, whereas HE, Zn and Cd are mainly transported to shoots
(Figures 1B,C).

To obtain sequences of a large number of expressed genes,
we used the RNA of shoots and roots of HE and NHE plants
supplied with 0 µM, 100 µM Zn, 500 µM Zn, and 50 µM
Cd for sequencing on the Illumina Hiseq 2500 platform. We
obtained 94,134,864 and 103,397,468 raw reads of HE and NHE,
respectively (Table 1). After cleaning the raw reads with adaptor
related, with containing poly-N and low quality, we obtained
92,371,082 clean reads in total for both ends with 125 bp of
HE, which was equal to 11.54 G. We obtained 101,217,674
clean reads for each end with 125 bp of NHE, which was equal
to 12.66 G (Table 1). After assembling the clean reads of HE
and NHE separately, 157,226 transcripts with a mean length
of 846 bp of HE and 269,592 transcripts with a mean length
of 658 bp of NHE were obtained (see Table 1 and Figure S2
online). We chose the longest transcript of each gene as the
unigene. In total, we acquired 118,479 unigenes with a mean
length of 609 bp for HE and 228,051 unigenes with a mean
length of 518 bp for NHE (Table 1). Ranking the transcripts
from long to short and summing the length of the transcripts,
the contig N50 is the length of the smallest contig in the set
that contains the fewest (largest) contigs whose combined length
represents at least 50% of the assembly, while the N90 is the
length of the smallest contig in the set that contains the fewest
(largest) contigs whose combined length represents at least 90%
of the assembly (Miller et al., 2010). The N50 and N90 values
of unigenes of HE were 1,009 and 244, respectively, whereas
the N50 and N90 values of unigenes of NHE were 656 and
235, respectively (Table 1). The length distribution of transcripts
and unigenes indicated that the <301 size class constituted
most transcripts and unigenes, and the number of transcripts
and unigenes decreased as length size increased (see Figure
S2 online). All raw data and clean data were deposited in the
NCBI Sequence Read Archive repository (Accession Number:
SRR5061928 for HE S. alfredii Hance and SRR5082565 for NHE
S. alfrediiHance).

FIGURE 1 | The phenotypes of hyperaccumulating ecotype (HE) (left) and non-hyperaccumulating ecotype (NHE) (right) of Sedum alfredii Hance (A)

and Zn concentration (B) and Cd concentration (C) of Sedum alfredii Hance. Control treatment was only nutrient solution. Zn treatment was 100 µM ZnSO4 and Cd

treatment was 50 µM CdCl2.
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TABLE 1 | Basic information of raw reads, clean reads, assembled unigenes, annotation, CDS, SNP, and SSR loci.

Species No. of raw reads No. of clean reads No. of unigenes N50/N90 value of unigenes

(mean length)

Annotation

(percentage)

CDS SNP SSR

HE 94,134,864 92,371,082 118,479 1,009/244 (609) 73,617 (62.13%) 109,685 149,668 12,691

NHE 103,397,468 101,217,674 228,051 656/235 (518) 149,378 (65.5%) 214,358 319,830 14,428

HE, Hyperaccumulating ecotype; and NHE, non-hyperaccumulating ecotype of Sedum alfredii Hance.

FIGURE 2 | Unigenes annotation based on eukaryotic Ortholog Groups (KOG) of hyperaccumulating ecotype (HE) (A) and non-hyperaccumulating

ecotype (NHE) (B) of Sedum alfredii Hance.

To confirm the accuracy of the Illumina sequences and Trinity
assembly, we used Sanger sequencing to re-sequence divergent
orthologous genes, including six HE fragments and nine NHE
fragments. For HE, the total length was 2,409 bp, and only
three sites were different, indicating that the consistency rate
was 99.9%. For NHE, the total length was 3,928 bp, and the
consistency rate was 99.7% within 12 different sites (see Table S1
online). The high consistency rates of HE and NHE confirmed
the accuracy of Illumina sequence and Trinity assembly.

Unigenes of HE and NHE Annotation
A total of 73,617 (62.13%) unigenes of HE and 149,378 (65.5%)
unigenes of NHE were successfully annotated in at least one of
the seven databases: Nr, Nt, Pfam, KOG, Swiss-Prot, KO and GO
(Table 1, Table S2). The highest annotation rate of the database

was Nr, in which 52.61% of unigenes of HE and 55.66% of
unigenes of NHE were annotated. We extracted 109,685 coding
region sequences (CDS) of HE and 214,358 CDS of NHE from
blast or ESTSCAN results (Table 1).

