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Single Nucleotide Polymorphisms (SNPs) are the most abundant and richest form of

genomic polymorphism, and hence make highly favorable markers for genetic map

construction and genome-wide association studies. In this study, a total of 300 rapeseed

accessions (278 representative of Chinese germplasm, plus 22 outgroup accessions

of different origins and ecotypes) were collected and sequenced using Specific-Locus

Amplified Fragment Sequencing (SLAF-seq) technology, obtaining 660.25M reads with

an average sequencing depth of 6.27 × and a mean Q30 of 85.96%. Based on

the 238,711 polymorphic SLAF tags a total of 1,197,282 SNPs were discovered,

and a subset of 201,817 SNPs with minor allele frequency >0.05 and integrity >0.8

were selected. Of these, 30,877 were designated SNP “hotspots,” and 41 SNP-rich

genomic regions could be delineated, with 100 genes associated with plant resistance,

vernalization response, and signal transduction detected in these regions. Subsequent

analysis of genetic diversity, linkage disequilibrium (LD), and population structure in the

300 accessions was carried out based on the 201,817 SNPs. Nine subpopulations were

observed based on the population structure analysis. Hierarchical clustering and principal

component analysis divided the 300 varieties roughly in accordance with their ecotype

origins. However, spring-type varieties were intermingled with semi-winter type varieties,

indicating frequent hybridization between spring and semi-winter ecotypes in China. In

addition, LD decay across the whole genome averaged 299 kb when r2 = 0.1, but the

LD decay in the A genome (43 kb) was much shorter than in the C genome (1,455

kb), supporting the targeted introgression of the A genome from progenitor species B.

rapa into Chinese rapeseed. This study also lays the foundation for genetic analysis of

important agronomic traits using this rapeseed population.
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INTRODUCTION

Brassica napus (AACC, 2n = 38) is an amphidiploid species
originating from hybridization between B. rapa (AA, 2n =

20) and B. oleracea (CC, 2n = 18) within the past 10,000
years (Nagaharu, 1935). It is the world’s second largest
oilseed producing crop (behind soybean) and is planted in
many countries worldwide, with an annual production of
more than 60 million tons per year since 2011 (Shahzadi
et al., 2015, https://apps.fas.usda.gov/psdonline/psdReport.aspx).
Rapeseed oil is primarily an edible oil, but is also used as biofuel,
as an industrial lubricant and as a base for polymer synthesis
(Saeidnia and Gohari, 2012).

The domestication history of B. napus is rather short: only
400–500 years (Gómez-Campo and Prakash, 1999). However,
targeted breeding in different climates and for different
morphotypes has resulted in strong population structure
(Rahman, 2013). Rapeseed germplasm worldwide can be
differentiated into three ecotypes: winter (W), semi-winter (SW),
and spring (S). These types result from long-term selection
for low temperature vernalization and photoperiod sensitivity.
Spring rapeseed with early flowering is mainly distributed in
North America, Canada, and Australia; winter rapeseed with
strict vernalization requirements is mainly distributed in Europe;
and semi-winter rapeseed with moderate cold tolerance and
vernalization requirements is planted primarily in the Yangtze
valley of south China (Sun, 1946). In the past 20 years, the genetic
diversity of the three ecotypes of B. napus has been widely studied
by molecular marker technology (Diers and Osborn, 1994; Hasan
et al., 2006; Qian et al., 2006, 2014).

Single nucleotide polymorphisms (SNPs) are DNA sequence
variations that occur when a single nucleotide in the genome
sequence is changed. SNPs are the most abundant form of
genomic polymorphism, and SNP markers hence have higher
density than any other marker type. Nowadays, it is possible
to identify a large number of SNPs in a species quickly and
efficiently via high-throughput DNA sequencing technologies.
These have now been widely applied to develop massive
genotyping arrays, which allow many more individuals in a
species to be genotyped at an extremely high marker density in
a fast, efficient, and highly reproducible way (Ganal et al., 2014).
SNP markers have been used for a wide range of purposes in
Brassica, including rapid identification of cultivars, QTL analysis,
and construction of ultra-high-density genetic maps (Delourme
et al., 2013). Moreover, SNPs provide valuable markers for the
study of agronomic traits in crops via strategies such as genetic
linkage mapping or association genetics (Han et al., 2016).

Specific locus amplified fragment sequencing (SLAF-seq) is
a fast, accurate, highly efficient, and cost-effective method for
developing large-scale SNP and InDel markers (Sun et al.,
2013; Zhang et al., 2013). In this study, taking B. napus
as the reference genome (Chalhoub et al., 2014) and using
enzyme digestion techniques, a SLAF-seq library of specific
size fragments of DNA was designed, sequences obtained, and
polymorphic SLAF tags obtained by software alignment, finally
resulting in identification of specific SNP sites. As an alternative
approach for genotyping, SLAF-seq will be good to compare with

the current sequencing-based technologies such as restriction-
site associated DNA sequencing (RAD; Bus et al., 2012) and
Diversity Arrays Technology sequencing (DArT-seq; Raman
et al., 2014).

