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Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic
stresses such as extreme temperature and water deficit. The dynamic structure of plant
cell wall enables them to undergo compensatory changes, as well as maintain physical
strength, with changing environments. Plant hormones known as brassinosteroids (BRs)
play a key role in determining cell wall expansion during stress responses. Cell wall
deposition differs between grasses (Poaceae) and dicots. Grass species include many
important food, fiber, and biofuel crops. In this article, we focus on recent advances in
BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing
our understanding of the mechanisms in grass species with those in the more studied
dicots. A more comprehensive understanding of BR-mediated changes in cell wall
integrity in grass species will benefit the development of genetic tools to improve crop
productivity, fiber quality and plant biomass recalcitrance.
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INTRODUCTION

During its whole life cycle, a plant’s physical survival is threatened by exposure to various biotic and
abiotic stresses, which can cause morphological and physiological changes that limit growth and
productivity (Bajguz and Hayat, 2009). A thin and tough layer called the cell wall surrounds plant
cells to provide structural strength and act as a protective barrier against both biotic and abiotic
stresses, such as pathogen attack and salinity (osmotic stress) (Taiz and Zeiger, 1998).

Phytohormones are chemical mediators that enable plants to coordinate a variety of
cellular processes such as rapid responses to external stimuli (Deb et al., 2016); regulation by
phytohormones is required for cell wall sensing and reconstruction during adaptive responses
to adverse conditions (Didi et al., 2015; Houston et al., 2016). Brassinosteroids (BR) are a family
of plant steroid hormones that elicit cell expansion (Vriet et al., 2013). Plant cell expansion and
differentiation are inherently accompanied by a series of dynamic changes in cell wall composition
(Hofte, 2015). The BR signaling pathway is fine-tuned to determine cell wall loosening or stiffening
to assure the appropriate cell wall properties under various environmental conditions (Voxeur
and Hofte, 2016). Application of exogenous BR has been proven to enhance crop tolerance to
unfavorable conditions (Sharma et al., 2013), and genetic manipulation of genes that control
endogenous BR levels can promote crop tolerance and improve biomass yield under a wide arrange
of abiotic stress conditions (Wu et al., 2008; Ahammed et al., 2015).

The grass family (the Poaceae), one of the largest flowering plant families, covers one fifth
of the earth’s land (Fincher, 2009). Grasses, including rice, maize, wheat, switchgrass, ryegrass
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and related species, dominate the majority of human food,
livestock feed, biofuel resource and lawn and ornamental use.
Grass cell walls constitute a major portion of the plant biomass
and present unique features compared with those of dicots
(Vogel, 2008). Therefore, understanding hormonal regulation
of grass cell wall construction under adverse conditions is
important for future manipulation of food and biofuel crops
under climate change. Recent reviews have suggested how BR
signaling underlies how plant cell walls sense pathogens and
operate an active defense against pathogen attack (Underwood,
2012; Bellincampi et al., 2014; Malinovsky et al., 2014). In this
review, we focus on the mechanisms of cell wall remodeling in
grasses under the control of BRs as a response to abiotic stresses.

GRASS CELL WALL STRUCTURE

Plant cell walls mainly consist of the polysaccharide polymers
cellulose, hemicellulose and pectin, along with lignin and a small
amount of structural protein (Bashline et al., 2014). Individual
cellulose microfibrils are organized to form a highly ordered
(crystalline) matrix via hydrogen bonds. Hemicellulose binds to
the surface of cellulose to prevent cellulose microfibrils from
clasping together. Pectin and structural proteins are embedded
into the cellulose-hemicellulose network to enhance the correct
assembly of cell wall components and, along with lignin, to
provide additional mechanical strength (Taiz and Zeiger, 1998;
Cosgrove and Jarvis, 2012).

