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The mRNA translation machinery directs protein production, and thus cell growth,
according to prevailing cellular and environmental conditions. The target of rapamycin
(TOR) signaling pathway—a major growth-related pathway—plays a pivotal role in
optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled
cell proliferation and the development of severe diseases. In plants, several signaling
pathways sensitive to environmental changes, hormones, and pathogens have been
implicated in post-transcriptional control, and thus far phytohormones have attracted
most attention as TOR upstream regulators in plants. Recent data have suggested that
the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs)
from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor
upstream open reading frames (uORFs) within their 5′-untranslated regions (5′-UTRs).
This review will summarize recent advances in translational regulation of a specific set of
uORF-containing mRNAs that encode regulatory proteins—transcription factors, protein
kinases and other cellular controllers—and how their control can impact plant growth
and development.

Keywords: target of rapamycin TOR, small GTPases ROPs, S6K1, endosomes, signal transduction, translation-
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INTRODUCTION

Plant hormones (phytohormones) trigger complex growth and developmental processes. One
of the most important plant growth regulators is auxin (from the Greek “auxein” meaning
to enlarge/grow)—a small signaling molecule with great ability to induce growth responses
throughout the plant life cycle. The auxin signaling pathway modulates diverse aspects of plant
growth and development, such as responses to light and gravity, organ patterning, general root
and shoot architecture and vascular development. Auxin elicits responses—cell division and
expansion—depending on the cellular and developmental context in which it is perceived. The core
components of auxin signaling differ in their expression patterns due to transcriptional and post-
transcriptional regulation. Here, we review recent data describing auxin signaling in the cytoplasm
of plant cells, and how auxin perception leads to activation of target of rapamycin (TOR), which
promotes a protein synthesis pathway. In eukaryotes, TOR signaling is a key signaling pathway
connecting environmental signal perception to growth decisions. Thus, TOR is a sensor that up-
regulates cell growth and proliferation but also limits life span in yeast, mammals and plants.
A hypothetical scheme linking auxin and TOR signaling with the G-protein (guanine nucleotide-
binding proteins) family is described. This observation makes TOR an important part of the auxin
signaling pathway that up-regulates translation, and, thus, plant growth and development.
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It is clear that many environmental cues, such as nutrient
and energy availability, instruct phytohormones to control plant
growth, making it a very plastic process. We decided to travel
along the recently discovered pathway from auxin to TOR via a
small GTPase, ROP2, which ends by up-regulating production of
critical effector proteins using a post-transcriptional mechanism
via targeting of a specific translation initiation pathway:
reinitiation.

AUXIN PERCEPTION AND SIGNALING

Auxin distribution is highly regulated in plants. Local auxin
maxima and concentration gradients drive cell differentiation
and embryogenesis. Auxin patterns form dynamically in response
to environmental inputs (e.g., light and gravity). Thus auxin
signal is converted into context-dependent developmental
responses. Auxin perception is believed to be mediated by
receptors that physically bind auxin, allowing it to travel from
outside the cell into the cell cytoplasm, where it then initiates
signal transduction cascades that trigger specific physiological
auxin responses.

The best-characterized auxin pathway targets the nucleus
(Mockaitis and Estelle, 2008), whereas the cytoplasmic role of
auxin remains unexplored despite the existence of cytoplasmic
auxin networks in the ER and plasma membranes (PMs)
(Friml and Jones, 2010). The classical nuclear auxin signaling
pathway relies on a molecular mechanism of action via
auxin-dependent degradation of the transcriptional repressors
Aux/IAA, which leads to gene activation outputs depending
on the cellular spatio-temporal context. This degradation is
dependent on the ubiquitin ligase Skp1-Cullin-F-box (SCF)TIR1

protein complex, where the associated F-box protein TIR1
confers target specificity (Lavy and Estelle, 2016). In the
presence of auxin, the F-box protein TIR1 binds to Aux/IAA,
resulting in the ubiquitination and degradation of the latter
(Gray et al., 2001). By filling in a hydrophobic cavity at the
protein interface, auxin enhances TIR1–substrate interactions
by acting as a “molecular glue” (Tan et al., 2007). In this
context, F-box protein TIR1 is a true auxin receptor, mediating
transcriptional responses to auxin in plants (Dharmasiri et al.,
2005; Kepinski and Leyser, 2005). Each TIR receptor targets
specific Aux/IAA proteins for degradation (Parry et al., 2009),
thus switching on transcription of a multitude of genes,
including auxin response factors (ARFs). The ARF transcription
factors (23 members in Arabidopsis) contain DNA binding
domains and interact specifically with tandem repeats, known
as Auxin-Responsive Elements (AuxREs; Ulmasov et al., 1995,
1997a,b) that serve as either activators or repressors of
transcription. ARFs regulate a multitude of critical steps in
plant development by converting local auxin maxima into gene
expression responses. Several ARF genes confer developmental
phenotypes, and some possess interaction complexity and
functional overlap. One example is ETTIN/ARF3, which is
involved in establishment of organ polarity (Sessions et al., 1997;
Garcia et al., 2006; Marin et al., 2010; Kelley et al., 2012).
Recent data suggest the existence of a non-canonical direct