Population structure and linkage disequilibrium (LD) analysis
are prerequisites for genome-wide studies of complex agronomic
traits in a natural population (Ersoz et al., 2007). Population
structure results from different allele frequencies between
subgroups in a population, and suggests that members of every
subgroup either have the same ancestors, or that they underwent
the same environmental and/or artificial selection (Xiao et al.,
2012). The existence of population structure and relative kinship
in natural populations always results in a high level of spurious
positives in association mapping (Yu et al., 2006). Many
methods can be applied to remove and reduce the effects of
these spurious positives, such as structure correlation analysis
(Pritchard et al., 2000), Q + K mixed model systems (Yu et al.,
2006), principal components analysis (PCA; Price et al., 2006),
restricted maximum likelihood (REML; Stich and Melchinger,
2009) and efficient mixed-model association (EMMA; Kang et al.,
2008). LD is the non-random recombination of alleles distributed
on different loci (Gupta et al., 2005), and also is the prerequisite
for association mapping, which determines the necessary marker
density as well as the accuracy and choice of GWAS methods
(Yu et al., 2006). Therefore, it is vital to understand LD levels
and patterns in a population, and patterns of LD have been
characterized in most major crop species. LD distances vary
significantly between cross-pollinated and self-pollinated crops
(Flint-Garcia et al., 2003). LD decays rapidly (within 1–5 kb)
in diverse maize inbred lines (Yan et al., 2009), in cultivated
sunflower (1.1 kb; Liu and Burke, 2006), and in wild grapevine
(300 bp; Lijavetzky et al., 2007), whereas LD decays slowly in
Arabidopsis (within 250 kb; Nordborg et al., 2002), in diverse rice
lines (100–200 kb; McNally et al., 2009; Huang et al., 2010; Huang
and Han, 2014), and in cultivated soybean (250 kb; Lam et al.,
2010). In general, the LD decay distance in self-pollinated plants
is much larger than in cross-pollinated species.

In this study, we carried out a genome-wide analysis of a
set of 300 accessions representing eco-geographical diversity
in China (278 lines) plus international varieties of B. napus
(as outgroups). Each sample was sequenced using SLAF-
seq, and genetic variation was analyzed by alignment to the
B. napus reference genome (Chalhoub et al., 2014). Genetic
diversity, population structure and linkage disequilibrium were
evaluated with 201,817 newly developed genome-wide SNPs.
Our research objectives were to (1) develop new B. napus SNPs
and identify genetic variants using SLAF-seq; (2) assess the
genetic diversity of our association mapping panel to deepen
our understanding of the B. napus germplasm pool; and (3)
investigate the population structure and the patterns of LD
among the accessions, allowing us to deduce traces of breeding
and distinct evolution in the A and C subgenomes. Our study
also provides a valuable resource for further genome-wide
association studies in B. napus, and paves the way for optimizing
cross combinations, identifying loci closely related to agronomic
traits, and exploiting rich allelic variation for marker-assisted
breeding.
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MATERIALS AND METHODS

Genotype Selection and Sampling
A set of 300 inbred rapeseed lines were included in the present
study (Table S1), including 257 semi-winter types, 16 spring
types, and 27 winter types. Germplasm was selected to represent
variation in Chinese rapeseed (278 accessions), with an additional
22 accessions collected from Japan, Canada, the United States,
and various European countries to represent exogenous rapeseed
germplasm.

Sample Preparation and Enzyme Solution
Design
All accessions were collected from plants growing in the
experimental fields at Jiangxi Agricultural University, Nanchang,
China. Young healthy leaves were obtained from a single
plant of each accession for DNA extraction using a modified
cetyltrimethylammonium bromide (CTAB) method based on
Murray and Thompson (1980). DNA concentration and quality
of all samples was assessed with a Nanodrop 2000 UV-
Vis spectrophotometer (NanoDrop, Wilmington, DE, USA).
Quantified DNA was diluted to 100 ng·µl−1 for SLAF
sequencing.

SLAF-seq success was predicted in silico using the 1.2 Gb B.
napus reference genome of European winter homozygous
oilseed cultivar “Darmor-bzh” (Chalhoub et al., 2014;
http://www.genoscope.cns.fr/brassicanapus/data/). In order
to acquire more than 250, 000 SLAF tags (defined as an enzyme
fragment sequence of 314–414 bp) per genome, restriction
enzyme combinations were tested and selected using in
silico digestion prediction using the following criteria: (1)
low percentage of restriction fragments comprising repeat
sequences; (2) even distribution of restriction fragments across
chromosomes; (3) simulated fragments align uniquely to the
reference genome; and (4) high number of SLAF tags. Based on
these four criteria, the restriction enzyme combination of RsaI
and HaeIII (NEB, Ipswich, MA, USA) was selected.

