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Mapping and Characterization of the
fefe Gene That Controls Iron Uptake
in Melon (Cucumis melo L.)
Raghuprakash Kastoori Ramamurthy and Brian M. Waters*

Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States

Iron (Fe) deficiency in plants limits crop growth and productivity. Molecular mechanisms
that plants use to sense and respond to Fe deficiency by coordinated expression of Fe-
uptake genes are not fully understood. The C940-fe chlorotic melon (Cucumis melo)
mutant known as fefe is unable to upregulate Fe-uptake genes, however, the FeFe
gene had not been identified. In this study, we used two F2 mapping populations
to map and identify the FeFe gene as bHLH38, a homolog of subgroup Ib bHLH
genes from Arabidopsis thaliana that are involved in transcriptional regulation of Fe-
uptake genes in partnership with the FIT gene. A Ty1-copia type retrotransposon
insertion of 5.056 kb within bHLH38 is responsible for the defect in bHLH38 in fefe,
based on sequencing and expression analysis. This retrotransposon insertion results
in multiple non-functional transcripts expected to result in an altered and truncated
protein sequence. Hairy root transformation of fefe plants using wild-type bHLH38
resulted in functional complementation of the chlorotic fefe phenotype. Using a yeast-
2-hybrid assay, the transcription factor Fit interacted with the wild-type bHLH38
protein, but did not interact with the fefe bHLH38 protein, suggesting that heterodimer
formation of Fit/bHLH38 to regulate Fe-uptake genes does not occur in fefe roots. The
second subgroup Ib bHLH gene in the melon genome is not functionally redundant to
bHLH38, in contrast to Arabidopsis where four subgroup Ib bHLH genes are functionally
redundant. Whereas the Arabidopsis bHLH transcript levels are upregulated by Fe
deficiency, melon bHLH38 was not regulated at the transcript level. Thus, the fefe
mutant may provide a platform for studying bHLH38 genes and proteins from other
plant species.

Keywords: iron uptake and metabolism, bHLH transcription factor, mutant proteins, Cucumis melo, gene
expression regulation

INTRODUCTION

Iron (Fe) is crucial for plant growth, development, and productivity (Briat et al., 2015). Iron is
involved in chlorophyll synthesis and is a constituent of certain enzymes involved in metabolism
(Kobayashi and Nishizawa, 2012; Bashir and Nishizawa, 2013). Iron deficiency is a major limiting
factor for crop production, especially in alkaline soils, which occur on approximately 30% of the
earth (Chen and Barak, 1982). Plant species can be classified into two categories based on their
Fe uptake mechanisms (Marschner et al., 1986). Iron uptake in graminaceous species, known
as Strategy II, is characterized by production of high-affinity Fe(III) binding compounds called
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phytosiderophores, which are secreted into the rhizosphere to
form phytosiderophore-Fe(III) complexes. These complexes are
taken up by the root cells through a specific plasma membrane
transport system (Römheld and Marschner, 1986; Curie et al.,
2001). Iron uptake in dicotyledonous and non-graminaceous
monocots, known as Strategy I, is characterized by soil
acidification by H+-ATPase proteins, reduction of Fe(III) to
Fe(II) by ferric chelate reductase (FCR) proteins and subsequent
uptake of Fe(II) by Fe transporter proteins (Kobayashi and
Nishizawa, 2012). In Arabidopsis thaliana, H+-ATPase 2 (AHA2)
encodes the proton extrusion component (Santi and Schmidt,
2009). The primary root surface FCR is encoded by Ferric
Reduction Oxidase 2 (FRO2) (Robinson et al., 1999), and
analogous genes in cucumber (Cucumis sativus L.) and melon
(C. melo L.) are called FRO1 (Waters et al., 2007, 2014). Fe(II)
transporters include IRT1 (Varotto et al., 2002; Vert et al., 2002)
and Nramp1 (Curie et al., 2000; Castaings et al., 2016).

Strategy I Fe-uptake genes are regulated largely at the
transcriptional level. AtFRO2, AtIRT1, AtNRAMP1 and
various other genes are transcriptionally activated by the
basic helix-loop-helix (bHLH) transcription factor AtFit1
(Colangelo and Guerinot, 2004; Yuan et al., 2005). The subgroup
Ib genes of the bHLH superfamily, bHLH38, bHLH39, bHLH100
and bHLH101, are upregulated by Fe deficiency in Arabidopsis
(Wang et al., 2007; Dinneny et al., 2008; Buckhout et al., 2009;
Yang et al., 2010; Bauer and Blondet, 2011; Schuler et al., 2011;
Stein and Waters, 2012; Waters et al., 2012; Andriankaja et al.,
2014; Maurer et al., 2014). The AtFit1 protein interacts with
these subgroup Ib bHLH proteins to regulate Fe-uptake genes
as a heterodimer complex (Yuan et al., 2008; Wang et al., 2013).
The bHLH38, bHLH39, bHLH100 and bHLH101 genes are
functionally redundant in Arabidopsis, as single, double, or triple
loss-of-function bHLH mutations do not have a chlorotic Fe
deficiency phenotype under Fe sufficient conditions (Wang et al.,
2007; Sivitz et al., 2012; Andriankaja et al., 2014; Maurer et al.,
2014), except in one report (Wang et al., 2013).