auxin effect on ETTIN without the ubiquitination and Aux/IAA-
mediated degradation steps (Simonini et al., 2016), thus raising
the question of whether alternative auxin pathways can exist.
Another well-studied example of a transcription-activating ARF
is MONOPTEROS/ARF5 (MP). Defects in MP result in aberrant
seedling morphology, often with a single cotyledon and a
loss of basal structures (Hardtke and Berleth, 1998). Current
data indicate that ARF protein levels are regulated post-
transcriptionally (Nishimura et al., 2005; Leyser, 2006; Zhou et al.,
2010).

Auxin Binding Protein 1 (ABP1), which displays high affinity
to chlorinated auxins (Reinard et al., 1998; Napier et al., 2002),
was characterized as an auxin receptor and implicated in many
aspects of growth and development, particularly mediating the
fast, non-genomic effects of auxin (for a review, see Chen and
Yang, 2014). Specifically, ABP1 was implicated in rapid cell
surface-located auxin signaling as a sensor of cytosolic pH and
K+ flux (Thiel et al., 1993; Gehring et al., 1998). Although
ABP1 is a soluble auxin receptor, its partnering with membrane
associated-receptor-like kinase TMK (transmembrane kinase)
was proposed for perception of auxin and its travel to the
cytoplasm (Xu et al., 2014). In 2015, however, several publications
raised significant concerns about the role of ABP1 in both auxin
signaling and Arabidopsis development (Gao et al., 2015; Strader
and Zhao, 2016).

Since auxin efflux carriers bind auxin and promote its
polar active transport (PAT) from cell to cell, it was suggested
that the PIN-FORMED (PIN) family of auxin efflux carriers
could be considered as auxin receptors (Hertel, 1995). PINs
orchestrate polar cell-to-cell auxin transport via asymmetric
subcellular concentrations. Moreover, PINs were implicated in
the formation of auxin perception complexes when partnered
with PID (PINOID) protein kinases (for a review, see Strader
and Zhao, 2016). However, since PINs are not able to generate
secondary messengers or the intermediate reactions required
for signal transduction, this idea seemed to be non-productive.
Interestingly, several PINs, including PIN5 and PIN8, are
involved in cytoplasmic auxin trafficking, where PIN5 likely
mediates auxin transport from the cytosol into the lumen of
the ER (Mravec et al., 2009), and PIN8 from the ER to the
cytosol (Ding et al., 2012). PIN8 is highly expressed during
pollen development, and resides in the ER of pollen grains and
germinated tubes (Bosco et al., 2012; Ding et al., 2012). Although
PIN8 specific expression resulted in shorter root hairs likely due
to auxin efflux activities that decrease accumulation of auxin,
overexpression of PIN5 promotes root hair growth by increasing
levels of internal auxin in the root hair cells (Ganguly et al., 2010).
Therefore, both PIN5 and PIN8 can mediate auxin trafficking
within the cytosol and the ER, but their output effects require
further studies.