SLAF Sequencing and Data Evaluation
Genomic DNA from each accession was digested with RsaI
and HaeIII to obtain the SLAF tags, followed by fragment
end reparation, dual-index paired-end adapter ligation, PCR
amplification, and target fragment selection for SLAF library
construction. Finally, the SLAF sequencing was carried out using
an Illumina HiseqTM 2500 (Illumina, Inc; San Diego, CA, USA)
at the Biomarker Technologies Corporation in Beijing.

The raw SLAF-seq data was processed for each sample using
the software Dual-index (Kozich et al., 2013). After filtering
out adapter reads, the sequencing quality was evaluated by
calculating the guanine-cytosine (GC) content and Q30 (Q = –
10∗loge10; indicating a 0.1% chance of an error and thus 99.9%
confidence). Subsequently, all SLAF paired-end sample reads
were clustered by the BLAT software according to sequence
similarity (Kent, 2002). Polymorphic SLAF tags showed sequence
polymorphisms between different accessions. High-quality SLAF
tags were then mapped onto the reference genome of B. napus
using the Burrows-Wheeler alignment tool (BWA) software (Li
and Durbin, 2009), and the number of tags was counted.

SNP Loci Identification
SNPs were identified based on the polymorphic SLAF tag
information using the software programs GATK (McKenna et al.,
2010) and SAMtools (Li et al., 2009): SNPs predicted from both
methods were considered to be reliable. Ultimately, consistent
SNPs were selected with the criteria of minor allele frequency
(MAF) > 0.05 and integrity >80%.

Analysis of SNP Hotspots and SNP-Rich
Regions between the Three Ecotypes
For each of the 201,187 SNPs identified, the mutation frequency
per SNP was calculated, and SNP hotspots were defined as
positions with SNP mutation frequency >0.8, such that most
accessions differed from the B. napus reference genome sequence.
In addition, the number of SNPs per 100 Kb along every
chromosome was counted and sequenced, and the top 1% of
regions in terms of number of SNPs present were identified
as SNP-rich regions. SNP-rich regions were also calculated
separately in each of the three rapeseed ecotypes.

Analysis of Genetic Diversity and
Population Structure
Calculation of Genetic Kinship between Accessions
A total of 201,817 highly consistent SNPs were used to calculate
pairwise kinship relationships among the 300 accessions using
the software package SPAGeDi (Hardy and Vekemans, 2002).
Negative kinship values between two accessions indicate less
relationship than expected between them, and was corrected to
0 as proposed by Yu et al. (2006).

Phylogenetic Tree Construction and Principal

Components Analysis
Based on the 201,187 SNPs identified in this study, genetic
distances were calculated between the 300 rapeseed accessions
using the p-distance method (Jin and Nei, 1990). Phylogenetic
trees were constructed using the MEGA5 software (Tamura
et al., 2011), principal components analysis (PCA) was performed
using GAPIT (Lipka et al., 2012), and the population structure
of all accessions was analyzed with the software Admixture
(Alexander et al., 2009).

Analysis of Population Structure and Linkage

Disequilibrium (LD)
Based on the same set of SNPs, the number of subgroups (K)
was predicted from 1 to 10, and the number of ancestors was
determined according to the position of the minimum value,
with error rate obtained from 5-fold cross-validation. Maximum
likelihood estimates for the ancestry proportion from each K
subgroup of each accession were calculated.

LD analysis proceeded based on the 201,817 SNPs using
the software PLINK (specific parameters: MAF > 0.05, r2, ld-
window 999999, ld-window- r2 0, Purcell et al., 2007). LD in this
population was assessed using the software package TASSEL 4.0
(Bradbury et al., 2007), and a cut-off value of r2 = 0.1 was set to
estimate the extent of LD decay for each chromosome and across
the A- and C-subgenomes respectively. The r2-value for a marker
distance of 0 Kb was assumed to be 1.
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Analysis of Blocks Based on Linkage Disequilibrium

(LD)
The haplotype block structure in the 300 rapeseed accessions
across the 201,187 SNPs was estimated with the HAPLOVIEW
v4.2 software (Barrett et al., 2005). The number and size of
haplotype blocks per chromosome was assessed.

RESULTS

Assessment of Experimental Scheme
The restriction enzymes RsaI and HaeIII were selected based on
in silico digestion prediction, and resulted in 281,218 predicted
314–414 bp SLAF tags with an average distance between SLAF
tags of 4,267 bp (Table 1). Predicted SLAF tag distribution along
each chromosome is shown in Figure S1A: tags were evenly
distributed across the 19 chromosomes of B. napus. In total,
74.16% of paired-end reads had “normal” distances between
both ends of 50 bp–1 Kb as predicted by BLAST, with a
97.58% digestion efficiency. Moreover, based on SLAF library
construction and high-throughput sequencing, a total of 660.25
M reads were obtained to develop the SLAF tags, with a Q30 ratio
of 85.96% and a GC content of 40.22% (Table S2).

