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Understanding spatial distributions of invasive plant species at early infestation stages is
critical for assessing the dynamics and underlying factors of invasions. Recent progress
in very high resolution remote sensing is facilitating this task by providing high spatial
detail over whole-site extents that are prohibitive to comprehensive ground surveys.
This study assessed the opportunities and constraints to characterize landscape
distribution of the invasive grass medusahead (Elymus caput-medusae) in a ∼36.8 ha
grassland in California, United States from 0.15m-resolution visible/near-infrared aerial
imagery at the stage of late spring phenological contrast with dominant grasses. We
compared several object-based unsupervised, single-run supervised and hierarchical
approaches to classify medusahead using spectral, textural, and contextual variables.
Fuzzy accuracy assessment indicated that 44–100% of test medusahead samples
were matched by its classified extents from different methods, while 63–83% of test
samples classified as medusahead had this class as an acceptable candidate. Main
sources of error included spectral similarity between medusahead and other green
species and mixing of medusahead with other vegetation at variable densities. Adding
texture attributes to spectral variables increased the accuracy of most classification
methods, corroborating the informative value of local patterns under limited spectral
data. The highest accuracy across different metrics was shown by the supervised single-
run support vector machine with seven vegetation classes and Bayesian algorithms
with three vegetation classes; however, their medusahead allocations showed some
“spillover” effects due to misclassifications with other green vegetation. This issue
was addressed by more complex hierarchical approaches, though their final accuracy
did not exceed the best single-run methods. However, the comparison of classified
medusahead extents with field segments of its patches overlapping with survey
transects indicated that most methods tended to miss and/or over-estimate the length
of the smallest patches and under-estimate the largest ones due to classification errors.
Overall, the study outcomes support the potential of cost-effective, very high-resolution
sensing for the site-scale detection of infestation hotspots that can be customized to
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plant phenological schedules. However, more accurate medusahead patch delineation
in mixed-cover grasslands would benefit from testing hyperspectral data and using
our study’s framework to inform and constrain the candidate vegetation classes in
heterogeneous locations.

Keywords: medusahead, invasive species, remote sensing, very high resolution, OBIA, rangeland

INTRODUCTION

Understanding spatial distribution of invasive plant species
at the early stages of infestation is critical for exposing the
drivers of their expansion and informing preventive management
(Westbrooks, 2004; Mangla et al., 2011). The process of
invasion is often non-linear in space and time (Coutts et al.,
2011), and rapid transitions from smaller, scattered patches
to larger monodominant areas pose significant challenges to
their control (With, 2002; Regan et al., 2006). Such dynamics
may depend on complex cross-scale ecological interactions
and threshold behavior which ultimately affect broader-scale
landscape composition, yet may be difficult to assess in
their entirety (With, 2002; Mayer and Rietkerk, 2004; Peters
et al., 2007; Suding and Hobbs, 2009). To uncover these
changes and underlying thresholds, patch distribution needs to
be characterized comprehensively at the “mesoscale” level of
individual sites, ideally capturing most or all of the potential
participants in the infestation. However, this task requires
high level of spatial detail and at landscape extents that may
be too large (>1 ha) and prohibitive for traditional field
sampling.

This challenge has been increasingly addressed by the
applications of remote sensing data to detect plant invaders
at the scales from individual sites to broader regions (Pengra
et al., 2007; Andrew and Ustin, 2008; Hestir et al., 2008;
Laba et al., 2010; Bradley, 2014). However, common satellite
and aerial image data with spatial resolution of ≥1–4 m are
often too coarse to discern individual patches and accurately
characterize infestations (Hulme, 2003). Recent advances in
very high (<1 m) resolution (VHR) airborne piloted and
unmanned vehicle sensing offer a promise to overcome these
limitations and to facilitate site-level analyses of invasions with
more customizable and spatially informative data (Laliberte
and Rango, 2009; Rango et al., 2009; Anderson and Gaston,
2013; Wan et al., 2014). However, practical value of these
data for the patch-scale analyses and monitoring are not yet
well understood for a broad range of invaders, particularly
those morphologically similar to local species. Furthermore,
several important challenges may affect the success of these
efforts.

One key issue is that the advantages of high spatial resolution
often come at the cost of excessive and less relevant spatial
detail, such as color variation caused by shadows and canopy
gaps. This variation poses a major problem for pixel-based
landscape classifications, leading to losses of accuracy and the
infamous “salt-and-pepper” speckle (Blaschke and Strobl, 2001;
Blaschke, 2010). Previous studies have addressed this issue by
using object-based image analysis (OBIA) where the images

are first segmented into smaller regions (objects) via some of
many available segmentation techniques, and these objects are
subsequently classified into cover types (Baatz and Schäpe, 2000;
Clinton et al., 2010). In addition to spectral values, object shape,
heterogeneity (texture) and spatial contextual relationships may
aid in class discrimination. Texture, from simple object-level
variance to more complex gray-level co-occurrence matrix
(GLCM) measures, has been particularly useful to represent
class-specific intrinsic spatial patterns in applications of high-
resolution imagery (Laliberte and Rango, 2009; Kim et al.,
2011), including plant invasion studies (e.g., Ge et al., 2006;
Tsai and Chou, 2006; Boers and Zedler, 2008; Laba et al.,
2010). However, the overall OBIA process may be significantly
complicated by spatial heterogeneity of vegetation, leading to
complex and difficult to generalize approaches to yield higher
accuracy (Laba et al., 2010; Blanchard et al., 2011; Rokitnicki-
Wojcik et al., 2011; Allard et al., 2012). Their advantages to
rigorous automated methods such as novel machine-learning
algorithms (Heumann, 2011; Dronova et al., 2012; Zhang and Xie,
2012) are not yet well understood and call for more comparative
studies.