There are two major types of cell wall according to
composition and structure. Type I walls consist of a xyloglucan
matrix into which cellulose microfibrils are embedded, with
high levels of pectin and structural proteins and low levels
of arabinoxylans, glucomannans, and galacto-glucomannans.
In contrast, type II walls have a cross-linked network of
glucuronoarabinoxylans bound to cellulose fibers, with various
minor portions of pectin and structural proteins (Vogel, 2008).
Type I cell walls are present in dicots, non-grass monocots
and gymnosperms, and type II cell walls are present in
grasses (Fincher, 2009). Additional notable features of grass cell
walls include the presence of mixed-linkage β-glucans and the
abundance of xylan and lignin deposited in secondary cell walls
(Vogel, 2008). These unique aspects indicate the existence of
genes specifically involved in grass cell wall biogenesis, many of
which remain to be explored (Lin et al., 2016).

DAMAGE TO CELL WALLS UNDER
ABIOTIC STRESS

Among abiotic stresses, water-deficiency through drought,
osmotic stress and salinity are the most challenging for crop
growth and food production (Tenhaken, 2015; Feng et al., 2016).
The water potential of the plant cell is in accordance with that
of the environment surrounding the cell (Bray, 2007). Drought,
osmotic stress and salinity decrease the water potential of the soil
solution and water leaks from the cell to the external solution
(Bray, 2007). As a consequence, this can lead to reduction

of cell turgor and physical damage to the cell wall including
disconnection of binding sites for wall components, loss of
fragments from the wall, and decreased associations between the
wall and the plasma membrane (Hamann, 2015b).

Another common reaction in plant responses to many stress
conditions (such as heavy metal ions) is the generation of a burst
of reactive oxygen species (ROS), which results in the toxicity of
oxidative stress (Mittler, 2002). A rapid accumulation of ROS in
plant cells inhibits the activity of antioxidants and antioxidative
enzymes and can cause the degradation of lipids and even
destruction of the cell membrane (Das and Roychoudhury, 2014).
Moreover, the generation of OH by the Fenton reaction involving
heavy metal ions or antioxidative enzymes is considered to cause
plant cell wall loosening via breaking cross-linkages between
ferulates and lignin (Karkonen and Kuchitsu, 2015).

A group of plasma membrane-localized receptor-like kinases
(RLKs) and mechanosensitive ion channels (such as Ca2+

channels) are considered to directly or indirectly detect the
impairment of cell wall integrity as a mechanical cue to sense
adverse effects in the environment. They subsequently translate
the physical changes in the cell surface to cellular signals (such
as Ca2+ influx), which further trigger corresponding cascades
of plant defense responses for stress management (Hamann and
Denness, 2011; Feng et al., 2016). These responses are better
understood in yeast than in plants (Hamann and Denness, 2011).

TRANSDUCTION OF BR SIGNALING IN
GRASSES

When perceiving environmental cues, plants translate them
into physiological signals through coordination of the levels
of phytohormones such as gibberellic acid (GA), abscisic acid
(ABA), and BRs that will further trigger cellular responses to
maintain integrity and remodeling of the cell wall (Ahammed
et al., 2015). Recent findings have characterized the molecular
machinery of BR signal reception and transduction in
Arabidopsis (Wolf et al., 2012, 2014; Zhu et al., 2013). However,
the BR signaling pathway in monocots still remains to be
explored, although a few conserved components have been
identified in rice (Yamamuro et al., 2000; Bai et al., 2007; Li et al.,
2009; Tong et al., 2012; Vriet et al., 2013; Zhang et al., 2014; Zhang
B. et al., 2016), maize (Zhang Y. et al., 2016) and Brachypodium
distachyon (Feng et al., 2015). Here, we show a proposed model
for the BR signaling pathway in grasses generally based on
the information for rice (Figure 1). BR signaling is perceived
by cells through its binding to the extracellular domain of a
plasma membrane-bound receptor kinase, BRASSINOSTEROID
INSENSITIVE 1 (OsBRI1) (Yamamuro et al., 2000; Zhu et al.,
2013). BR-binding prevents BRI1 from associating with the
negative regulator OsGSK and promotes BRI1 to interact
with the co-receptor kinase BRI1-ASSOCIATED RECEPTOR
KINASE1 (OsBAK1) (Li et al., 2009; Zhang et al., 2014). The
trans-phosphorylation between OsBRI1 and OsBAK1 activates
the kinase activity of BRI1, the intracellular domain of which
initiates the signal transduction cascade within cells (Vriet
et al., 2013). BR SIGNALING KINASE (BSK1) located in the
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FIGURE 1 | Brassinosteroid mediated cell wall remodeling. Models of the BR signaling pathway are drawn based on the information from rice (Vriet et al.,
2013). Activated and repressed reactions are represented by arrows and blunt-ended lines, respectively. Negative regulators (GSK and 14-3-3) are in the shape of
stars. Phosphorylation and de-phosphorylation are represented by “+P” and “−P,” respectively. Direct and indirect regulation are represented by solid and dashed
lines, respectively.