Development of Polymorphic SLAF Tags
and Selection of SNP Markers
A total of 528,080 SLAF tags were developed from the 300
accessions, with an average depth per sample of 6.27 ×

(Table S3; Figure S1A). Of these, 238,711 SLAF tags showed
polymorphism after all SLAF tags were aligned to the reference
genome using the BWA software (Li and Durbin, 2009). The
number and distribution of the polymorphic SLAF tags on each

chromosome is shown in Table 1. Polymorphic SLAF tags were
well-distributed across all chromosomes, with the largest number
of SLAF tags (15,699) on chromosome C03, and the fewest SLAF
tags (5,236) on chromosome A08.

SNP markers were developed using the sequence with the
highest copy number per SLAF as the reference sequence. A
total of 1,197,282 SNPs in all accessions were identified, and
the integrity of SNPs in the 300 accessions ranged from 80.66
to 97.66% (Figure S2). A further 201,817 highly consistent and
confident SNP markers with MAF > 0.05 and integrity >0.8
were obtained (Table S4). These SNP markers covered the whole
genome of B. napus uniformly (Figure S1B).

By sorting the SNPs in the A- and C-subgenomes (Table 2),
more SNPs were found to be distributed in the C subgenome
(80,014) than in the A subgenome (63,307). However, due to
the larger size of the C subgenome surveyed, the SNP (27
SNPs/100 kb) and gene (15 genes/100 kb) density in the A
subgenome was higher than that in the C subgenome, which had
20 SNPs/100 kb and 11 genes/100 kb). The largest number of
SNPs (11,515) was located on chromosome C03 (19 SNPs/100
kb), while chromosome A08 had the fewest SNPs (4474) with 24
SNPs/100 kb, and chromosome A10 had the highest SNP density
of 31 SNPs/100 kb.

Identification of SNP Hotspots and
SNP-Rich Regions on the Genome of B.
napus
A total of 30,877 SNP hotspots (SNP mutation frequency for
a specific position >0.8 compared to the reference genome of
B. napus) were found in the sequenced genome (Table S5),

TABLE 1 | Number of SLAF tags distributed on each chromosome of B. napus.

Chromosome Chromosome length (bp) No. of expected SLAF Average SLAF distance (bp) No. of SLAF Polymorphic SLAF

A01 52,457,410 12,193 4,302 13,001 6,561

A02 53,983,291 12,551 4,301 13,899 7,531

A03 58,957,044 13,716 4,298 15,795 8,593

A04 48,341,214 11,029 4,383 9,726 5,708

A05 52,257,152 12,446 4,199 11,781 7,051

A06 53,585,940 12,458 4,301 13,546 7,659

A07 53,196,075 12,566 4,233 12,608 7,061

A08 48,151,495 11,184 4,305 10,103 5,236

A09 63,054,894 14,577 4,326 18,278 9,444

A10 46,587,781 11,118 4,190 9,764 5,898

C01 68,018,871 15,840 4,294 22,280 10,283

C02 75,411,359 17,873 4,219 24,171 11,034

C03 89,762,950 21,336 4,207 34,884 15,699

C04 78,119,791 18,607 4,198 28,008 11,987

C05 72,374,781 17,061 4,242 27,328 8,098

C06 66,415,506 15,664 4,240 21,720 9,119

C07 73,960,031 17,332 4,267 27,003 11,161

C08 67,666,641 15,658 4,322 24,253 10,660

C09 77,697,774 18,009 4,314 29,670 9,544

Total 1,200,000,000 281,218 4,267 161,262 70,384
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the distribution of which along each chromosome is shown
in Figure 1A. The number of SNP hotspots along each
chromosome was unequal: the largest number of SNP hotspots
(2902) was on chromosome C07, while chromosome A10
had the fewest SNP hotspots (1111). In addition, there were
41 SNP-rich regions containing a total of 4,787 SNPs: these
were identified on all chromosomes except for A03, C02,
C03 and C09 (Table S6; Figure 1B). A further 100 genes
were detected in the SNP-rich regions, where SNPs were
distributed upstream, downstream or in intergenic regions

relative to these genes (Table S7). From gene ontology (GO)
analysis, these genes were involved in response to stress
(salt, UV-b, water deprivation, cold, light stimulus, etc.),
transcription regulation, defense response to bacteria and
fungi, lipid metabolism and transport, hormone synthesis
(ethylene, salicylic acid, jasmonic acid, abscisic acid, etc.),
vernalization, photomorphogenesis, plant growth development,
and regulation (carpel development, seed development, seed
germination, pollen tube growth, anther dehiscence, pollen
maturation, embryo development ending in seed dormancy, root

TABLE 2 | Distribution of SNPs and related genes in the B. napus genome.