The chlorotic melon C940-Fe (fefe) mutant originated
spontaneously in the melon cultivar Edisto (Nugent and Bhella,
1988). The genetic basis for fefe was retained by outcrossing
the original mutant plant to the cultivar Mainstream and
self-pollinating chlorotic mutants until the F5 generation,
resulting in the C940-fe germplasm (Nugent, 1994). The fefe
mutant plants are incapable of inducing Strategy I Fe-uptake
responses (Von Jolley et al., 1991; Welkie, 1996), and Fe-uptake
gene expression (Waters et al., 2014; Hsieh and Waters, 2016),
and cannot survive under normal culture conditions unless it is
supplemented with Fe, similar to FIT mutants in Arabidopsis. 82
genes, including Fe-uptake genes and riboflavin synthesis genes,
were not regulated by Fe-deficiency in fefe plants compared to
their WT counterpart (Waters et al., 2014; Hsieh and Waters,
2016), suggesting that the fefe gene could be a transcription
factor. Since the fefe lesion is not in the melon FIT gene,
FeFe was predicted to act upstream of FIT or as a partner
of Fit (Waters et al., 2014). The main objective of this work
is to map and characterize the fefe gene. We used genetic,
genomic, transcriptomic and molecular approaches to map
and functionally characterize the fefe gene. The results of this

research will provide increased understanding of Fe-homeostasis
in Strategy I plant species.

MATERIALS AND METHODS

Genetic Mapping
An F2 mapping population consisted of 269 individuals from
a cross between “snake melon” (PI 435288) and C940-fe. The
population was genotyped and scored, and the chlorosis trait
associated with the fefe mutation was mapped to an 8 cM region
of linkage group 8 (LG8) (Ramamurthy and Waters, 2015). To
fine map the fefe mutation, a second, 288 individual F2 mapping
population was developed from a cross between “pocket melon”
(PI 536481) and C940-fe. This F2 mapping population was grown
in hydroponics as described below prior to scoring leaf chlorosis
in F2 plants as “0” (chlorotic) or “1” (normal). The normal and
chlorotic fefe mutant F2 plants were distinguishable 1–2 weeks
after planting in nutrient solution. DNA was isolated from a
single young leaf from each plant (Kang et al., 1998), and quantity
and purity of DNA was assessed using spectrophotometry at 260
and 280 nm. DNA was diluted to 25 ng/µl and stored at −20◦C
until genotyping.

A total of 112 SSR markers for LG8 from the consensus
genetic map (Diaz et al., 2011) and markers for LG8 provided
by Syngenta on the ICUGI website1 were tested, and in total, 27
markers were polymorphic and were used for genotyping the F2
mapping population (Table 1). PCR reactions were performed in
a final volume of 10 µl with 1× Taq buffer [(16 mM (NH4)2SO4,
67 mM Tris–HCL (pH 8.8 at 25◦C), 0.1% stabilizer], 2 mM
MgCl2, 0.15 mM dNTP, 1 µM each primer, 0.2 U Taq DNA
polymerase (Bioline USA Inc., Taunton, MA, United States), and
20 ng DNA. The cycling conditions were: an initial cycle at
94◦C for 3 min, followed by 40 cycles at 94◦C, 30 s, 55–58◦C,
30 s and 72◦C, 30 s, and a final extension step at 72◦C, 5 min.
PCR products were visualized with UV light after electrophoresis
in 3% superfine resolution agarose (Amresco LLC, Solon, OH,
United States) gels with 1× TBE (0.9 M Tris-borate, 0.002 M
EDTA, pH 8.0), stained with ethidium bromide.

Phenotype scores for 288 pocket melon × C940-fe F2
individuals and their corresponding genotypes across 27 loci
in population were entered into a spreadsheet as an input
file for QTL analysis in R/qtl software (Broman et al., 2003).
Genetic positions were deduced for markers that were not
present in the consensus map (from Syngenta and Li et al.,
2011). Data checking steps for genotyping were performed using
standard R/qtl functions (Broman et al., 2003). To obtain a better
resolution of the fefe locus, a joint linkage map consisting of
557 individuals in both snake melon X fefe and pocket melon
X fefe populations was constructed using polymorphic markers
(N = 35) on LG8. For joint map construction, genotypic (LG8)
and phenotypic information from the two mapping populations
was input for QTL analysis in R/qtl software (Broman et al.,
2003). The genetic maps for individual and joint analysis were
constructed using est.rf and est.map functions of R/qtl. Interval

1http://www.icugi.org/cgi-bin/cmap/map_set_info?species_acc=CM
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TABLE 1 | Linkage mapping of the fefe gene using two different F2 mapping populations and a joint linkage map.