The major KOG group of HE was group (J): translation,
ribosomal structure and biogenesis (20.1%) (Figure 2A); the
major KOG group for NHE was group (O): posttranslational
modification, protein turnover and chaperones (15.2%)
(Figure 2B). The percentages of other groups for HE and NHE
were similar. A total of 54,994 unigenes of HE and 104,365
unigenes of NHE were annotated in GO (see Table S2 online).
GO is classified into three ontologies, including biological
process, cellular component, and molecular function. HE and
NHE represented the same patterns of GO annotation. Themajor
biological process terms were the cellular process, metabolic
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process and single-organism process. The major cellular
component terms included the cell, cell part, macromolecular
complex and organelle. Themajormolecular function terms were
binding and catalytic activity (see Figure S3 online). There were
28,150 unigenes of HE and 48,697 unigenes of NHE annotated
in KEGG ortholog (see Table S2 online). The major KO group
for both HE and NHE was translation, and the second major
KO group was signal transduction (see Figure S4 online).The
results of KOG annotation and KEGG ortholog annotation
suggested that expression regulation plays a significant role in
hyperaccumulation traits of S. alfredii.

SNPs and SSRs Analysis
We identified 149,668 SNPs loci of HE and 319,830 SNPs loci of
NHE (Table 1). Among them, A/G was the most frequent SNP
type, occupying 30.2 and 30.9% of HE and NHE, respectively,
whereas C/T was the second most frequent SNP type, occupying
29.3 and 30.4% of SNP types of HE and NHE, respectively (see
Table S3 online). The percentages of non-coding regions SNPs
sites of HE and NHE were 63.17 and 53.36%, respectively (see
Table S4 online). The percentages of non-synonymous SNPs were
0.11 and 0.09% for HE and NHE, respectively (see Table S4
online), indicating that the functional mutation rate was very low.
The detailed SNPs information for HE and NHE were available
from Datasheets S1, S2.

We identified 12,691 SSRs of HE and 14,428 SSRs of NHE
(Table 1). For HE, 10,746 unigenes contained SSRs, and 1,579
unigenes contained more than one SSR. A total of 5.0% SSRs
were characterized as compound forms. Among the SSRs, the
most abundant repeat unit type was monomers (39.7%), followed
by trimers (38.4%), dimers (20.0%), tetramers, hexamers and
pentamers (see Table S5 online). For NHE, the assay revealed that

12,393 unigenes contained SSRs, and 1,653 unigenes contained
more than one SSRs. In total, 5.3% SSRs were characterized as
compound forms. Among the SSRs, the most abundant repeat
unit type was trimers (43.4%), followed by monomers (34.0%),
dimers (19.6%), tetramers, hexamers and pentamers (see Table
S4 online). Both for HE and NHE, the most abundant repeat type
of monomers were 9–12 repeats, and the other most abundant
repeat type of other motifs were 5–8 repeats (see Figure S5
online). The detailed repeat type frequency for HE andNHEwere
available from Datasheet S3.

Orthologous Genes Analysis
After using the branch-site model and likelihood ratio test,
18 divergent orthologous genes, 57 conserved orthologous
genes and 331 none (neutral) orthologous genes were identified
(Figure 3). The annotation results of divergent orthologous
genes indicated that there were two 28S ribosomal RNA
genes, two calmodulins, two histidine kinases, two nuclear
transcription factor Y genes, and two WRKY transcription
factors, and the other orthologous genes were apolipoprotein,
calcipressin, cysteine proteinase inhibitor, F-actin capping
protein, proteasome, receptor-like protein kinase, RNA
polymerase C-terminal repeat and vacuolar-sorting receptor
(Table 2). KEGG pathway enrichment indicated that only
three genes were significantly enriched in the KEGG pathway,
including plant-pathogen interaction, plant hormone signal
transduction and mRNA surveillance pathway (Figure 4),
implying that these pathways may evolve under heavy metal
stress.

In total, 13 (22.8% of all conserved orthologous genes)
conserved orthologous genes were annotated as ribosomal
proteins, including four 40S ribosomal proteins, one 50S

FIGURE 3 | Distribution of Ka and Ks. Ka/Ks>1 as divergent ortholog gene, Ka/Ks<1 as conserved ortholog gene and 0.1<Ka/Ks<1 as noneortholog

gene.

Frontiers in Plant Science | www.frontiersin.org 6 April 2017 | Volume 8 | Article 425

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Yang et al. Evolution of Sedum alfredii Hance

TABLE 2 | Information and annotation of divergent orthologous genes.