Chromosome No. of SNPs Chromosome length (Mb) No. of genes No. of SNP per 100 Kb No. of genes per 100 Kb R2-value

A01 5,756 23.27 3,448 25 15 0.053

A02 6,854 24.79 3,491 28 14 0.091

A03 7,188 29.77 5,476 24 18 0.064

A04 5,261 19.15 2,721 27 14 0.069

A05 7,008 23.07 3,418 30 15 0.060

A06 6,804 24.40 3,741 28 15 0.116

A07 6,411 24.01 3,593 27 15 0.068

A08 4,474 18.96 2,914 24 15 0.096

A09 8,199 33.87 5,157 24 15 0.092

A10 5,352 17.40 2,772 31 16 0.070

C01 9,407 38.83 4,064 24 10 0.282

C02 9,248 46.22 4,411 20 10 0.221

C03 11,515 60.57 7,113 19 12 0.093

C04 11,316 48.93 5,171 23 11 0.240

C05 6,968 43.19 4,895 16 11 0.083

C06 7,134 37.23 4,072 19 11 0.113

C07 9,900 44.77 4,772 22 11 0.252

C08 8,231 38.48 4,614 21 12 0.154

C09 6,295 48.51 5,084 13 10 0.119

A genome 63,307 238.69 36,731 27 15 0.078

C genome 80,014 406.73 44,196 20 11 0.173

AC genome 143,321 645.42 80,927 22 13 0.123

FIGURE 1 | Distribution of SNP hotspots and SNP-rich regions on chromosomes of B. napus. (A) The distribution of SNP hotspots on the genome; (B) The

distribution of SNP-rich regions on the genome in B. napus.
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hair elongation, flower development, anther development etc.)
(Figure S3).

In order to detect genomic regions that are potentially
differentiated between semi-winter, spring, and winter rapeseeds,
SNP-rich regions were assessed for each of the three ecotypes
(Figure 1B). Significant differences were observed for two
SNP-rich regions on chromosomes A05 and A09 between
the three ecotypes (Table S7). The SNP-rich region of Bna-r-
20800000∼22699999 on A05 was present in winter and semi-
winter ecotypes but absent in spring ecotypes, whereas SNP-rich
region Bna-r-30700000∼30799999 on chromosome A09 only
appeared in spring rapeseed ecotypes. In addition, six candidate
genes were annotated in the SNP-rich region on chromosome
A05, including candidate gene BnaA05g29990D (GO: 0010048)
involved in the biological process of plant vernalization response.
Another candidate gene BnaA05g33430D (homologous to GRF7
of Arabidopsis thaliana) participated in floral development. The
SNP-rich region on A09 chromosome contained candidate gene
BnaA09g44900D, which is closely related to plant systemic
acquired resistance and defense response. Known QTLs for
resistance to Sclerotinia sclerotiorum (Wu et al., 2013) and
Leptosphaeria maculans in oilseed rape (Delourme et al., 2008)
were adjacent to this SNP-rich region on chromosome A09.

Genetic Relationships and Phylogenetic
Tree Construction
Analysis of the Genetic Relationship among the 300

Accessions
Relationship coefficients between the 300 samples were calculated
using the 201,817 high-consistency SNPs identified in this study.

Of the 45,000 pairwise combinations, 39,278 (87%) had genetic
relationship coefficients <0.05 (Figure S4). Hence, there was
only very weak or no relationship between accessions in our
panel.

Phylogenetic Tree Construction and Population

Principal Components Analysis
The genotype data for these 201,817 high-quality, polymorphic
and single-locus SNPs with MAF > 0.05 in the diversity panel
is provided in Table S8, along with the expected chromosome
positions of the SNPs on the B. napus reference genome
(Chalhoub et al., 2014).

The cluster results showed that most winter rapeseed lines
(27) fell into two groups, with only a few clustering into
semi-winter groups. In addition, 16 spring accessions were
almost all dispersed between the semi-winter groups, suggesting
genetic permeation between spring and semi-winter varieties
(Figure 2A). Furthermore, the first, second, and the third
principal components explained 2.36, 2.05, and 1.86% of the
genetic diversity respectively, and the first principal component
roughly separated the three ecotypes (Figure 2B).