F2-population Na LG Number of markers Map length (cM) Position of peak (cM) Linked marker LOD PVEb

Snake melon X fefe population (I) 269 8 14 173 81 CMN038 53.5 59

Pocket melon X fefe population (II) 288 8 27 96 79 CMACC146 62.4 63

Joint map (I+II) 557 8 35 121 81 CMN038 115.5 62

aN- Number of individuals, bPVE- Percentage of phenotypic variation explained by each locus.

mapping was performed using the “scanone” function which
detects a single QTL by performing genome wide scan with
possible allowance for covariates, with a binary model to analyze
the binary phenotype (i.e., fefe or FeFe).

Growing Condition of Plants Used for
RNA-seq
Seeds were imbibed in germination paper soaked with 0.2 mM
CaSO4 for 4 days, then were transferred to hydroponic
containers. Seedlings were placed in sponge holders in lids of
black plastic containers, four plants per 750 ml solution, with
continuous aeration. The nutrient solution had the following
composition: 0.8 mM KNO3, 0.4 mM Ca(NO3)2, 0.3 mM
NH4H2PO4, 0.2 mM MgSO4, 25 µM CaCl2, 25 µM H3BO3,
2 µM MnCl2, 2 µM ZnSO4, 0.5 µM CuSO4, 0.5 µM
Na2MoO4, 100 mM MES buffer (pH 5.5) and 10 µM Sprint
138 (Becker-Underwood, Ames, IA, United States). Plants were
grown in a growth chamber with lighting provided by a mixture
of incandescent and fluorescent sources at 250 µmol m-2 s-1

for a photoperiod of 16 h (on at 06:00 and off at 22:00). For
the +/- Fe RNA-seq experiment, Edisto and fefe mutants were
pretreated for 9 days on -Cu solution, and fefe mutants that had
green leaves were used for treatments of 3 days duration in -Fe
nutrient solution or 20 µM Sprint 138. The purpose for the -Cu
pretreatment was to use only healthy fefe plants [since the fefe
chlorotic phenotype can be rescued using -Cu treatment (Waters
et al., 2014)].

RNA-seq and Differential Expression
Analysis
Total RNA was extracted from roots using the Plant RNeasy
kit (Qiagen, Hilden, Germany). RNA quality and concentration
was determined by UV spectrophotometry. Sources of RNA
samples were as described in the previous section. RNA-seq was
performed at the University of Nebraska Medical Center Next
Generation Sequencing Core Facility using an Illumina HiSeq
2000 instrument. Barcoded libraries were constructed from 3 µg
of root total RNA, with three biological replicate libraries per
treatment. Replicates were run in separate lanes, with a total of
six samples from different treatments in each lane. The short
reads are available as NCBI BioProject: PRJNA3718262. Because
melon and cucumber genomes are orthologous and the cucumber
genome sequence and annotation is complete (Huang et al., 2009;
González et al., 2010), the cucumber transcriptome was used as a
reference for read mapping. Trimming of primers and adapters
was performed using Trimmomatic (V0.32), read mapping was

2https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA371826&go=go

performed using BOWTIE2 (Langmead and Salzberg, 2012)
with –local-N1 option, conversion of mapped reads into sam
format was performed using SAMtools (Li et al., 2009) and
extraction of read counts from sam files was performed using
perl scripts, as previously reported (Waters et al., 2014). For
gene expression analysis, the data matrix was imported into R
and analyzed using the Bioconductor package DESeq (Anders
and Huber, 2010). The count data was normalized for library
size and then transformed using variance stabilization. Poisson
distributions of normalized counts for each transcript were
compared for different conditions using a negative binomial test.
Differential expression was called for genes with a false discovery
rate moderated q-value < 0.05 (Benjamini and Hochberg, 1995),
and also showed a 1.0 log fold-change in expression and >10
reads in at least one treatment. De novo reconstruction of
the bHLH38 transcript was performed using Trinity software
(V.r20131110) (Haas et al., 2013). IGVviewer 2.33 was used to
view the reads that are mapped onto the reference sequence as
applicable.

Reverse Transcription-PCR
One microgram of DNase treated RNA (RNase-free DNase I,
New England Biolabs, Ipswich, MA, United States) from roots
of -Fe and -Fe/-Cu treated Edisto and fefe and from eight
normal and eight mutant snake melon X fefe F2 roots was used
for cDNA synthesis, using the High Capacity cDNA Reverse
Transcription kit (ABI, Foster City, CA, United States) with
random hexamers at 2.5 µM final concentration. The cDNA
templates were PCR amplified using primers spanning the
insertion: fefe_mrkr_F-5′-AGAAACTGAGTAATCCGGCGA-3′
and fefe_mrkr_R-5′ TCGACTTGCAGAAATTATCGA-3′.