A second challenge is that spectral sensitivity of many
present-day VHR sensors is often limited to broad bands
of visible and near-infrared electromagnetic regions (Rango
et al., 2009; Anderson and Gaston, 2013; Wan et al., 2014;
Toth and Jozkow, 2016). In contrast, many successful analyses
of invasive species have relied on narrowband hyperspectral
data (Underwood et al., 2003; Pengra et al., 2007; Andrew
and Ustin, 2008; Hestir et al., 2008; Santos et al., 2011),
and hyperspectral capabilities have been generally superior to
hyperspatial ones in such studies (Nagendra and Rocchini,
2008; Rocchini et al., 2015). However, the latter evidence was
based on the shortcomings of pixel-based methods such as
local spectral variability (Nagendra and Rocchini, 2008), which
can be addressed by OBIA (Baatz and Schäpe, 2000; Blaschke
and Strobl, 2001; Burnett and Blaschke, 2003). Furthermore,
limitations associated with cost and availability of high-resolution
hyperspectral platforms are still challenging for management
with constrained budgets. Thus, the potential of spectrally
limited hyperspatial images to reveal early-stage invasions
using novel processing methods remains to be tested. This
question bears high practical importance as cheaper, easily
customizable options of low-altitude and unmanned aircraft
systems (UAS) imagery are gaining popularity (Laliberte and
Rango, 2009; Anderson and Gaston, 2013; Colomina and Molina,
2014).

In response to these unknowns, our study assessed the
opportunities and constraints to characterize the site-scale
distribution of the invasive medusahead (Elymus caput-medusae)
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in a California, United States grassland using very high
resolution (0.15 m) aerial imagery. Although a number of
exotic grasses are currently prevalent in California, medusahead
is a particularly problematic invasive species because it is
associated with losses in forage production, wildlife habitat
and biodiversity (Nafus and Davies, 2014). This annual grass
promotes its dominance via several physiological adaptations
and accumulation of dense thatch (George, 1992; Davies, 2008;
Davies and Svejcar, 2008; Cherr, 2009; Nafus and Davies,
2014). Its dispersal may be facilitated by epizoochory due
to presence of cattle, though specific implications for spread
and patch distribution are not yet known (Chuong et al.,
2016). Yet, livestock do not consume medusahead once it has
reached the flowering stage, and as a result, its invasion is
associated with reduced rangeland productivity and economic
losses to ranchers in California (Nafus and Davies, 2014).
Furthermore, medusahead is currently expanding its range across
the western United States, having infested >1,000,000 ha and
spreading at a rate of ∼12% a year (Duncan et al., 2004),
and is therefore an invasive species of critical management
concern.

Importantly, medusahead exhibits distinct phenology by
staying green later in the season than many other annual
grasses, which offers a potential to detect it remotely even
with broader-band visible and near-infrared data (Cherr, 2009;
Ndzeidze, 2011). Previous remote sensing analyses of this
species applied pixel-based methods to both VHR (0.42 m)
aerial imagery (Ndzeidze, 2011) and coarser 30 m Landsat
satellite data (Cherr, 2009). However, these studies analyzed
broad spatial extents (>20,000 ha) and did not explicitly
discuss individual patch mapping or detection challenges
due to presence of phenologically similar vegetation, which
indicates the need for more in-depth site-level analyses of
this species. Thus, our specific objectives were: (1) To test
the potential of VHR broadband visible/near-infrared (VNIR)
remote sensing imagery to characterize patch distribution
of medusahead at its late spring phenology; (2) To assess
and compare several OBIA classification strategies including
unsupervised, supervised and knowledge-based methods;
and (3) To assess the relative benefits of including object
texture for medusahead classification. We also aimed to
identify the main challenges to high-resolution medusahead
monitoring to better understand the long-term prospects of
this methodology for grassland management and the key future
research needs.

MATERIALS AND METHODS

Study Area and Vegetation Field Surveys
This study focused on a ∼36.8 ha grassland (“Campbell”) site
(Figure 1) at the University of California’s Sierra Foothills
Research Experimental Center (SFREC) in Yuba County,
California, United States (39◦15.3′N, 121◦17.1′W). This area
has Mediterranean climate with dry hot summers and moist,
cool winters. Grassland vegetation includes primarily naturalized
exotic grasses, including slender wild oat (Avena barbata),

brome (Bromus spp.), Italian ryegrass (Lolium perenne), bulbous
canarygrass (Phalaris aquatica) and forbs such as clover
(Trifolium spp.), vetch (Vicia villosa) and storksbill (Erodium sp.).
Invasive medusahead and barbed goatgrass (Aegilops triuncialis)
were present in several parts of the area, sometimes mixed with
each other.

Several types of data on vegetation composition were
collected in the field between mid-May and early June 2013.
A comprehensive survey was performed using 20 transects placed
as five groups of three, one group of four transects and one more
separate transect in areas with different degree of infestation (or
lack of thereof). The starting point and orientation for each group
were chosen randomly. At each transect, ten 50 cm × 50 cm
plots were surveyed at 10 m distance intervals to record the ID
and relative percent cover of up to 10 most dominant vegetation
species. After the surveys, plot locations were georeferenced using
the Trimble GeoXH geographic positioning system (GPS) with
the post-differential correction accuracy of ≤0.3 m.

Whenever the transects crossed medusahead patches in the
field, start and end points of these intersections were recorded
as the distance from a preceding plot to obtain a sample of
field patch dimensions. In this assessment, medusahead “patches”
were considered to be separate if the distance between them
exceeded 20 cm. Later these intersections were converted from
to a digital line vector dataset in ArcGIS v.10 (Esri Inc.) software
using the plot GPS locations. Additional visual surveys were
performed on several occasions during the study by walking
around the site and taking photographs and GPS records of
the off-transect vegetation examples for supplementary reference
information.

Using these field data, we designated 300 location samples
based on both transect data and additional surveys as reference
and training data for the subsequent classifications. These
samples were chosen to represent the instances of high percent
cover of medusahead and other vegetation as closely as possible.
The set included 50 samples of medusahead, Italian rye grass,
vetch and clover-brome each, 40 samples of wild oat and 30
samples of less common barbed goatgrass and canarygrass each.