Analysis of Population Structure and
Linkage Disequilibrium (LD)
Population Genetic Structure Analysis in B. napus
Population structure as assessed by Admixture (Alexander et al.,
2009) suggested an ancestral subgroup number of nine based on
cross validation (CV) errors (Figure 3). Of the nine subgroups,
the seventh subgroup included the most varieties (67, 22.3%),
next to the ninth subgroup (64, 21.3%). Accessions in both groups

FIGURE 2 | Clustering and PCA analysis in 300 accessions of B. napus. (A) Clustering analysis in 300 accessions of B. napus; (B) PCA analysis in 300

accessions of B. napus. The yellow, blue, and red indicate winter, semi-winter, and spring ecotypes of B. napus, respectively.
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FIGURE 3 | Population structure of 300 accessions of B. napus. The accessions were divided into nine subgroups (there was minimum K-value when K = 9),

within each subgroup, the accessions were ordered according to the genetic component, and each line gives the sub-group value, each accession shown as a

vertical line partitioned into K colored components represents inferred membership in K genetic clusters.

belonged to the semi-winter ecotype, while most spring rapeseeds
clustered into ninth subgroup, and winter-type varieties were
mainly concentrated in the second subgroup (Table S9).

Patterns of LD across the Rapeseed Genome
To estimate patterns of LD, SNP linkage along each chromosome
was analyzed using an LD decay threshold of r2 = 0.1. Major
differences were observed for different chromosomes, with
LD extending from 7.62 Kb (chromosome A02) up to more
than 2,000 Kb (chromosomes C01, C02, and C07; Table S10,
Figure S5).

By comparing the r2 distribution to the physical distance over
the 19 chromosomes, as well as overall across each subgenome,
we found that the LD decay (r2 = 0.1) of the AC genome was
298.95 Kb, while the LD decay was 42.99 Kb and 1,455.28 Kb in
the A and C subgenomes respectively (Figure 4).

Analysis of Blocks Based on Linkage Disequilibrium
The same SNP markers used for LD estimation were used to
evaluate the haplotype blocks present in the 300 accessions. A
summary of the distribution, size, and number of haplotype
blocks along each chromosome is shown in Table 3 and
Figure S6. A total of 25,466 conserved haplotype blocks were
found in the 300 accessions spanning 80.84 Mb (12.53% of the
assembled reference genome). Of these haplotype blocks, 86.54%
ranged in size from 0 to 1 Kb, while only 0.34% were >100

Kb in size. In the A subgenome, the mean haplotype block
number ranged from 848 (A08) to 1,592 (A09) with an average
of 1,208.5, while the mean haplotype block size ranged from 1.65
Mb (A04) to 3.23 Mb (A09) with an average of 2.42 Mb. The
mean haplotype block number in the C subgenome ranged from
1,133 (C09) to 2,050 (C03) with an average of 1,487. Haplotype
block size in the C subgenome was considerably larger, ranging
from 3.34 Mb (C09) to 8.76 (C01) with an average of 6.30 Mb.
The percentage of the genome falling into clear haplotype blocks
in the A subgenome (10.28%) was also lower than in the C
subgenome (14.20%).

DISCUSSION

Large Numbers of SNP Markers
Discovered by SLAF-Seq Technology
Genomic data provide researchers novel insight into rapeseed
genetic diversity and domestication (Qian et al., 2014; Gazave
et al., 2016). In this study, we used 300 rapeseed accessions
collected from different regions of China with outgroups from
other countries, to sequence genome-wide distributed specific
locus amplified fragments (SLAF) for polymorphism detection
and genotyping (Sun et al., 2013), with an average sequencing
depth of 6.27-fold per accession (>5.0-fold), in order to assure
the veracity of the population genetic analyses (He et al., 2011;
Han et al., 2016). The mean physical distance between SNP
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FIGURE 4 | LD decay on the A and C genomes of B. napus. (A) LD decay in the A and C genomes; (B,C) LD decay curves for each chromosome in the A and C

subgenomes respectively.

markers was 0.22 Kb, which was dramatically shorter than
the mean LD decay distance (298.95 Kb), so the density of
SNP markers was sufficient for genetic diversity and association
mapping purposes (Morris et al., 2013). Furthermore, the
sequenced SNP markers distributed across the entire genome
represent most rapeseed genomic regions.

We identified a total of 238,711 polymorphic SLAF tags
containing 1,197,282 SNPs, and finally selected 201,817 high-
consistency SNPs with MAF > 0.05 and integrity > 0.8. In
recent years, SLAF-seq technology has been widely used for
high-throughput SNP and InDel marker development, high-
density genetic map construction and genome-wide association
analyses of important agronomic traits in major crops (Li et al.,
2014). Chen et al. (2013) were the first to report first the
use of SLAF-seq to develop 89 specific and stable molecular
markers in Thinopyrum elongatum, which provided a strong
case for the application of this new technology. Li et al. (2014)
reported a high-density soybean genetic map based on large-
scale SNP markers discovered by the SLAF-seq technology,
allowing consistent QTLs for isoflavone content across different
environments to be identified. Xia et al. (2015) identified 5,142
polymorphic SLAF tags and 148 variants through SLAF-seq

technology, and subsequently successfully detected hotspots
associated with important agronomic traits in maize. Likewise,
Geng et al. (2016) developed 1,933 high quality polymorphic
SLAF markers and identified four markers associated with
thousand seed weight in rapeseed, as well as a hotspot of ∼0.58
Mb on chromosome A09 containing four candidate genes closely
associated with seed weight. In sum, previous research has
indicated that SLAF-seq technology is a highly efficient method
for crop genetic analysis.