Edisto bHLH38 Cloning and Hairy Root
Transformation
Edisto bHLH38 (MELO3C019065) full length genomic
sequence (2.334 kb promoter +2.32 kb gene) was
PCR amplified using the primers bHLH38_Promoter_F
5′-TCCCTTTGAACCAATGATGG-3′ and bHLH38_XbaI_R
5′-GCATGATCTAGAACACATTGATATATATGGTTAATAA-3′.
Phusion High-fidelity DNA polymerase (Thermo Scientific) was
used for PCR amplification of bHLH38 following manufacturer’s
instructions. An Xba1 restriction site was present in the
promoter region at position 379 bp of 2.334 kb, and an XbaI
site was in the reverse primer, underlined above. After XbaI
restriction (NEB Biolabs), the resulting bHLH38 Xba1 fragment
was cloned into the pHairyRed (Lin et al., 2011) destination

3http://www.broadinstitute.org/igv
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FIGURE 1 | Leaf color phenotypes of fefe (chlorotic) and wild-type Edisto plants grown under different conditions in this study. (A) Pocket melon X fefe F2 plants
grown in hydroponics. Scoring for chlorosis phenotype is indicated by N (normal) or C (chlorotic); (B) Greenhouse grown plants cultivated in commercial potting mix.
(C) Field grown fefe mutant plant; (D) Field grown wild-type Edisto plant.

vector. The Edisto-bHLH38 genomic construct was transformed
into the K599 strain of Agrobacterium rhizogenes (generously
provided by Dr. Christopher Taylor, The Ohio State University)
using freeze-thaw transformation (Wise et al., 2006). K599
containing pHairyRed-Edisto bHLH38 genomic fragment or
K599 containing pHairyRed (empty vector) was grown in YEP
plates with streptomycin and kanamycin selection. Agrobacteria
suspension was prepared as previously described (Kereszt et al.,
2007), and plug preparation and inoculation of Agrobacteria
into rock wool plugs was performed as described (Chabaud
et al., 2006), except we used hydroponic liquid media (described
above) instead of half-strength MS. Stem sections with one or two
axillary nodes from 1-month-old fefe plants were cut and inserted
into the hole in the rock wool plug, and the plants were covered
in a humid chamber for 4–5 days under ambient light. The humid
chamber was opened for dehydration treatment for several hours
until the leaves were not turgid, and the humid chamber was
closed. Hairy roots developed 2–3 weeks after transformation.
Transgenic roots were distinguished from non-transgenic roots,
based on the presence of DsRed fluorescence. Z-series images
were acquired on a Nikon A1+ CLSM mounted on a Nikon
90i compound microscope. Excitation of DsRed was at 561 nm
and emission was detected at 575–625 nm. Image series were
projected to form a single image. The transmitted light images

were simultaneously acquired, but only a single image plane is
presented. At least two biological experiments were performed
to obtain the transgenic plants.

Ferric-Chelate Reductase Activity
Root ferric reductase assays were performed for 50 min
on transgenic roots (positive for DsRed fluorescence) and
non-transgenic roots of fefe plants that were grown on
-Fe solution for 2 days, using 20 ml of an assay solution. The
assay solution was composed of 0.1 mM ferrozine (3-(2-pyridyl)-
5,6-diphenyl-1,2,4-triazine-4′,4′-disulfonic acid sodium salt;
Sigma–Aldrich), 0.1 mM Fe(III)-EDTA and 1 mM MES buffer
(pH 5.5) (Fisher Scientific, Fair Lawn, NJ, United States). Change
of assay solution from colorless to purple indicates ferric-chelate
reductase activity.

Yeast 2-Hybrid Interactions
The MatchmakerTM GAL4 Two-Hybrid System 3 (Clontech)
was used for the yeast 2-hybrid experiment. Coding sequences
for Edisto FIT, Edisto bHLH38 and the fefe bHLH38 with its
14 bp insertion were amplified from cDNA and were cloned into
pGEM-T vector and were later cloned as EcoRI fragment into
pGADT7 and pGBKT7 yeast two-hybrid vectors. Drop assays
were performed by growing AH109 transformants on synthetic
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dropout (SD) liquid media without leucine (L) and tryptophan
(T) at 29◦C until an OD600 of >0.5 is reached. Cultures were then
diluted to an OD600 of 0.1 and diluted in a 10× dilution series. For
each dilution, 5 µl of cell suspension was spotted on SD media
without leucine, tryptophan, histidine (H) and adenine (A).