OG ID Contig ID Contig ID Ka Ks Ka/Ks p-value Functional annotation

OG30580 HE|c48427_g1 NHE|c76500_g6 0.1715 0.1358 1.2634 0.010034 RNA polymeraseII Rpb1 C-terminal repeat

OG30137 HE|c44762_g1 NHE|c66407_g1 0.0485 0.0285 1.7055 0.002957 28S ribosomal RNA gene

OG11524 HE|c41849_g1 NHE|c75692_g1 0.026 0.0201 1.2922 0.023937 28S ribosomal RNA gene

OG30653 HE|c4929_g1 NHE|c62840_g1 0.0901 0.0213 4.2322 0.007088 Proteasome

OG29785 HE|c42238_g2 NHE|c75239_g2 0.0704 0.031 2.2756 0.006675 Cysteine proteinase inhibitor

OG34157 HE|c87800_g1 NHE|c56126_g1 0.0378 0.0329 1.1484 5.73E-05 Calmodulin

OG27602 HE|c24377_g1 NHE|c218476_g1 0.3649 0.3268 1.1166 0.005169 Calmodulin

OG26704 HE|c12628_g1 NHE|c149750_g1 0.1785 0.0557 3.2028 0.003417 Calcipressin

OG27764 HE|c26038_g1 NHE|c62425_g1 0.5789 0.3365 1.7202 0.029386 Nuclear transcription factor Y

OG30430 HE|c47086_g2 NHE|c56724_g1 0.0536 0.0476 1.1268 0.024629 Nuclear transcription factor Y

OG31192 HE|c54459_g1 NHE|c6500_g1 0.5425 0.127 4.2702 8.39E-07 WRKY transcription factor

OG04684 HE|c107180_g1 NHE|c62757_g1 0.0223 0.0159 1.4035 0.010898 WRKY transcription factor

OG30906 HE|c51477_g2 NHE|c74553_g1 0.083 0.0328 2.5294 0.003113 Apolipoprotein

OG31045 HE|c52729_g3 NHE|c53528_g1 0.0563 0.0226 2.4965 0.000715 Histidine kinase

OG27948 HE|c28007_g1 NHE|c69277_g1 0.042 0.0192 2.1828 0.003796 Histidine kinase

OG33400 HE|c78721_g1 NHE|c69638_g1 0.0629 0.04 1.571 0.001293 Receptor-like protein kinase

OG23769 HE|c40589_g1 NHE|c65962_g1 0.0714 0.0254 2.8066 0.016308 F-actin capping protein

OG31469 HE|c56909_g1 NHE|c61038_g1 0.0271 0.0091 2.9802 0.005782 Vacuolar-sorting receptor

HE, Hyperaccumulating ecotype; and NHE, non-hyperaccumulating ecotype of Sedum alfredii Hance.

FIGURE 4 | Unigenes Kyoto Encyclopedia of Genes and Genomes (KEGG) of divergent orthologous genes.
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ribosomal protein and eight 60S ribosomal proteins (see Table S6
online). There were no conserved orthologous genes statistically
significantly enriched in KEGG pathway, but relative enrichment
terms were ribosome, cell processes including protein processing
in the endoplasmic reticulum, phagosome, and endocytosis. The
conserved orthologous genes were also relatively enriched in
some primary metabolic pathway, such as glutamate metabolism,
glyoxylate and dicarboxylate metabolism, nitrogen metabolism
fructose and mannose metabolism and citrate cycle (TCA cycle)
(see Figure S6 online), indicating that ribosomes and primary
metabolic pathways were conserved through genetic evolution.

DISCUSSION

HE plants grow in an old Zn/Pb mining region, whereas NHE
plants grow in a tea plantation in Hangzhou. Both HE and
NHE belong to the same species but have contrasting abilities to
accumulate and tolerate Cd, Zn and Pb based on their different
growing environments. The occurrence of different adaptation
abilities to heavy metals in 65 populations of A. halleri in Europe
was also attributed to geographical isolation (Pauwels et al.,
2012). Hence, the environmental pressures of the Zn/Pb mining
region forced the HE ecotype to evolve characteristics from NHE
to adapt to heavy metal stress. In this study, we provided genetic
information for both HE and NHE and revealed the variation
between them, which can compensate for the gap of knowledge
in molecular markers (SSRs and SNPs) and orthologous genes of
S. alfrediiHance.