cytoplasm is phosphorylated and activated by BRI1 leading to
the activation of BRI1 SUPPRESSOR1 (BSU1) (Zhang B. et al.,
2016). Through desphosphorylation, BSU1 negatively regulates
OsGSK2, an inhibitor of the BRASSINAZOLE-RESISTANT1
(BZR) family of transcription factors (Tong et al., 2012). Upon
BR signaling, OsBZR1 is activated by dephosphorylation and
inhibition of its interaction with 14-3-3 proteins. This leads
to a rapid accumulation of OsBZR1 in the nucleus to directly
control the expression of BR target genes (Bai et al., 2007). In
Arabidopsis, the BR-activated transcription factor BZR1 and its
homologous gene BZR2/BES1 have been shown to directly bind
to promoter regions of a large number of cell wall-related genes
(Jiang et al., 2015), including the majority of cellulose synthase
genes (Xie et al., 2011), and NAC and MYB transcription factors
associated with regulatory pathways for lignin synthesis (Zhao
and Dixon, 2011; Benatti et al., 2012). Though direct evidence
is absent, grasses may operate a similar BR-mediated signal
cascade to regulate the expression of genes involved in cell wall
biogenesis.

BR-MEDIATED CELL WALL
REMODELING

Recent evidence suggests the association of BR signaling
pathways with cell wall remodeling. Here, we discuss effects of
BRs on cell wall loosening proteins and major structural cell wall

components including cellulose, lignin and pectin, according to
recent advances in both grasses and dicots.

BR-Mediated Cell Wall Loosening
Proteins
Modification of the structure of the plant cell wall is
required as a defense response upon the perception of abiotic
stresses (Tenhaken, 2015). Two groups of enzymes, xyloglucan
transferase/hydrolase (XTHs) and expansins, are involved in
cell wall loosening. XTHs catalyze the internal cleavage of
xylogulcan polymers and transfer the newly generated ends to
other xyloglucan chains (Uozu et al., 2000; Eklof and Brumer,
2010), whereas expansins loosen the linkages between cellulose
microfibrils through non-covalent rearrangement of their targets
(Yennawar et al., 2006). A subset of XTH and expansin genes
is significantly up-regulated by BL treatment in Arabidopsis and
soybean (Zurek and Clouse, 1994; Kozuka et al., 2010; Abuqamar
et al., 2013). Similarly, the expression of a number of XTHs
and expansin genes has been reported to be regulated by BR
in rice, maize and wheat (Uozu et al., 2000; Yokoyama et al.,
2004; Liu et al., 2007; Genovesi et al., 2008). Considering that
grasses contain lower levels of xyloglucan in their cell walls than
do dicots, it has been suggested that XTH isoforms in grass
species may contribute to building xyloglucan-(β-1,3:1,4-glucan)
links, rather than rearrangement of xyloglucan chains (Eklof and
Brumer, 2010). BR-mediated regulation of XTH and expansin
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mRNA levels may lead to alteration of the interaction between
xyloglucan and cellulose microfibrils to alter cell wall stiffness.