RESULTS

FeFe Gene Mapping
The chlorotic phenotype (Figure 1) mapped to a single locus
on LG8 using the snake melon X fefe F2 mapping population
(Ramamurthy and Waters, 2015) (Figure 2A). Using Syngenta
marker positions, the fefe locus was mapped to a 6 cM
(2-LOD support) (Figure 2A) region in the snake melon X
fefe population. The percentage of variation explained by LG8
locus was approximately 59% (Figure 2A and Table 1). Due to
the low polymorphism rate of 12% in the snake melon X fefe
population, we could not further narrow down the fefe genetic
interval with the markers available. Therefore, we also mapped
the chlorosis phenotype in a pocket melon X fefe F2 mapping
population. Of 288 F2 plants, 196 had normal green leaves and
92 had chlorotic leaves. 27 markers on LG8 were polymorphic
in the parents. The distribution of the parental genotypes in the
F2 population was almost equal based on 27 polymorphic loci on
LG8, with 20.7% pocket melon genotype, 30.1% C940-fe genotype
and 42.2% heterozygous. The fefe locus was mapped to a 4 cM
interval, with a LOD score of 62 (Figure 2B and Table 1), with
63% of the variation explained by the peak (Table 1). Since both
populations in this study had a common parent, C940-fe (fefe),
we used joint linkage analysis to refine the fefe genetic interval
to a 1 cM peak on LG8 with a LOD score of 115 (Figure 2C
and Supplementary Data S1A). The closest marker at the peak
explained∼61% of the variation (Figure 2C and Table 1).

FeFe Candidate Genes
Since the fefe gene was predicted to be a transcription factor
(Waters et al., 2014), we explored possible candidates within
the 1 cM confidence interval. The genetic interval spanning
the fefe gene, between the markers DM0766 and DM0640,
corresponded to two scaffolds (scaffold0068 and scaffold0036) of
the melon genome draft (Garcia-Mas et al., 2012). There were
186 predicted genes (Supplementary Data S1B) in this interval.
There were six genes annotated as transcription factors in the
mapped interval, based on homology to Arabidopsis thaliana:
AT3G56970.1 BHLH038; AT5G04150.1 BHLH101; AT3G57390.2
AGL18; AT5G62470.1 MYB96; AT3G57040.1 ARR9 (RESPONSE
REGULATOR 9); and AT3G10760.1 myb family transcription
factor. We ruled out AGL18, MYB96 and ARR9 as unlikely
candidates for fefe based on their function (To et al., 2004; Verelst
et al., 2007; Seo et al., 2011). The AT3G10760.1 myb family
transcription factor is putatively involved in the fruit ripening
process (Pillet et al., 2015). Two transcription factors in the
interval, bHLH38 and bHLH101, are associated with regulation
of Fe-uptake genes (Wang et al., 2007). To determine if these
genes were polymorphic between fefe and WT Edisto, or were
differentially regulated, we sequenced the cDNAs and observed

FIGURE 2 | Linkage mapping of the fefe gene on chromosome 8. Ticks inside
X-axis represent the position of markers. The blue and red dashed lines
represent the permutation test specified LOD threshold at p-values of 0.05
and 0.01, respectively. The green bar represents Bayesian confidence interval
associated with the fefe locus. (A) Interval mapping analysis using snake
melon X fefe F2 (n = 269); (B) Interval mapping analysis using pocket melon X
fefe F2 (n = 288); (C) Interval mapping analysis using joint linkage map (both
populations) consisting of 557 F2 individuals.
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FIGURE 3 | Gene expression (normalized read counts ± SD) of bHLH38 in wild-types Edisto and snake melon and the fefe mutant under Fe deficient and Fe
sufficient control conditions in two independent RNA-seq experiments. Experiment 1 is from Waters et al. (2014); experiment 2 is from this study. ∗ Indicates
significant difference between Fe-deficient and control treatment means at FDR < 0.05.

FIGURE 4 | RNA-seq reads of melon bHLH38 mapped onto cucumber reference transcript Csa4M434480.1. (A) Read mapping of bHLH38 full length transcript in
Edisto and fefe under Fe sufficient or deficient conditions; (B) Detail of sequence around site of the abrupt decrease in read counts in fefe bHLH38.

the normalized RNA-seq read counts from two independent
experiments. Sequencing the bHLH101 gene showed that it
was not polymorphic between the mutant and WT plants. The
expression of bHLH101 was extremely low in both WT and
mutant plants, ranging from 0 to 3 total raw read counts
(compared to average read counts of approximately 450) under

Fe replete or Fe-deficient conditions, suggesting that bHLH101
can be considered not expressed. The bHLH38 transcript levels
were much higher than bHLH101 both in WT and fefe, ranging
from 965 to 3979 read counts under Fe replete or deficient
conditions, respectively. Transcript abundance did not change
significantly under Fe deficiency in Edisto and snake melon
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FIGURE 5 | Reverse-transcriptase PCR of bHLH38 using primers that span the retrotransposon insertion site. (A) Transcripts from roots of multiple individual plants
of fefe or Edisto grown under Fe deficiency or simultaneous Fe and Cu deficiency; (B) Transcripts from roots of multiple individual plants of the snake melon X fefe F2

mapping population scored as normal leaf color (left) or chlorotic, indicating fefe mutant (right).