Remote Sensing Data and Preliminary
Assessment of Vegetation Distribution
Very high resolution (0.15 m) aerial imagery was acquired for
May 19, 2013 at the stage of a pronounced phenological contrast
between green medusahead and senescent dominant annual
grasses. These data were collected by Eagle Digital Imaging
Inc. using Canon 5D Mark 2 cameras and delivered as an
orthorectified, mosaicked and radiometrically normalized
product with three visible [red (600–680 nm), green
(520–580 nm), blue (450–520 nm)] and one near-infrared
(720–900 nm) electromagnetic bands. Prior to designing the
object-based classification, field data were spatially overlaid
with this image to visually examine the patterns of species
co-occurrence and potential challenges to mapping.

This assessment revealed that several non-target vegetation
types were also still green at the time of the study. Their spectral
values at the pixel level were similar to green medusahead;
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FIGURE 1 | Study area at the Sierra Foothills Research Extension Center, Browns Valley, CA, United States. The main image shows a near-infrared, red and green
band composite for the classified portion of the site. The photo inset shows an example of infested areas as seen on the ground, with medusahead and other green
vegetation patches amidst senescent grasses.

however, some of them displayed distinct local patterns
(Figure 2). Specifically, canarygrass occurred in the northwestern
part of the study area as disaggregated green clumps within other
senescent grasses. The mixtures of clover, brome and Italian rye
grass formed areas with intermediate levels of greenness similar
to lower-density medusahead, and often mixed with the latter.
However, when the density of Italian ryegrass was high, these

communities exhibited visually unique patterns with high local
heterogeneity (Figure 2). Green barbed goatgrass was present
at the site as either monodominant patches or mixed with local
grasses and sometimes medusahead. Finally, vetch (Figure 2)
was concentrated as very bright green patches primarily in the
clove-brome areas and did not co-occur with medusahead in
our sample data. These patterns suggested that textural metrics
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FIGURE 2 | Examples of characteristic local spectral patterns shown in the near-infrared image composite for (A) medusahead and clover-brome; (B) canarygrass
within senescent grasses; (C) vetch within clover-brome and Italian rye grass matrix and (D) medusahead within taller senescent wild oat.

should be included in the subsequent image classifications in
addition to spectral variables.

General Classification Strategy and
Image Segmentation
Given the potential confusion among medusahead and
co-occurring green vegetation types, we compared three
object-based image classification strategies: unsupervised, simple
“single-run” supervised and more complex hierarchical object-
based classifications described below. Unsupervised classification

did not require training samples and allowed testing the
possibility to detect medusahead with statistically evaluated
clusters in the multi-dimensional space of discriminating input
variables. Supervised single-run classification was used to test
whether medusahead could be instantaneously discriminated
from other vegetation types based on the class training samples.
Finally, the hierarchical approach was developed to incorporate
the local context of medusahead distribution into the process of
its detection and discrimination from other vegetation.

Each classification was preceded by the segmentation of the
image into objects to be used as mapping units. The input
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image layers for this step included four original image bands
and two derived layers: a normalized difference vegetation index
(NDVI; the normalized difference of near-infrared and red
bands) to highlight vegetation greenness, and a local Moran’s
I coefficient (Anselin, 1995) estimated using a 3 × 3 moving
window as a metric of local heterogeneity. For unsupervised
and single-run supervised classifications, primitive objects were
generated using multi-resolution segmentation (MRS; Baatz and
Schäpe, 2000) in eCognition software v.8.8 (Trimble Inc.). This
procedure used low weights for shape and compactness of
0.1 each to emphasize spectral variables in object generation
and the scale parameter value of 10 determined as the scale
of substantial decline in the local spectral variance using the
Estimation of Scale Parameter (ESP) tool (Dragut et al., 2010,
2014). For the hierarchical classification, we also used ESP to
determine several nested scales of potential importance. Scale
390 corresponding to broad landscape units with different
levels of heterogeneity and scale 176 capturing dominant
vegetation communities were selected as the starting point
for the hierarchical analysis (see Hierarchical Classification
below).

In these approaches, a variety of object-level attributes
were used to facilitate class discrimination. In supervised
and hierarchical methods, spectral and textural attributes
were selected based on the minimal overlap of class training
samples within eCognition’s Sample Editor tool. Spectral
variables included object-level means of the individual input
image bands, while textural variables included standard
deviations of the input image bands and more advanced
GLCM measures (Haralick et al., 1973). Pilot analysis
revealed that standard deviations of blue and green bands
and all-direction GLCM Entropy of near-infrared and green
bands were the most useful at both coarser and finer object
scales. For the consistency, the unsupervised approaches
used the same spectral and texture metrics. Finally, in the
hierarchical classification class identities at higher levels of
the object hierarchy were used to guide and constrain class
assignments at the lower levels. Prior to all classifications, objects
corresponding to trees and bright wetland vegetation near the
stream beds were separately delineated and excluded from the
analysis.

Unsupervised Classification
Unsupervised object-based classification was implemented using
a simple k-means clustering approach in Weka software (Frank
et al., 2016). Two sets of object attributes were compared:
spectral variables alone and together with texture metrics.
To evaluate the suitable number of clusters, multiple runs
of the algorithm were performed from 10 to 30 clusters,
and within-object variance was computed for each run as
an indicator of cluster tightness. While overall this metric
declined with greater number of clusters, it occasionally exhibited
local peaks that were interpreted as potentially meaningful
changes in landscape structure. Two such peaks corresponded
to the sets of 12 and 18 clusters that were selected for
medusahead classification with spectral and spectral-texture
attributes. Clusters likely to contain medusahead were identified

both visually and by the spatial overlap with training sample
locations.