In our study, the average SNP distribution density was 22
SNPs/100 Kb, ∼3 times the SNP density (6.67 SNPs/100 Kb) of
the Illumina Infinium Brassica 60K genotyping array (Illumina
Inc., San Diego, CA, USA; Clarke et al., 2016). Therefore, the size
of blocks we detected was smaller than in previous results (Qian
et al., 2014), which facilitates precise haplotype map construction
and high-resolution LD analysis (Buckler and Gore, 2007; Gore
et al., 2009).

Generally, a haplotype block is a cluster of SNPs (r2 > 0.8)
that tends to travel through the generations as a block (Gabriel
et al., 2002; Zondervan and Cardon, 2004). In this study, we
found 25,466 conserved haplotype blocks spanning 80.84 Mb
(12.53% of the assembled reference genome), most of which
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TABLE 3 | Distribution of haplotype blocks in the genome of B. napus.

Chromosome Chromosome

length

Block

number

Block

length

Frequency

(%)

A01 23,267,856 1,077 1,822,637 7.83

A02 24,793,737 1,240 2,603,566 10.50

A03 29,767,490 1,418 2,825,900 9.49

A04 19,151,660 987 1,649,516 8.61

A05 23,067,598 1,314 2,443,836 10.59

A06 24,396,386 1,320 2,780,562 11.40

A07 24,006,521 1,236 2,122,650 8.84

A08 18,961,941 848 2,060,175 10.86

A09 33,865,340 1,592 3,234,961 9.55

A10 17,398,227 1,053 2,626,566 15.10

C01 38,829,317 1,474 8,763,513 22.57

C02 46,221,804 1,564 7,396,336 16.00

C03 60,573,394 2,050 7,064,423 11.66

C04 48,930,237 1,875 8,356,263 17.08

C05 43,185,227 1,136 3,374,479 7.81

C06 37,225,952 1,199 4,665,746 12.53

C07 44,770,477 1,627 6,404,941 14.31

C08 38,477,087 1,323 7,312,052 19.00

C09 48,508,220 1,133 3,336,424 6.88

Total 645,398,471 25,466 80,844,546 12.53

ranged in size from 0 to 1 Kb. Qian et al. (2014) detected 3,097
conserved haplotype blocks spanning 182.49 Mb (15.17% of the
genome) using 24,994 SNPs from the Brassica SNP consortium
Illumina Infinium Brassica 60K genotyping array (Illumina Inc.,
San Diego, CA, USA). This study also drew the same conclusion
as found in our data, that the number of haplotype blocks in the
A subgenome is lower than in the C subgenome. In addition,
we found 30,877 SNP hotspots and 41 SNP-rich regions in the
B. napus genome. There could be several explanations for these.
Firstly, there are many regions in the genome that are rich in
repetitive sequences, where DNA polymerase errors resulting in
strand slippage and inequitable exchange can easily occur (Qin
et al., 2015; Clayton et al., 2016). Secondly, mutational hotspot
regions often represent recombination hotspots, or vice versa
(Mercier et al., 2015). Thirdly, the lower the selective pressure,
the greater the accumulation of mutations, and mutated allelic
sites in genic regions are usually easily swept away under the
relatively greater selective pressure in these regions. Finally,
some variable regions result from adaptative pressures, whereby
mutations in genes related to adaptive capacity are more likely to
be retained, as variability may increase survival probabilities with
exposure to environmental stress (Hayward et al., 2015; Weigel
and Nordborg, 2015).

A-Subgenome Variation is Richer than
C-Subgenome Variation in B. napus Based
on Population Structure and Linkage
Disequilibrium Analysis
Semi-winter rapeseed, mainly planted in the Yangtze valley of
southern China, switches from vegetative to reproductive growth

after a short period of vernalization (Qian et al., 2006). In the
past 20 years, the genetic diversity of these three ecotypes of B.
napus has been widely studied by different molecular marker
technologies (Diers and Osborn, 1994; Hasan et al., 2006; Qian
et al., 2006, 2014). In our study, the genetic diversity analysis
of the three ecotypes did not separate the spring types from the
semi-winter types. We propose two main reasons for this related
to breeding strategies in China. Firstly, spring rapeseed has the
advantage of early maturation, removing seasonal barriers to the
oil-rice-rice triple-cropping system in southern China, so genetic
exchange between spring type and semi-winter type rapeseed
occurred frequently during breeding for early-maturing varieties
in this region. Secondly, rapeseed in China has been adapted for
planting in spring-type regions such as the Gansu province in the
northwest of China, such that genetic components from semi-
winter rapeseed have been introgressed into spring types in order
to breed new spring rapeseed varieties (Qian et al., 2007).