WT roots. Although the trend of Fe regulation appeared similar
in WT and fefe, the fefe bHLH38 expression differed in the
two RNA-seq experiments (Figure 3). In the first experiment,
bHLH38 was not significantly up-regulated by Fe deficiency,
but in the second experiment, bHLH38 abundance was about
fourfold higher under Fe deficiency due mainly to an unusually
low read count in the +Fe fefe sample. We also checked
abundance of bHLH38 transcript by RT-PCR (data not shown)
and confirmed that the transcript is not regulated by Fe
deficiency.

To better understand the expression of the bHLH38 gene
in fefe and WT plants, we visualized read mapping of fefe
and Edisto bHLH38 against the reference cucumber CsbHLH38
transcript (Csa4M434480.1). The reads mapped uniformly to
the reference CsbHLH38 transcript in Edisto (Figure 4A), but
the fefe read counts were much higher at the beginning of
the transcript and decreased abruptly at position 370 bp of
the reference transcript (Figure 4B), for both Fe deficient
and Fe sufficient roots, suggesting the presence of a transcript
variant. We performed de novo assembly of the Edisto and
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FIGURE 6 | PCR amplification of genomic bHLH38 from wild-type varieties and the fefe mutant. (A) From left to right, two individual plants of the wild-type Edisto,
fefe mutant, wild-type Mainstream, wild-type snake melon, and two individual plants of the wild-type pocket melon; (B) Diagram depicting the melon bHLH38 gene
structure and insertion site of the 5.057 kb retrotransposon in fefe bHLH38 (triangle). Arrows indicate the location of primers used for amplification of genomic
bHLH38 in (A).

fefe transcriptomes to reconstruct the bHLH38 transcripts. The
assembled WT bHLH038 transcript was 943 bp, which includes
predicted start and stop codons to include 309 deduced amino
acids. The de novo assembly of the fefe mutant resulted in eight
unique transcripts, which were longer than the WT transcript
by 277–4789 bp. The extra length occurred beginning at 549 bp
in the WT bHLH038 transcript, where we saw read mapping
anomalies relative to the cucumber transcript. Both before
549 bp and after the insertion, from 550 bp onward, the fefe
transcript sequence matched the WT transcript sequence. Using
RT-PCR with primers spanning the insertion site to visualize
cDNA, a single band was present in Edisto, whereas the fefe
parent contained multiple bands, in agreement with the de novo
assembly results, in -Fe, and -Fe/-Cu treatments (Figure 5A).

Similar to Fe deficiency, Cu deficiency did not change the
bHLH38 banding pattern. These results suggest that the fefe
mutant was producing multiple insertion-containing bHLH38
transcripts, or one large transcript that had been differently or
partially spliced. A cDNA laddering pattern was also observed
in the snake melon X fefe F2 mapping population (Figure 5B),
but only in individual plants with the chlorotic fefe phenotype.
The fefe cDNA band that was closest in size to the Edisto
bHLH38 cDNA was sequenced, to reveal the presence of a 14 bp
insertion. Relative to the start codon, the fefe transcript had a
reading frame shift followed by a premature in-frame stop codon,
and would produce a different deduced amino acid sequence
(Supplementary Data S2) that could negatively affect protein
structure and function.
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FIGURE 7 | Complementation of the chlorotic fefe phenotype by hairy root transformation. (A) Plant mock-transformed with Agrobacterium rhizogenes K599,
transformed with empty pHairyRed vector, and transformed with pHairyRed-Edisto-bHLH038. (B–D) DsRed expression in hairy roots of fefe plants viewed by
confocal microscopy, (B) mock transformation, (C) pHairyRed and (D) pHairyRed-Edisto-bHLH038. Bright field view of same roots in (B–D); (E) mock
transformation, (F) pHairyRed and (G) pHairyRed-Edisto-bHLH038 roots; (H) Ferric chelate reductase activity of rescued fefe plant roots transformed with
pHairyRed-Edisto-bHLH38 compared to non-transgenic roots.

To further investigate the source of the transcript insertions
in fefe bHLH38, we amplified genomic bHLH38 in normal and
fefe plants by PCR and sequenced the products. All WT lines
produced an amplicon of 1.019 kb, while fefe produced a 6.076 kb
fragment (Figure 6). The fefe bHLH38 contained a 5.057 kb
insertion relative to WT Edisto (Supplementary Data S3). The
sequence of the insertion had identical 278 bp sequences at both
extremes of the insertion (Supplementary Data S3 and Figure S1).
A BLAST search of the fefe genomic bHLH38 sequence against the
melon reference genome had hits to six melon genomic scaffolds,
unassembled sequences and scaffold 36. Length of the hits for fefe
bHLH38 using BLAST search against the melon genome ranged
between 272 and 1368 bp, and the total scores from BLAST search
ranged between 608 and 2510. An NCBI conserved domain
search identified the insertion as a long terminal repeat (LTR)
Ty1-copia type retrotransposon. The fefe bHLH38 contained
helix-loop-helix, polypurine tract, RNAseH1-RT-Ty1, Reverse
transcriptase, Integrase, gag-polypeptide and primer binding site