Single-Run Supervised Classification
Supervised object-based classifications were implemented in
eCognition v.8.8 software by allocating primitive objects into
candidate classes in a single run using a one-at-a-time set
of discriminating attributes. To date, there has not been a
clear consensus on which supervised algorithms are consistently
the best for mapping vegetation in mixed-cover landscapes
(Dronova et al., 2012; Zhang and Xie, 2012). Therefore, we
compared three different machine-learning algorithms [k-nearest
neighbor (KNN), Bayesian and support vector machine (SVM)
with linear kernel] with two sets of discriminating features
(spectral-only and spectral with texture as in the unsupervised
clustering). Each of these was run using one simple and one
more complex set of vegetation classes including, respectively,
three (medusahead, other green, other non-green) or seven
(medusahead, clover-brome, Italian ryegrass-brome, canarygrass,
vetch, barbed goatgrass and wild oat) categories. All these
methods used the same set of primitive training objects
containing the locations of training samples for their specific
classes.

Hierarchical Classification
A supervised/knowledge-based hierarchical classification was
also tested as an alternative to single-run approaches when
different classes may require different sets of discriminating
features. Our hierarchical strategy combined automatic
supervised classification with knowledge-based decision
rules (Figure 3) that were informed by a series of pilot analyses
using mathematical thresholding, trial-and-error and sample
comparison in eCognition’s Sample Editor. Our final results
included three algorithms with the same general procedure
(Figure 3) but different supervised classifiers: KNN, SVM, and
Bayesian, similar to single-run procedures.

At the coarsest level (determined by MRS at scale 390),
we first isolated objects that were least likely to contain
medusahead due to low NDVI and distant location from the
known infested portions of the study area. Next, we isolated
heterogeneous objects dominated by vetch, clover-brome and
Italian rye grass mixtures based on their unique texture best
represented by GLCM Entropy of the near-infrared band. In
the field observations, these vetch associations did not include
medusahead, consistent with prior uses of vetch as a medusahead
control species (McLauchl et al., 1970).

The remaining objects, potentially containing medusahead,
were classified at the next segmentation level (determined by
MRS at scale 176) into broad classes representing associations
with other dominant species (Figure 3). Areas with canarygrass
were too similar spectrally to medusahead mixtures with clover-
brome and could only be distinguished based on the GLCM
Entropy of the green band. A small portion of the site contained
green storksbill in the subcanopy of senescent grasses, which
could not be easily separated with a spectral or textural threshold;
these areas were labeled manually at the coarsest segmentation
level. The remaining objects were then classified into medusahead
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FIGURE 3 | Major classes and steps in the knowledge-based hierarchical classification of medusahead.

associations with wild oat and clover-brome using object means
of the red, green, blue and near-infrared bands and standard
deviations of blue and green bands.

Next, these broader medusahead associations were classified
into “invasive grasses” (medusahead and barbed goatgrass
together) and other “non-medusahead.” To account for
potentially non-uniform presence and greenness of medusahead
among these groups, objects representing broader associations
were split into three categories of greenness by thresholding
the NDVI band using automatic Otsu method (Otsu, 1979) in
Matlab software (version 2015a, MathWorks Inc.). The least
green category in each group was isolated as non-medusahead
(Figure 3). The remaining greener objects were reclassified
into invasive grasses and other classes depending on their
composition, and at the final step invasive grasses were further
classified into medusahead and barbed goatgrass using object
means for red and NDVI bands and GLCM Entropy of the
near-infrared band.

Classification Accuracy Assessment
Classification accuracy and uncertainty were evaluated for
different classification outputs in two major ways focusing on
medusahead as the target class. First, we performed a fuzzy
accuracy assessment (Gopal and Woodcock, 1994) which was
preferable to “hard” approaches (Congalton and Green, 2009) due
to heterogeneity and common mixing of vegetation types. This

analysis used a set of test samples designated from the field survey
plots and field-visited locations not used in classification training.
Most of these had mixed composition with more than one species
as potential mapping candidate; thus, based on the field-recorded
percent cover, each test plot was assigned one vegetation type
as the “best” choice and, if applicable, another 1 or 2 classes as
“acceptable.” When medusahead was present as a subdominant
species with ≥5% cover, it was recorded as an “acceptable”
candidate to test the possibility of its detection at lower densities.
Overall, this test set included 150 samples, 50 of which had
medusahead as the best candidate, 50 were non-medusahead
and the other 50 were non-medusahead with medusahead as
“acceptable.” Given potential geographic positioning errors, their
locations were converted to 1 m × 1 m squares centered on
the surveyed points and spatially overlaid with each classification
outcome in ArcGIS v.10 software (Esri Inc.).

The following accuracy metrics were then computed for
medusahead class following traditional and fuzzy approaches by
adapting the methods in Gopal and Woodcock (1994):

(1) The proportion of test samples classified as medusahead
having medusahead as the best reference class (“MAX”
metric);

(2) The proportion of test samples classified as medusahead
having medusahead as the acceptable reference class
(“RIGHT” metric);
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(3) The difference between (2) and (1) as the indicator of
accuracy improvement by considering the fuzzy landscape
composition (MAX-RIGHT);

(4) The proportion of test sample squares with medusahead as
the best class which included classified medusahead within
the square (“Producer’s accuracy” metric).

It is important to note that this set of metrics provides
similar information about medusahead classification accuracy as
conventional accuracy matrices (Congalton and Green, 2009),
but it also reveals additional information about the error sources
(Gopal and Woodcock, 1994). Specifically, the MAX metric
is identical to user’s accuracy which is related to the error
of commission and “overclassification” of a given class at the
expense of others, while Producer’s accuracy metric describes the
representation of reference samples and is related to the error
of omission (Congalton and Green, 2009). The RIGHT metric
proposed for heterogeneous landscapes shows to what extent
classification results represent the target class when it is present
but not necessarily dominant or exclusive (Gopal and Woodcock,
1994), while the MAX-RIGHT difference further shows to what
extent user’s accuracy improves when such heterogeneity is taken
into account. Hence, the combined use of these metrics is
expected to provide both “hard” estimates of accuracy and error
and the information about potential effects of distributional or
spectral heterogeneities on medusahead discrimination.