BR-Mediated Cellulose Deposition
Cellulose microfibrils, composed of β-1,4-glucan chains (Hill
et al., 2014), contribute to the majority of plant above-ground
biomass and their synthesis and deposition is responsive
to changing environmental conditions (Wang et al., 2016).
Cellulose synthesis requires multiple members of the cellulose
synthase (CesA) gene superfamily, which encode catalytic
subunits that form hexameric complexes localized on the plasma
membrane (Hill et al., 2014). In Arabidopsis, BR signaling
has been shown to increase cellulose accumulation through
upregulation of CesA genes at both the transcriptional and
post-transcriptional levels. The expression of most CesA genes
is induced by BR-mediated activation of the transcription factor
BES1, which directly binds to the CANNTG E-box in the
promoter region of CesA genes (Xie et al., 2011), while the
activity of CESA1 kinase is increased by the degradation of its
inhibitor protein BRASSINOSTEROID INSENSITIVE2 (BIN2)
(Sánchez-Rodríguez et al., 2017). Some observations suggest that
grasses may share a similar BR-mediated pathway for CesA
gene regulation. The BR receptor kinase gene OsBRI1 shows
co-expression with OsCESA3 in a genome-scale gene network
for rice (Lee et al., 2011). An associated up-regulation of BRI1,
CESA3 and other genes involved in BR signaling is observed
in a wild wheat species (Agropyron elongatum) compared with
domesticated genotypes during water stress. The enhanced
BR-signaling pathway in A. elongatum may contribute to its
higher water-stress tolerance and significant increase of root
and shoot biomass compared with the domesticated line under
water-deficient conditions (Placido et al., 2013).

Either exogenous application of BRs or overexpression
of BR receptor genes could benefit cellulose deposition and
accumulation, especially to compensate for cellulose loss caused
by abiotic stresses (Sun et al., 2005; Li et al., 2009; Zhang
et al., 2014). Some evidence has suggested that BR signaling may
not directly determine the total content of cellulose (Schrick
et al., 2012) but rather be more involved in the orientation of
cellulose microfibril deposition through the control of the cortical
microtubular organization in cells (Bashline et al., 2014).

BR-Mediated Lignin Accumulation
The second most abundant carbon sink in plants, lignin is absent
from the primary cell wall and deposited in the secondary cell
wall surrounding specific cell types to enhance cell wall rigidity
and provide structural support (Boerjan et al., 2003; Karkonen
and Koutaniemi, 2010). Lignin is a phenolic heteropolymer,
which mainly consists of three types of 4-hydroxycinnamyl
alcohol units, guaiacyl (G), syringyl (S) and p-hydroxyphenyl (H),
derived from the monolignols coniferyl alcohol, sinapyl alcohol
and p-coumaryl alcohol, respectively (Boerjan et al., 2003; Chen
et al., 2012). An induction of lignin biosynthesis is often observed
under biotic and abiotic stresses as a defense response (Dixon and
Paiva, 1995; Moura et al., 2010). For example, excess heavy metal
(Cu, Zn, Al) causes an elevated accumulation of lignin in cell walls
of rice and wheat (Moura et al., 2010).

Brassinosteroids have been reported to play a crucial role in
secondary cell wall deposition. Application of the BR biosynthesis
inhibitor (BRz) in cotton ovules causes severe inhibition of
secondary cell wall development in the fibers (Sun et al., 2005).
Tracheary element formation and secondary cell wall thickening
can be observed in suspension cell cultures of Arabidopsis and
banana following exogenous BR-supplementation (Oda et al.,
2005; Negi et al., 2015). Furthermore, loss of function of a BR
biosynthesis protein (DIM1) in Arabidopsis leads to a significant
reduction in lignin content and a lower lignin S/G ratio (Hossain
et al., 2012). Consistent with this finding, BR treatment induces
the accumulation of lignin with predominantly S units in
switchgrass suspension cells (Shen et al., 2013). A regulatory
mechanism for BR signaling and secondary cell wall development
has been proposed in Arabidopsis; the BR-activated transcription
factor BES1 promotes the expression of VND6 and VND7,
which determine the transition of xylem cells to form tracheary
elements, and alters the expression of MYB transcription factors
involved in regulating lignin biosynthesis (Zhong et al., 2008;
Yamaguchi et al., 2010; Zhao and Dixon, 2011; Didi et al., 2015;
Li et al., 2016).