of LTR-copia type domains (Supplementary Figure S1). There
were also large genomic bands in WTs Mainstream and pocket
melon, of a similar but not identical size as the band in fefe
(Figure 6). From the banding pattern and BLAST search, it
appears that the retrotransposon in fefe-bHLH38 could be present
in other loci in the melon genome, potentially as an intact
sequence. A global BLAST search for sequences similar to fefe
bHLH38 in the NCBI nucleotide database indicated that the fefe
bHLH38 retrotransposon was specific to melon.

Complementation of the fefe Phenotype
Using Hairy Root Transformation
Since the FeFe gene is necessary for normal plant growth and Fe
uptake only in roots (Waters et al., 2014), we tested whether the
chlorotic fefe phenotype could be complemented with a normal
copy of bHLH38. We transformed fefe plants with Agrobacterium
rhizogenes to generate hairy roots containing the WT bHLH38

Frontiers in Plant Science | www.frontiersin.org 9 June 2017 | Volume 8 | Article 1003

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01003 June 12, 2017 Time: 17:38 # 10

Ramamurthy and Waters Characterization of the Melon fefe Gene

FIGURE 8 | Yeast 2-hybrid assay of bHLH38 and Fit in Edisto (ed) and fefe plated on SD media without Leu, Trp, His, and Ade in a serial dilution series.
pAD-FIT+pBD ed-bHLH38 tests the interaction of FIT with Edisto-bHLH38, pAD-FIT+pBD fefe-bHLH38 tests the interaction of FIT with fefe-bHLH38, pAD-FIT+pBD
and pAD+pBD-FIT are controls to test if FIT is capable of auto-activation, pAD-FIT+pBD-FIT is a test to check homodimer formation of FIT. pAD-T7-T+pBD-T7-53 is
a positive control for the assay.

gene (Figure 7). The chlorotic phenotype of the fefe plants was
rescued in the pHairyRed-Edisto-bHLH38 treated plants, but
not in mock or empty vector treated plants (Figure 7A). The
rescued fefe plant roots were positive for the dsRed reporter gene
(Figures 7B–G), and were able to initiate ferric reductase activity
under Fe deficiency (Figure 7H), suggesting that normal root Fe
uptake responses were recovered in the transgenic fefe plant roots
expressing Edisto-bHLH38.

Yeast Two-hybrid Assays for
Protein–Protein Interactions
To determine whether the bHLH38 protein interacts with
the Fit protein, as it does in Arabidopsis (Yuan et al.,
2008), we performed a yeast two-hybrid experiment. Yeast
cells transformed with different combinations of bait and
prey plasmids were tested for auxotrophic growth. The
melon Fit protein tested positive for interacting with Edisto
bHLH38, but did not interact with fefe bHLH38 (Figure 8).
The Edisto bHLH38 protein was capable of forming a
homodimer, although yeast growth was less robust than in
other combinations (Supplementary Figure S2A). The fefe
bHLH38 did not form homodimers (Supplementary Figure
S2B). Yeast growth suggested that there was some degree of
interaction between Edisto bHLH38 and fefe bHLH38. This
test could not be used to determine whether melon Fit forms

a homodimer, since Fit was capable of auto-activation, as
indicated by growth of yeast transformed with pAD+pBD-FIT
(Figure 8).

DISCUSSION

In this paper, we seek new understanding of how Strategy
I plants respond to Fe-deficiency stress by mapping the fefe
gene that controls Fe uptake in melon. We mapped the
fefe gene to bHLH38, which contains a 5.056 kb Ty1-copia
type retrotransposon insertion. Multiple length transcripts
were observed in fefe-bHLH38 (Figures 5A,B), apparently
due to the full retrotransposon being incorporated into the
transcript and partially spliced out to varying degrees. The
altered RNA-seq read mapping we observed, with about three
times higher reads before the retrotransposon insertion site in
fefe-bHLH38 (Figures 3, 4), may arise from promoters within
LTR regions of LTR retrotransposons (Kumar and Bennetzen,
1999). Coincidentally, the loss of Fe homeostasis in the tomato
fer mutant (Ling et al., 2002) is due to an insertion of a copia-type
retrotransposon, called Rider, in the first exon of the FER gene
(Cheng et al., 2009). Rider replicates by reverse transcribing an
aberrant and novel cDNA that can include nearby genes, and
this novel cDNA is then integrated into a new location in the
genome (Lisch, 2012). We saw evidence for a pseudogene in
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some varieties of melon (Mainstream and pocket melon) that was
amplified by PCR primers located in the exons of the bHLH38
gene (Figure 6), suggesting that the retrotransposon in fefe exists
in other loci in the melon genome. To our knowledge this
retrotransposon has not been described in detail, since BLAST
searches of the reference melon genome only hit unassembled
scaffolds, however, it could be an important feature in melon
evolution and diversity (Kumar and Bennetzen, 1999).