Second, medusahead patches produced by different
algorithms were overlaid with field transect segments (Figure 4)
in ArcGIS software to assess their spatial match. Because
classification uncertainty could be related to patch size, we
defined four categories of segment length from the statistical
distribution of length in the field dataset (≤0.5 m, 0.5–2 m,
2–7 m and >7 m) and quantified two sets of metrics for
each of them. The first set represented counts and average
lengths of segments produced by the intersection of classified
medusahead extents and field segments, to assess the potential
under-prediction of the latter. The second set included counts
and average lengths of segments produced by the intersection of
classified medusahead patches and full transect lines, to assess the
potential over-prediction of the field segments. Because transect
locations and field-determined medusahead sections could be
affected by positioning errors and the surveyors’ judgment of
patch identities, results of this assessment were interpreted with
caution, focusing on the relative differences among classification
outcomes.

RESULTS

Classification Outcomes and Fuzzy
Accuracy of Different Methods
Medusahead classification accuracy differed among the
compared approaches (Table 1), but a number of similar
strengths and limitations were evident in their results. The
MAX metric describing the match between classification
result and medusahead as a primary class (Table 1) rarely
exceeded 50%. However, when medusahead was considered

as an acceptable, even if not the best, candidate class, these
accuracies improved, reaching 63–83% (Table 1). Producer’s
accuracy ranged from 56 to 90% in supervised methods and was
even higher in the unsupervised approaches (Table 1). Including
texture variables increased producer’s accuracy in most cases
(Table 1), highlighting the importance of texture in reducing
the error of medusahead omission at the high spatial resolution
of the aerial data. However, the effects of texture on the error
of commission were not uniform among methods (Table 1),
showing improvement mainly for SVM and unsupervised
18-cluster approaches and the opposite or no effect in other
methods.

The substantial differences of 0.26–0.44 between MAX
and RIGHT metrics (Table 1) indicate that many of the
medusahead’s overpredictions (assignments to objects with other
classes as the best candidates), were still a match for its
presence and thus informative for the purpose of detection.
However, some of the test samples dominated by medusahead
were consistently misclassified, especially those with green
barbed goatgrass and clove-brome mixtures. These outcomes
represented classification error resulting from the similarity of
these classes. Consistent with this observation, the accuracy
metrics substantially improved when the accuracies and errors
of medusahead and barbed goatgrass were combined for 7-class
supervised and hierarchical approaches (Table 2). It was also
challenging to detect medusahead in the understory of taller
senescent grasses such as wild oat because such locations often
did not appear green enough. Occasional non-uniformities in
medusahead phenology also contributed to classification errors,
with several patches observed in the field being partially or
completely senescent and thus confused with other grasses.

Differences in Classification Results
among Specific Approaches
Among specific methods, unsupervised approaches produced
the highest producer’s accuracy for medusahead test samples.
However, low values of the MAX metric show that this was
achieved at the expense of extreme overprediction: in all four
algorithms only ∼1/3 of the reference samples classified as
medusahead were actually dominated by it (Table 1). With both
spectral and spectral-texture attribute sets, clusters capturing
medusahead locations automatically included areas dominated
by vetch and other green species. No cluster in any of the
runs was unique to medusahead or other green classes alone,
which significantly limits the value of unsupervised classification
outcomes for patch distribution analysis.

In contrast, supervised single-run and hierarchical
classification outcomes had a lower proportion of test
medusahead samples classified as such based on producer’s
accuracy (Table 1), but often a higher proportion of classified
medusahead samples matching test data as the best or acceptable
class (MAX and RIGHT metrics in Table 1). Spatial distribution
of medusahead among the methods also varied (Figure 5), and
their relative performance strongly depended on the choice
of class categories and object attributes. The most balanced
results with relatively high values of both metric types (Table 1)
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FIGURE 4 | Distribution of medusahead patch segment lengths in the field transects (left) and counts of medusahead segments in four major length categories
(right).

TABLE 1 | Fuzzy accuracy metrics for medusahead classification by different methods (MAX and RIGHT metrics denote the proportions of test samples classified as
medusahead having medusahead as the best and acceptable class, respectively; Producer’s accuracy metric indicates the proportion of test samples with medusahead
as the best class which included classified medusahead).

Method With texture MAX RIGHT MAX-RIGHT Producer’s accuracy

Unsupervised, 12 clusters − 0.36 0.68 0.32 0.96

Unsupervised, 12 clusters Yes 0.34 0.70 0.36 1.00

Unsupervised, 18 clusters − 0.35 0.68 0.33 0.98

Unsupervised, 18 clusters Yes 0.35 0.71 0.36 1.00

Supervised KNN, 3 classes − 0.45 0.81 0.36 0.66

Supervised KNN, 3 classes Yes 0.44 0.77 0.33 0.64

Supervised KNN, 7 classes − 0.45 0.78 0.33 0.66

Supervised KNN, 7 classes Yes 0.45 0.77 0.33 0.68

Supervised SVM, 3 classes − 0.23 0.67 0.44 0.44

Supervised SVM, 3 classes Yes 0.40 0.66 0.26 0.56

Supervised SVM, 7 classes − 0.35 0.66 0.31 0.64

Supervised SVM, 7 classes Yes 0.45 0.73 0.28 0.90

Supervised Bayesian, 3 classes − 0.44 0.73 0.29 0.82

Supervised Bayesian, 3 classes Yes 0.44 0.71 0.27 0.88

Supervised Bayesian, 7 classes − 0.52 0.83 0.31 0.60

Supervised Bayesian, 7 classes Yes 0.48 0.76 0.32 0.76

Hierarchical with KNN Yes 0.40 0.69 0.29 0.76

Hierarchical with SVM Yes 0.33 0.63 0.30 0.58

Hierarchical with Bayesian Yes 0.46 0.76 0.30 0.74

were from the SVM algorithm using seven classes with texture
(Figure 5B) and supervised Bayesian using three classes both
with texture (Figure 5C) and without (Figure 5D). Using
three instead of seven classes reduced the MAX and producer’s
accuracy metrics (i.e., increased the errors of both omission and
commission) in KNN and SVM approaches (Table 1), indicating
that a simpler classification scheme was not necessarily beneficial
for medusahead detection. However, for Bayesian algorithm

producer’s accuracy was substantially higher in the three-class
scheme, while MAX and RIGHT were higher in the seven-class
scheme (Table 1). This result indicates that Bayesian method
produced a better match to reference samples in a simpler class
set, but a lower chance of overprediction in the seven-class
scenario.