Special variants can also be selected by ecogeographic
adaptation and human selection. It is likely that strong selection
for a particular locus controlling one or more agronomic traits
may have a large influence on LD and genetic diversity. In genetic
experiments in mammals, evolutionary processes are known to
drive the selection of individual genetic polymorphisms and
haplotype block structure (Guryev et al., 2006). As for the effect
of artificial selection on LD in crops, this is thought to mainly
reduce the allelic diversity around the major gene loci or QTL
responsible for an important agronomic trait such as oil quality,
flowering behavior, and biotic or abiotic resistances, with double-
low quality oilseed rape a typical example of this effect. With the
release of the B. napus genome sequence and the development of
genome-wide SNPs (Chalhoub et al., 2014), it has become feasible
to study LD in rapeseed in depth. Here, we identified whole
genome-scale LD patterns in rapeseed and obtained an overall
average LD distance of 298.95 Kb. Ecke et al. (2010) analyzed the
LD in a population of 85 canola winter rapeseed genotypes using
845 AFLP markers, and found the LD decay distance was about
2∼3 cM (1 cM≈500 Kb in B. napus). Similar conclusions were
drawn by Harper et al. (2012) using associative transcriptomics.
However, Xiao et al. (2012) evaluated the extent of LD in a
panel of 192 inbred lines of B. napus worldwide using 451 SSRs,
and found that the LD decayed within 0.5–1 cM at the genome
level, varying with the population size, genetic background, and
genetic drift. Delourme et al. (2013) assessed the extent of LD for
spring and winter ecotype oilseed rape, and found LD decayed
faster in spring than in winter oilseed rape. The average LD
decay distance (r2 = 0.1) on the A and C subgenomes was also
calculated using 24,994 SNP markers in a panel of 203 Chinese
semi-winter rapeseed accessions, revealing that mean LD decay
was about 10 times faster in the A subgenome (0.25–0.30 Mb)
than in the C subgenome (2.00–2.50 Mb; Qian et al., 2014).
Overall, the obtained LD decay distance in B. napus is about 250–
1,500 Kb, which was generally consistent with Arabidopsis (∼250
Kb; Nordborg et al., 2002), rice (∼200 Kb; McNally et al., 2009),
soybean (∼150 Kb; Lam et al., 2010) and sorghum (∼150 Kb;
Morris et al., 2013), but higher than the typical cross-pollinated
crops like maize (1–10 Kb; Yan et al., 2009). Detailed LD analysis
allows us to track down the footprints of domestication and
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the strong selection bottlenecks associated with cultivation and
breeding of B. napus.

In the current study, LD decay in the A subgenome was
dramatically faster than in the C subgenome, and genetic
diversity was higher, indicating that the A subgenome had
undergone more recombination. The primary reason for this is
thought to be that B. napus, originally derived from Europe,
underwent frequent crosses with Chinese B. rapa to create oilseed
varieties suitable for the Chinese climate. Before the 1940s,
traditional rapeseed varieties in China were B. rapa and B. juncea
(Fu, 2000), but due to the advantages offered by B. napus of high
yields, disease-resistance, and extensive adaptability, B. napus
gradually took the place of the Chinese traditional oilseed rape
varieties, and was subsequently planted widely in the Yangtze
River Basin in southern China (Liu, 2000). Over 50% of Chinese
B. napus cultivars are thought to originate from crosses between
B. napus and B. rapa (Qian et al., 2006; Chen et al., 2007).
By contrast, it is fairly difficult to carry out B. napus × B.
oleracea crosses successfully (Bennett et al., 2008), which poses
a limitation to C genome diversification in B. napus. This is
also thought to have contributed to the greater LD and lower
genetic diversity of the C subgenome relative to the A subgenome
in Chinese oilseed rape. In addition, Chalhoub et al. (2014)
reported that the C subgenome contains more transposon-rich
but recombination-poor regions compared to the A subgenome
[transposon-rich regions are often also recombination-poor
(Gorelick, 2003), which could also partly explain the significant
difference in LD between the A and C subgenomes].

In this study, we developed 201,817 high-confidence SNP
markers in a panel of 300 accessions of B. napus using SLAF-
seq (specific-locus amplified fragment sequencing), of which we
found 30,877 SNP “hotspots” and 41 SNP-rich genomic regions,
and detected potentially differentiated genomic regions between
semi-winter, spring and winter ecotype rapeseed. Subsequent
genetic analysis for these 300 accessions validated the breeding
history of semi-winter rapeseed, showing introgressions from
spring types as well as progenitor species B. rapa. Our study
provides an important breeding resource, laying the foundation
for future analysis of important agronomic traits in B. napus.
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