Auxin can alter plant development rapidly in response
to different environmental stimuli acting at many diverse
downstream target systems. In the cytoplasm, auxin is able
to activate PM-associated ROPs (Rho-like GTPases from
plants), which are involved in the regulation of endocytosis of
auxin transport proteins and organization of the cytoskeleton
(Tao et al., 2002). Although ROPs, as powerful signaling
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molecules, coordinate many diverse signal transduction
pathways, accumulating data suggest clearly defined crosstalk
between auxin and ROP signaling (Tao et al., 2002; Xu et al.,
2010; Schepetilnikov et al., 2017). ROP GTPases function as
mediators of auxin-regulated gene expression, rapid PM auxin
signaling, and directional auxin transport to link local auxin
gradients with ROP regulation of cell polarity (for a review,
see Wu et al., 2011). In Arabidopsis, ROPs are encoded by 11
genes that comprise a closely related, multigenic family that
represents a subgroup of the Ras superfamily of small GTPases,
and includes Rho, Rac, and Cdc42 subfamilies (Winge et al.,
2000). Like other G-proteins, ROPs interact with their target
proteins through conformation-specific states: a GTP-bound
active state, a short-lived nucleotide free state, and a GDP-
bound inactive state (Berken and Wittinghofer, 2008). ROPs
efficiently bind GTP, but their hydrolysis activity depends on
Rho GTPase-activating proteins RopGAPs (Berken et al., 2005;
Gu et al., 2006; Berken and Wittinghofer, 2008). Plants contain a
family of RhoGAPs that carries a conserved GAP-related domain
and an N-terminal CRIB (Cdc42/Rac-interactive binding) motif
that is involved in ROP binding (Wu et al., 2000), and REN1
(ROP1 ENHANCER1) protein, which, in addition to a GAP-
related domain, carries an N-terminal pleckstrin homology (PH)
domain (Hwang et al., 2008). Both RopGAPs have been shown to
regulate ROP signaling (Wu et al., 2000; Klahre and Kost, 2006;
Hwang et al., 2008). In contrast, guanine nucleotide exchange
factors (RopGEFs) activate ROPs by promoting GDP–GTP
recycling. The Arabidopsis genome contains a single ortholog
of the mammalian DOC180 family protein, SPIKE1 (SPK1; Qiu
et al., 2002), and 14 plant-specific RopGEF family members
with the PRONE (plant-specific Rop nucleotide exchanger)
domain required for GTP–GDP exchange (Berken et al., 2005;
Gu et al., 2006). Several ROP downstream effectors—a family
of CRIB-domain-containing proteins (RICs) that specifically
interact with active GTP-bound ROPs—have been described in
plants (Nagawa et al., 2010; Fehér and Lajkó, 2015). Although
RICs are highly variable, their CRIB motifs are highly conserved
(Nagawa et al., 2010), and the CRIB motif is used widely to
estimate active ROP levels using a pull-down assay with a
ROP-interactive CRIB motif-containing protein 1 (Ric1) that
specifically targets activated forms of RAC/ROPs (Tao et al.,
2002).

Although the role of the auxin signal transduction pathway in
ROP signaling activation has been well documented, mechanisms
and intermediate signaling components are not well known.
Since RopGEFs are defined as molecules that activate ROPs, while
RopGAPs prevents uncontrolled signaling of ROPs, both could
be potential components of the auxin-ROP signaling axis. The
PM localized receptor-like protein kinases (RLKs) play a critical
role in transmission of extracellular signals to intracellular ROP
signaling pathways, and function in regulation of fertilization and
cell expansion mechanisms such as cell elongation, tip and hair
growth (for a recent review, see Galindo-Trigo et al., 2016). We
draw the reader’s attention to the Catharanthus roseus RLK-1-like
(CrRLK1L) protein kinase subfamily, which contains FERONIA
(FER; Hématy and Höfte, 2008). FER specifically up-regulates
ROP2 signaling activity through RopGEFs in Arabidopsis (Duan

et al., 2010); the FER and RopGEF-containing complex recruits
an inactive form of ROP2 and converts it to an active form
in a guanine nucleotide-responsive manner, while fer mutants
accumulate the inactive (GDP) form of ROP2 (Duan et al.,
2010). Moreover, it was suggested that a network of different
RLKs, RhoGEFs, and ROPs can respond to diverse signals in
various tissue and cell types (Schiller, 2006). Importantly, FER
protein kinase interferes with several phytohormone pathways,
including auxin signaling (Duan et al., 2010). Although auxin
signaling stimulates root hair elongation (Pitts et al., 1998;
Rahman et al., 2002), root hairs of fer mutants are not responsive
to exogenous application of auxin (Duan et al., 2010). Taking
into account that loss-of-function fer mutants are pleiotropic
and display severe growth defects, FER is indispensable for plant
growth and development (Duan et al., 2010). Future research will
determine whether FER and RopGEFs function in ROP signaling
control in an auxin-sensitive manner. Generally, RLKs can have
broad functions in regulating cytoskeletal organization, vesicle
trafficking and reactive oxygen species (ROS) production during
plant growth (Wolf and Höfte, 2014).

TOR SIGNALING COMPLEXES AND
THEIR UPSTREAM REGULATION

Cell growth requires protein synthesis—a process that consumes
a huge amount of energy and therefore needs to be tightly
regulated to keep a balance between cell demands and resources.
Plants and animals share a common signaling pathway—the
TOR pathway—connecting growth with environmental signal
perception, where TOR accomplishes fine-tuning of the
translational machinery, thus reprogramming translation rates
in accordance with cellular needs. TOR operates as a hub
in the signal transduction network that coordinates many
critical molecular processes in eukaryotes, such as translation,
proliferation, transcription, survival, aging, differentiation
and autophagy, and is responsive to diverse signals, including
nutrient and oxygen availability, energy sufficiency, stress,
hormones, and growth factors. For two recent excellent reviews
on the TOR signaling pathway in plants (see Barrada et al., 2015;
Dobrenel et al., 2016).