Finally, the hierarchical approaches differed in their results,
with the highest accuracy produced with Bayesian in the
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TABLE 2 | Combined accuracies for medusahead and barbed goatgrass in supervised seven-class and hierarchical classifications.

Method With texture MAX RIGHT Producer’s

Supervised KNN, 7 classes − 0.51 0.83 0.96

Supervised KNN, 7 classes Yes 0.52 0.82 0.86

Supervised SVM, 7 classes − 0.49 0.77 0.87

Supervised SVM, 7 classes Yes 0.54 0.85 0.92

Supervised Bayesian, 7 classes − 0.62 0.90 0.73

Supervised Bayesian, 7 classes Yes 0.57 0.86 0.88

Hierarchical with KNN Yes 0.51 0.80 0.78

Hierarchical with SVM Yes 0.53 0.85 0.78

Hierarchical with Bayesian Yes 0.53 0.85 0.84

supervised classification steps (Table 1), and the lowest –
with SVM, which considerably misclassified medusahead as
barbed goatgrass at the final step (Figure 3). Not surprisingly,
SVM accuracy substantially improved when medusahead and
barbed goatgrass accuracies were considered together (Table 2),
and in these results, texture provided further improvement of
both user’s and producer’s accuracies only in case of SVM.
Notably, accuracy of the best hierarchical outcome did not
surpass the best results from the single-run classifications,
though exceeded most of them (Table 1). However, spatial
distribution of the classified medusahead with hierarchical
methods including KNN (Figure 5E) and Bayesian (Figure 5F)
algorithms highlighted important advantages of this method,
such as restriction of class assignments based on the broader
vegetation types (Figure 5A) and isolation of vetch-dominated
areas and senescent grasslands. For instance, in single-run
outcomes, misclassifications between medusahead and vetch
resulted in spillover medusahead allocations (Figures 5B–D)
within heterogeneous and other areas that were absent from the
hierarchical result (Figures 5A,E,F). Also, in contrast to single-
run methods, hierarchical classification outcomes included a
greater number of smaller-sized (<0.1 m2 in area) patches
(Figures 5E,F), likely due to the use of spectral thresholds at
intermediate steps.

Match between Classification and Field
Transect-Based Patch Dimensions
The overlay of medusahead classifications with field-based
transect segments (Figure 4) and full transect lines revealed
that performance of different methods varied among the four
length categories (Figures 5–7). The original field dataset had
almost three times as many patches ≤0.5 m in length than in
0.5–2 m and 2–7 m categories, and even fewer larger patches
>7 m (Figure 4). With all the methods, the average length of
the smallest resulting segments (≤0.5 m) was higher than in
the field alone (Figures 6A, 7A), while their counts increased
or decreased depending on the method (Figures 6E, 7E). This
result reflected classification difficulties to detect the smallest
patches visible in the field, particularly those within senescent
taller grasses. In contrast, average length and counts of the
largest segments (2–7 m and >7 m) were considerably under-
estimated compared to the field data (Figures 6C,D,G,H); and
even missed by some methods such as KNN. This outcome

was likely attributed to misclassification of some medusahead
objects along the transect lines, which, in turn, could have
resulted from the non-uniform cover and density within larger
patches.

Overall, classification methods which produced the closest
match to the field segments in a given category were not
always the same that performed best in terms of fuzzy accuracy
(Table 1). However, this result could have been affected by
positioning errors, and in the statistics for the intersections with
full transects the single-run SVM and Bayesian algorithms with
seven classes and texture and the hierarchical approach using
KNN were frequently among the closest (Figure 7). Notably,
all four unsupervised classifications showed a close match in
average length to the original patches (Figures 6A–D); however,
this occurred due to their massive overestimation of medusahead
extents, particularly for the largest patches (Figures 7D,H). The
statistics for the intersection of medusahead segments with full
transects also showed greater counts for the patches of 0.5–2 m
size (Figure 7H), which could have been caused both by the
under-estimation of larger patches and by the misclassifications
of other vegetation types as medusahead.

DISCUSSION

Strengths and Challenges in
Characterizing Site-Scale Medusahead
Distribution
The infestation and spread of noxious exotic weeds are affected
by complex interactions among plant individuals, species, site
factors and disturbance, which ultimately become manifested
in the spatial distribution and dynamics of their patches
(With, 2002; Hamada et al., 2007; Laca, 2009; Santos et al.,
2011). Comprehensive site-scale analyses of patch distributions
are thus important for addressing questions about cross-scale
interactions and critical thresholds in the invasion process to
inform ecosystem management (George, 1992; Peters et al., 2006;
Suding and Hobbs, 2009). However, as such questions continue
to emerge in various ecosystems, traditional field approaches
become increasingly limited compared to new remote sensing
opportunities for assessing these distributions at the whole-site
scales and in high spatial detail (Kellner et al., 2011; Bradley,
2014; Asner et al., 2015; Rocchini et al., 2015). Yet, this potential
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FIGURE 5 | Examples of classified medusahead using: (A) coarser level of the hierarchical classification showing potential medusahead associations with other
dominant species; (B) supervised SVM algorithm using seven vegetation classes with spectral and texture attributes; (C,D) supervised Bayesian algorithm using
three vegetation classes with and without texture attributes, respectively; and (E,F) finer level of the hierarchical classification using KNN and Bayesian supervised
classifiers, respectively.
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FIGURE 6 | Differences in average length of patch segments (A–D) and their counts (E–H) between field data and their intersections with medusahead classification
outcomes summarized for different patch sizes: (A,E)<0.5 m; (B,F) 0.5–2 m; (C,G) 2–7 m; and (D,H) >7 m.

comes at a cost of a higher landscape data complexity that needs
to be addressed in order to make reliable inference about the
distribution and ecological performance of invaders.