Regulation of Fe-uptake genes, such as FRO1, Nramp1, and
IRT1, was abolished in the fefe mutant (Waters et al., 2014),
similar to the Fit mutant of Arabidopsis (Colangelo and Guerinot,
2004) and the fer mutant of tomato (Ling et al., 2002), however,
the lesion in the fefe mutant is not in the FIT gene (Waters et al.,
2014). The formation of a heterodimer between the Fit protein
and subgroup Ib bHLH proteins is a hallmark of transcriptional
regulation of Fe-uptake genes (Yuan et al., 2008; Du et al., 2015).
The fefe-bHLH38 transcript that was closest in size to the normal
bHLH38 transcript would be translated to a protein that has an
altered sequence after the first 120 aa, and terminates at 144 aa
instead of 249 aa, due to the 14-bp insertion (Supplementary
Data S2). Using the yeast 2-hybrid technique, the WT-bHLH38
interacted with the Fit protein, however, the fefe-bHLH38 protein
did not form a heterodimer with the Fit protein (Figure 8). We
propose that this lack of Fit-bHLH38 heterodimer formation is
the cause of abolished upregulation of Fe-uptake gene expression
in fefe. The severity of the fefe phenotype under Fe sufficient
conditions from mutation of a single bHLH gene is surprising
considering that in Arabidopsis, single, double, or even triple
bHLH mutants (with bHLH38 or bHLH39 remaining and the
other three subgroup Ib bHLH genes knocked out) had no Fe
deficiency phenotype under Fe sufficient conditions (Wang et al.,
2007; Sivitz et al., 2012; Andriankaja et al., 2014; Maurer et al.,
2014), suggesting that one of the four bHLH proteins is adequate
for Fe-uptake gene regulation. The tomato genome has three
subgroup Ib bHLH genes (Sun et al., 2015), and the soybean
genome has two subgroup Ib bHLH genes. A 12 bp deletion
in one of the soybean bHLH genes was suggested to cause
increased sensitivity to alkalinity-induced Fe deficiency chlorosis
(Peiffer et al., 2012). But, like the Arabidopsis bHLH mutants,
the soybean lines with this deletion are not chlorotic under
Fe sufficient conditions (O’Rourke et al., 2007). A knockout
line for the soybean bHLH genes has not been reported, and
quadruple Arabidopsis bHLH lines have not been generated. So
far, fefe is the only subgroup Ib bHLH mutant with an Fe uptake
phenotype as severe as the fit or fer mutants. While the melon
genome has a second subgroup Ib bHLH gene, bHLH101 was
not polymorphic between WT and the fefe mutant, its transcript
abundance was strikingly low, which together with genetic results
suggests that melon bHLH101 is not functionally redundant with
melon bHLH38.

Another key difference between melon bHLH38 and subgroup
Ib bHLH genes in other plant species is their transcriptional
regulation in roots by Fe status. In Arabidopsis and tomato,
subgroup Ib bHLH genes are upregulated upon Fe deficiency
in roots (Wang et al., 2007; Dinneny et al., 2008; Buckhout
et al., 2009; Yang et al., 2010; Bauer and Blondet, 2011;
Schuler et al., 2011; Stein and Waters, 2012; Waters et al., 2012;

Andriankaja et al., 2014; Maurer et al., 2014; Sun et al., 2015).
However, bHLH38 was not upregulated in Fe deficient melon
roots (Figure 3; Waters et al., 2014; Hsieh and Waters,
2016). Copper deficiency also did not change melon bHLH38
expression, or its transcript pattern in fefe (Figure 5A), suggesting
that the rescue of the chlorotic phenotype of fefe under
simultaneous Fe and Cu deficiency (Waters et al., 2014) was
not due to a change in bHLH38 expression, splicing, or protein
function. However, since the bHLH38 protein is crucial to
Fe homeostasis, its regulation may be entirely at the post-
transcriptional or post-translational level. Arabidopsis FIT is
regulated at both the transcriptional and post-transcriptional
levels (Meiser et al., 2011; Sivitz et al., 2011).

We confirmed that the fefe defect in root Fe-uptake is due
to loss of function of bHLH38 by complementation of the fefe
chlorotic phenotype with WT-bHLH38 (Figure 7). The mapping
and identification of the fefe mutation as bHLH38 has given
new insight into regulation of Fe homeostasis in Strategy I
plants. The fefe mutant may prove to be a valuable platform
for studying bHLH genes and proteins from other plant species,
since it can be complemented by hairy root transformation.
Further characterization of bHLH38 protein regulation in melon
is a needed future direction to help provide understanding of
Fe-uptake control mechanisms.
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