For GO annotation, the metabolic process, regulation of
biological process and response to stimulus of biological process
were enriched, which was consistent with the previous results
of S. alfredii shoot Cd transcriptome analysis (Gao et al.,
2013). In addition, the extracellular region and membrane of
cellular component items, catalytic activity, structural molecular
activity and transporter activity of molecular function were also
enriched, which was similar with the GO enrichment results
of a previous study (Gao et al., 2013), suggesting that the
Cd accumulation ability of HE may be related to the genetic
evolution of HE. The zinc transcriptome of hyperaccumulator
Populus × euramericana leaves also revealed that the structural
molecule activity, receptor activity, transporter activity and
enzyme regulator activity were enriched in GO (Di Baccio et al.,
2011), which was similar to our results. In addition, antioxidant
activity was enriched for S. alfredii and N. caerulescens (Halimaa
et al., 2014), suggesting that the genes in these GO categories
may play roles in hyperaccumulation or hypertolerance to heavy
metals.

A large amount of SSR and SNP markers boosted population
transcriptome approaches to characterize the evolution process
and provide signatures of selection (Stinchcombe and Hoekstra,
2008; Siol et al., 2010). Nevertheless, no SNP resources have been
previously reported for S. alfredii. Here, we reported 149,668
SNPs for HE and 319,830 SNPs for NHE (Table 1), providing
novel genomic markers to characterize the polymorphism
diversity of S. alfredii. In a previous study, eight genomic
SSRs were identified as polymorphic between HE and NHE

leaves (Huang et al., 2008), and 6,176 perfect SSRs and 3,019
imperfect SSRs were also found in HE shoots (Gao et al., 2013).
In this study, we identified 12,691 SSRs for HE and 14,428
SSRs for NHE from both shoots and roots (Table 1), providing
more complete microsatellite information for further molecular
population genetic studies.

To determine howHE S. alfrediiHance adapt to environments
with heavy metal stress is important for research in the
evolutionary biology of hyperaccumulators. The ratio of Ka and
Ks has been widely used for the deduction of evolutionary
dynamics and indication of adaptive symbols of protein-coding
sequences (Yang and Bielawski, 2000). The orthologous genes
with a Ka/Ks ratio greater than 1 were highly diverged under the
natural selection pressure. Given that we combined all the RNA
samples together to establish libraries and did the analysis, we did
not examine the orthologous gene expression level. In the present
study, we identified 18 divergent orthologous genes between HE
and NHE. We classified them into five groups: transcription
and translation processes, protein metabolism process, calcium
(Ca2+) pathway, stress response process and signal transduction
process (Table 2).

The RNA polymerase II Rbpl C-terminal repeat (OG30580)
and 28S ribosomal RNA gene (OG30137 and OG11524)
were related to transcription and translation processes. RNA
polymerase II transcribes all protein-encoding genes into mRNA,
non-coding RNAs, small nucleolar RNAs and microRNAs
(Cramer et al., 2008). Its largest subunit Rpb1 evolved a repetitive
carboxy-terminal domain (CTD) (Egloff and Murphy, 2008),
of which phosphorylation status determine the activities of
RNA polymerase II complex and associated proteins (Hajheidari
et al., 2013). The CTD phosphatases are involved in ABA
signaling, normal growth and development (Bang et al., 2006)
and xenobiotic detoxification pathways in plants (Fukudome
et al., 2014). The 28S ribosomal RNA gene is part of the
rRNA transcriptional unit (Long and Dawid, 1980), and its
divergent regions known as “D”-regions are typically used as a
phylogenetic marker for analysing evolution (Gou et al., 2013).
The genes involved in transcription and translation processes
diverging under evolution suggested that S. alfredii evolved
variations in fundamental biological processes under heavy metal
stress.

Proteasome (OG30653) and cysteine proteinase inhibitor
(OG29785) belonged to protein metabolism process. When
plants suffer from heavy metal stress, such as from Cd, arsenic
(As) and chromium (Cr), damaged proteins resulting from
oxidative stress are produced. The ubiquitin/proteasome 26S
system is subsequently activated to degrade and remove the
damaged proteins (Dametto et al., 2015). Cysteine proteases
will lead to inappropriate proteolysis in high concentrations,
so cysteine protease inhibitors are needed to correctly and
appropriately regulate enzymatic activity (Bobek and Levine,
1992). Previous studies demonstrated that cysteine proteinase
inhibitors increase tolerance to salt, drought, oxidation, and
cold in plants (Zhang et al., 2008; Li et al., 2015). Cysteine
proteinase inhibitors also interact with a calcium/calmodulin-
binding receptor-like kinase or a Ca2+-dependent nuclease to
regulate plant alkaline stress tolerance (Sun et al., 2014).