Our study at the California SFREC site provides the first,
to our knowledge, effort to characterize the site-scale patch
distribution of medusahead by applying OBIA to VHR visible
and near-infrared aerial data. Overall, this strategy appears
to be useful for detecting medusahead’s general spread and
identifying the hotspot locations of the larger, established patches.
Most classification methods assigned medusahead to >75%
and up to 83% of test samples where it was an acceptable
vegetation type (Table 1), which is comparable to previous
applications for medusahead detection from VHR imagery
in south central Oregon, United States, similarly relying on
medusahead phenology as a basis for detection (Ndzeidze,
2011). These results are encouraging given the challenges posed
by medusahead’s resemblance to several resident species, in
contrast to studies where unique morphological and spectral
characteristics of invaders make them easier to be identified
exclusively (Lass et al., 1996; Hunt et al., 2004; Hamada et al.,
2007; Hestir et al., 2008).

At the same time, heterogeneity in patch size and local
percent cover of medusahead had important implications for
the classification uncertainty. Small patches were not likely to
include enough pixels to display class-specific “characteristic”
texture, and thus spectral similarity between medusahead and
other vegetation was a major challenge in their representation.
Under limited dispersal, metrics of distance to larger, more easily
identifiable patches could have been used to address this issue.

However, such metrics were not as useful in this study site due
to grazing-facilitated dispersal (Chuong et al., 2016). Thus, small
patches were more likely to be missed or overestimated with most
methods, while their validation could be especially sensitive to
geolocation errors.

Dispersal also likely contributed to local mixing of
medusahead with other green and senescent vegetation
which could have affected the under-estimation of larger, less
uniform patches. This outcome raises a pertinent question of
how patches should be defined as ecologically relevant units in
such a mixed-vegetation setting (Peters et al., 2006). Medusahead
boundaries were particularly uncertain when its density was low
over relatively large extents, as in clover-brome communities
or in the understory of taller senescent grasses. Because even
0.15 m spatial resolution was not sufficient to detect individual
plants in these mixtures, any contiguous area with low densities
could hypothetically represent a single “patch,” potentially
overestimating the extent of medusahead alone and reducing the
agreement between field and remotely sensed patch sizes.

Such an overestimation should be interpreted with caution,
however, because from the management perspective it is often
desirable to assess the infestation as fully as possible. Thus,
some error in the form of “false positive” detections may
be considered less problematic than “false negatives” missing
true invader occurrences, although it still has its cost (Hulme,
2003). However, overprediction on a massive scale, such as
by the unsupervised classifications in our study, can make
the results virtually useless for patch-level inference, especially
when paralleled by misclassification of the reference medusahead
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FIGURE 7 | Differences in average length of patch segments (A–D) and their counts (E–H) between field data and the intersections of medusahead classification
outcomes with full transect lines summarized for different patch sizes: (A,E)<0.5 m; (B,F) 0.5–2 m; (C,G) 2–7 m; and (D,H) >7 m.

samples. These results also indicate that phenological contrast
may not be always a reliable basis for medusahead detection
and delineation in mixed-species grasslands (Ndzeidze, 2011),
and other green species need to be explicitly considered in these
efforts.

Practical Lessons from the Image
Analysis Methods
Our results highlight important benefits and shortcomings of the
tested OBIA methodology for very high resolution medusahead
detection. The key advantage of this framework was in the
possibility to incorporate non-spectral attributes, particularly
texture, in class discrimination. The potential utility of texture
was evident in the improvement of classification results with
some of the methods and manifested itself in two major ways.
First, the small pixel size relative to the target landscape entities
allowed to capture some of their unique intrinsic spectral
variability and thus to facilitate classification under limited
spectral data, similar to other OBIA applications in complex
vegetated landscapes (Dubuisson-Jolly and Gupta, 2000; Laliberte
and Rango, 2009; Laba et al., 2010). Second, texture was also
useful at the coarser levels of the hierarchical classification which
included smaller patches of green cover types together with their
“matrix” of senescent grasses. For canarygrass and vetch, this
strategy provided the only feasible way to isolate them from other
green vegetation types and thus to reduce the chance of false
detection outside of their primary extents.

The importance of GLCM Entropy on top of simple standard
deviation metrics further indicates that more structured local

spatial patterns provide useful indicators of vegetation types
in addition to their intrinsic variability per se (Laliberte and
Rango, 2009; Allard et al., 2012). However, even these advanced
metrics could not fully resolve the challenge of class confusion,
particularly for medusahead and barbed goatgrass that were
similar in both phenology and local pattern. Furthermore, the
intrusions of these invaders into “characteristic” local patterns of
other species, such as canarygrass, constrained the potential of
coarser-level texture metrics to inform the identity of finer-level
green patches.

The choice of a specific classification technique may also
strongly affect medusahead detection and representation
of its patch structure. Under the absence of other green
vegetation, medusahead could have been delineated using
simple thresholding, such as Otsu method (Otsu, 1979)
applied to bands or indices representing variation in greenness
(Torres-Sanchez et al., 2015). However, in this landscape
such methods would inevitably group multiple green types
together, thus overestimating the target species’ extent. Similarly,
the unsupervised k-means clustering could not effectively
discriminate among medusahead and phenologically similar
vegetation types, even with the inclusion of texture. As a
result, greener clusters overpredicted medusahead patches
by encompassing other vegetation types. This outcome is
important because unsupervised techniques may appear
tempting when the field data are limited yet high spatial
resolution allows recognizing dominant vegetation types
based on their characteristic patterns. However, discerning
medusahead patches within those types may be difficult with
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VNIR data alone, even by an expert. Thus from a practical
standpoint, unsupervised techniques may not be sufficient for
detecting individual patches, and high match of their outcomes
to reference medusahead locations may be misleading.