Besides the regulation of genes involved in monolignol
biosynthesis, BRs may also have effects on the bonds between
monolignol polymers and phenolic acids in the cell wall
through controlling antioxidant enzymes at the transcriptional
and post-transcriptional level. The exogenous application of
BR significantly increases the activity of antioxidant enzymes
(such as catalase, superoxide dismutase, ascorbate peroxidase,
and peroxidase) through up-regulation of the expression of the
corresponding genes in maize, wheat, and rice exposed to metal
stress (Vardhini and Anjum, 2015; Yan et al., 2015; Sharma
et al., 2016). Peroxidases mediate the formation of phenolic
radicals, leading to both lignin polymerization and cross-linking
between the ferulic acid units esterified to arabinoxylans which
occur especially in grasses (Hamann, 2015a; Tenhaken, 2015).
The increased activity of peroxidases and the formation of ROS
together enhance the covalent cross-linking of components in
the cell wall and strengthen the mechanical properties of the
wall (Lamb and Dixon, 1997; Tenhaken, 2015). Therefore, it is
possible that BRs enhance the antioxidant defense system as well
as increasing the cross-linking of phenolic compounds in the
cell wall to alleviate oxidative damage caused by the ROS burst
(O’Brien et al., 2012).

BR-Mediated Pectin Modification
Pectins play a critical role in enabling cell walls to remain firm but
extensible (Harholt et al., 2010). Pectic polysaccharides bind to
the cellulose and hemicellulose network, forming hydrated gels to
inhibit collapse of the cellulose matrix and to monitor changes in
polymer residues and pH (Harholt et al., 2010; Voxeur and Hofte,
2016). Pectic polysaccharides consist of various galacturonic
acid (GalUA)-containing polymers, including homogalacturonan
(HG), xylogalacturonan (XGA), rhamnogalacturonan I (RGI),
and rhamnogalacturonan II (RGII) as backbone units, of which
GalUA residues can be substituted by arabinan, galactan, and
arabinogalactan as branch chains (Harholt et al., 2010; Hofte,
2015). The degree of methylesterification in HGs determines
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looseness1 the stiffness of the pectic matrix and is precisely
controlled by the balance of activity between pectin
methylesterase enzymes (PMEs) and PME inhibitors (PMEIs)
(Wolf et al., 2012). PMEs de-methyl esterify HG chains in the
cell wall, which leads to a decrease in stiffness of the wall and
acceleration of cell growth under Ca2+ limited conditions (Hofte,
2015) or promotes the formation of a HG-Ca2+ gel to lock
the cell wall into an inextensible state under Ca2+ abundant
conditions (Cosgrove, 2016). Ca2+ fluxes/levels complement BR
signaling by contributing to the fine-tuned control of cell wall
integrity under normal or adverse conditions. For example, BRs
have been shown to upregulate the level of one PME transcript
and trigger PME activity to increase the stiffness of cell walls
in response to cold and freezing in Arabidopsis (Qu et al., 2011).
The BR-receptor kinase BAK1 in Arabidopsis can directly interact
with a plasma membrane receptor-like protein (RLP44) to repress
the activity of PME inhibitors and therefore reduce the stiffness
of the pectic matrix and promote cell wall loosening under both
normal and stress conditions (Wolf et al., 2012, 2014). Therefore,
BR signaling in Arabidopsis is coupled with the modification
of methyl-esterified HGs to control pectin-dependent cell wall
integrity (Wolf et al., 2012). Knowledge of BR-meditated pectin
methylesterase activity so far is lacking in grasses and is an
important area for future research.

CONCLUSION

The possible roles of BR signaling that contribute to cell wall
remodeling are summarized in Figure 1. Few BR response targets
have been established and much remains to be discovered about

how BRs regulate the expression of cell wall related genes and
corresponding enzymatic activity in grasses. In addition, the
crosstalk between BRs and other phytohomones in controlling
cell wall integrity is another area that requires more investigation
(Bai et al., 2012; Huang et al., 2015; Deb et al., 2016). A better
understanding of BR-mediated cell wall homeostasis will guide
the design of genetic modification strategies to improve biomass
and stress tolerance in grasses.
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