Frontiers in Plant Science | www.frontiersin.org 8 April 2017 | Volume 8 | Article 425

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Yang et al. Evolution of Sedum alfredii Hance

In our study, calmodulin (OG34157 and OG27602) and
calcipressin (OG26704) were divergent orthologous genes. In
addition, whether cysteine proteinase inhibitors also interact
with proteins regulated by calcipressin or calmodulin to form
hypertolerance mechanisms responding to heavy metal stress
should also be assessed. Calmodulin senses the intracellular
Ca2+ concentration and regulates a highly conserved type 2B
protein phosphatase, calcineurin, which is vital for mediating
cellular stress responses (Aramburu et al., 2004). Calcineurin
activity is also regulated by calcipressins positively or negatively
(Davies et al., 2007). In our previous study, we demonstrated
that exogenous Ca2+ inhibited Cd influx into roots (Lu
et al., 2010) and significantly increased glutathione biosynthesis
to alleviate growth inhibition from Cd stress (Tian et al.,
2011b) in S. alfredii Hance. The distribution pattern of
Cd is similar to Ca in the leaves of HE but not in
NHE, suggesting that the Ca pathway may be associated
with Cd detoxification (Tian et al., 2011a) and Cd2+ may
compete with Ca2+ for calmodulin binding (Rivetta et al.,
1997).

Nuclear transcription factor Y (NF-Y) (OG27764 and
OG30430),WRKY transcription factor (OG31192 andOG04684)
and apolipoprotein (OG30906) belong to the stress response
process. NF-Y binding to the CCAAT box is ubiquitous in
plants and is emerging as a significant regulator of the stress-
induce response (Leyva-Gonzalez et al., 2012). NF-Ys are highly
induced in response to low phosphorus, low nitrogen, high
salinity, oxidative, heat and drought stress (Li et al., 2008;
Hackenberg et al., 2012; Leyva-Gonzalez et al., 2012; Xu et al.,
2014).WRKY transcription factors recognize theW-box of target
genes and induced their expression to mediate abiotic stress
(Phukan et al., 2016). Previous studies demonstrated thatWRKYs
were up-regulated under Cd stress in A. thaliana,N. caerulescens,
Tamarixhispida, and Populussimonii × Populusnigra (Wei et al.,
2008; Opdenakker et al., 2012; Zhao et al., 2015; Yang et al., 2016).
It was found thatWRKY transcription factors are also modulated
in response to Pi homeostasis, iron starvation, and cold stress in
rice (Dai et al., 2016). Apolipoprotein is involved in modulating
tolerance to oxidative stress, freezing, heat shock, and paraquat
treatment (Charron et al., 2002, 2008). The significant divergence
of these transcription factors may be involved in the heavy metal
stress response in S. alfrediiHance.

We classified histidine kinase (OG31045 and OG27048)
and receptor-like protein kinase (OG33400) into the signal
transduction process group. Histidine kinase (HK) operates
through the cytokinin signal transduction pathway and controls
numerous physiological processes in plants (Narusaka et al.,
2004). Recently, AHK5 was reported to play roles in maintaining
the H2O2 homeostasis, perceiving nitric oxide and ethylene
signals (Desikan et al., 2008). In addition, numerous histidine
kinases are involved in drought, salt, cold, and osmotic stress
responses (Urao et al., 1999; Tran et al., 2007; Jeon et al.,
2010; Pham et al., 2012). Receptor-like protein kinase forms
the largest group of eLRR-containing cell surface receptors

(Shiu and Bleecker, 2003), which perceive extracellular signals
at the plasma membrane (Walker and Zhang, 1990) and
play roles in abscisic acid signaling, disease resistance and
fungal pathogens resistance (Komjanc et al., 1999; Fritz-Laylin
et al., 2005; Wang et al., 2008; Cova et al., 2010). The
divergence of signal perception genes suggested that HE may
evolve a more sensible signal perception system in response
to heavy metal influx into roots. Further studies on relative
expression levels of signal transduction genes and protein-
protein interaction assay by yeast two-hybrid analysis and
bimolecular fluorescence complementation assay will verify this
hypothesis.

CONCLUSION

Altogether, this study was the first to use comparative RNA-
sequencing technology to depict the evolution variation of
hyperaccumulator plants. We obtained large amounts of
sequence information from shoots and roots of HE and NHE.
We identified molecular markers, such as SNPs and SSRs
of S. alfredii Hance, which are an important resource for
research in hyperaccumulation and hypertolerance traits in
genome mapping. The 18 divergent orthologous genes were
mainly involved in transcription and translation processes,
protein metabolism process, Ca2+ signaling pathway, stress
response process and signal transduction process, which are
key factors for HE in adaptive evolution to heavy metal-
contaminated environments. In general, our results may lay
a solid foundation for research into molecular systematic,
population genetic and evolution processes of S. alfredii
Hance.
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