In contrast, supervised methods were more effective at
differentiating medusahead from other vegetation by learning
from training data. Novel machine-learning algorithms, such as
three methods used in our study, have been increasingly applied
for vegetation analyses due to their potential to outperform
traditional methods (e.g., Dronova et al., 2012; Zhang and
Xie, 2012, 2013). However, our results indicate that relative
success of these methods varied depending on a specific
classification strategy. Furthermore, all of them were constrained
by medusahead’s phenological similarity to other green species
and high intrinsic heterogeneity of vegetation types, leading to
incorrect detections of medusahead outside of its primary range,
based on the test sample accuracy. Simultaneous improvement of
MAX, RIGHT and producer’s accuracy metrics in the combined
results for medusahead and barbed goatgrass (Table 2) highlights
the mutual confusion of these grasses as a particularly critical
source of error in medusahead detection with VNIR imagery.
This issue was especially relevant to SVM classifier which relies
on the marginal contrasts among class sample distributions and
often failed to differentiate among these two species despite the
tendency to overclassify medusahead in this study.

In turn, the hierarchical approaches provided a useful
capacity to navigate the landscape complexity and to inform
local vegetation classification by its coarser-scale spectral and
textural “context.” Hierarchical approaches have often been
praised for the possibility to enhance classification accuracy
by compartmentalizing both the landscape structure and the
classification process (Krause et al., 2004; Wagner, 2009; Kamal
and Phinn, 2011). In our study, these benefits reduced the
misclassification spillover effects, though at the cost of missing
potential infestations in excluded areas. However, comparable
accuracy to single-run methods raises a question to what extent
the algorithm complexity (Figure 3) and greater cost of time for
its development were justified by the outcomes. There may be
endless possibilities for classification refinement and expansion
of such stepwise procedures, which may ultimately reduce their
reproducibility (Blanchard et al., 2011; Rokitnicki-Wojcik et al.,
2011; Allard et al., 2012). Thus, to be useful and practical for
medusahead detection and monitoring, hierarchical approaches
need to be relatively constrained and should not extensively rely
on user-defined, image-specific thresholds that may vary with
data properties.

Implications for the Future Work on
Medusahead Detection
Limitations encountered in this analysis provide important
insights into the general task of mapping invasive grasses and
future research needs for medusahead and similar species.
The key challenge related to medusahead’s similarity to
barbed goatgrass and several other species calls for exploring
alternative types of remote sensing information to enhance their
discrimination in the future. For example, some efforts have

successfully used multi-angular spectral reflectance to detect
medusahead based on its unique changes in leaf orientation
during the reproductive period (Naupari et al., 2013). However,
variable density of medusahead in our study area and its relatively
common presence in the subcanopy of taller grasses would likely
reduce the utility of structural information at this and similar
sites.

Alternatively, richer multi-spectral and hyperspectral
information should be tested for detecting medusahead with
electromagnetic regions sensitive to its unique characteristics.
With sufficiently high spatial resolution, such analyses may help
to uncover smaller patches or presence of medusahead in mixed
communities. Although instruments with such capabilities are
still not common, the emerging technology can make them
more available in the near future (Lucieer et al., 2014; Toth
and Jozkow, 2016). However, the diversity and heterogeneity
of grassland vegetation would remain an important challenge
for hyperspectral analyses due to a large and spatially varying
pool of candidate species as spectral classes. Resolving this issue
may require measures to restrict the candidate sets across the
landscape, such as with multiple-endmember spectral mixture
analysis at coarser resolutions (MESMA; Okin et al., 2001).
This task could be facilitated by cost-effective object-based
classifications of multispectral data into regions representing
potential medusahead associations with other species, such as in
our study. Thus combining our framework with hyperspectral
analyses would be a useful strategy to enhance the inference of
medusahead’s distribution and its spatial associations with other
vegetation types. This direction should be explored to better
understand the mesoscale drivers of the early-stage infestations
and to enhance the cost-effective monitoring strategies in
grasslands.

CONCLUSION

Our results indicate that applying OBIA framework to very
high resolution VNIR imagery is a useful strategy for detecting
general extents and hotspots of invasive medusahead infestations
in the mixed-cover grasslands. An important prerequisite for
such mapping is the time of high phenological contrast between
green medusahead and other dominant grasses. Among several
compared unsupervised, single-run supervised and hierarchical
classification approaches, the accuracy of medusahead detection
varied and generally increased when simple and advanced texture
metrics were used together with spectral variables. The worst
performance was shown by the unsupervised k-means clustering
algorithms that were not able to disentangle medusahead and
other green species as separate clusters and thus overestimated
the areas with potential medusahead presence. More customized
and complex hierarchical classification procedures were not able
to exceed the accuracy of the single-run methods; however, they
somewhat reduced the spillover misclassifications of medusahead
outside of its primary extents. Reducing vegetation classes to
general green and senescent vegetation categories with single-run
approaches resulted in lower accuracy compared to more specific
classes, suggesting the need to account for vegetation complexity
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in order to facilitate class discrimination. The key limitations
in this analysis included spectral confusions of medusahead
with other green vegetation types, particularly invasive barbed
goatgrass, and variable degree of mixing with other species.
These issues likely hampered the ability of most classification
methods to accurately reproduce medusahead patch structure,
particularly for the smallest patches that tended to be missed
or overestimated in size, and the largest patches that were
fragmented and/or underestimated. Collectively, results suggest
that the key benefits of the VNIR very high spatial resolution data
include the detection of local infestation hotspots and capturing
medusahead associations with other vegetation types based on
their unique textural patterns. These outcomes, in turn, offer
promise to guide and effectively constrain more specific species-
level detection from hyperspectral platforms that should be tested
in future work.
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