Target of rapamycin belongs to the family of
phosphatidylinositol kinase-related kinases (PIKKs), and is
clearly related to PIK. However, TOR is atypical of PIK in
that it appears not to phosphorylate lipid substrates, instead
possessing a serine–threonine protein kinase activity. TOR was
first described in yeast over 20 years ago as a target protein
of the anti-fungal and immunosuppressant agent rapamycin
(Heitman et al., 1991; Kunz et al., 1993). Rapamycin is a
naturally occurring macrolide that acts as an allosteric inhibitor
of TOR. Rapamycin forms a drug–receptor complex with the
cellular peptidyl-prolyl cis-trans isomerase FKBP12, which,
upon binding to TOR, inhibits its kinase activity (Sabatini et al.,
1994; Choi et al., 1996). In contrast, most plants are insensitive
to rapamycin-mediated inhibition of growth due to FKBP12,
which is not efficient in rapamycin binding (Xu et al., 1998;
Mahfouz et al., 2006; Sormani et al., 2007; Deng et al., 2016).
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Mammalian TOR (mTOR) exists in two multiprotein complexes,
mTORC1 and mTORC2, which differ in their composition,
function, downstream substrates, and mode of action (direct or
indirect) in many cellular processes. mTORC1 contains the TOR
catalytic subunit, scaffold protein Raptor (regulatory associated
protein of TOR), adaptor mLst8 (lethal with SEC13 protein
8) and regulatory protein DEPTOR (DEP domain-containing
TOR-interacting). The mTORC2 complex—larger in size,
with a molecular weight of about 1.4 MDa—contains TOR,
scaffold protein Rictor (rapamycin-insensitive companion of
TOR), mLst8, hSin1 (stress-activated protein kinase-interacting
protein 1), PROTOR (protein observed with Rictor) and
DEPTOR. mTORC1 is typically defined by a specific component,
Raptor, and stimulates anabolic processes, including protein
synthesis (Ma and Blenis, 2009), whereas mTORC2 contains
Rictor and regulates cytoskeletal organization and survival (Hara
et al., 2002; Kim et al., 2002; Loewith et al., 2002). mTORC2 is
activated by the ribosome, where TORC2-ribosome interaction is
a likely conserved mechanism that is physiologically relevant in
both normal and cancer cells (Zinzalla et al., 2011). In addition,
under most conditions, mTORC1 is sensitive to rapamycin, but
mTORC2 is not (Loewith et al., 2002).

Plants depend greatly on signal perception by TOR (the
Arabidopsis genome contains a single essential TOR gene;
Menand et al., 2002; Deprost et al., 2007), which is required
to adapt growth and development rapidly to changes in
environmental inputs (Figure 1). The TOR pathway is a major
growth regulator in plants. Previous research with transgenic
Arabidopsis plants characterized by increased or decreased TOR
cellular levels (Deprost et al., 2007) revealed a correlation between
both root and shoot growth and TOR expression levels, thus
confirming a role of TOR in growth regulation. Mutations in
the TOR gene is lethal, and cause an early block in embryo
development (Menand et al., 2002; Deprost et al., 2005). The
Arabidopsis genome encodes two copies each of Raptor and Lst8
genes. The Arabidopsis ortholog of Raptor contains HEAT repeats
and WD40 domains responsible for protein–protein interactions,
and serves as a binding partner of TOR in complex assembly
(Anderson et al., 2005; Deprost et al., 2005). Lst8 consists of seven
WD40 repeats, which form a propeller-like structure. Disruption
of Lst8 results in growth retardation phenotypes and extreme
sensitivity to shifts in light conditions (Moreau et al., 2012).
Recent data suggest that TOR signaling also affects cell wall
biogenesis (Leiber et al., 2010) and negatively regulates autophagy
in plants (Liu and Bassham, 2010; Zvereva et al., 2016)—a protein
degradation process by which cells recycle cytoplasmic content
under stress conditions or during senescence. The great enigma
of plant TOR biology is the existence of a TORC2 complex, since
no homologs of Rictor and Sin1 have been found in the genomes
mono- or dicotyledonous plants to date. A search for TOR
complex subunit paralogs revealed broad conservation, with a
surprising lack of TORC2 in plants and some parasites (Dam
et al., 2011; Dobrenel et al., 2016). Unlike TORC2, TORC1 shows
a high degree of functional conservation in both multicellular
plants and unicellular algae, as manifested by TOR protein–
protein interaction experiments (Mahfouz et al., 2006; Díaz-
Troya et al., 2008; Moreau et al., 2012).

In mammals, hormones and growth factors can
directly activate mTOR signaling via phosphorylation of
membrane-bound receptor kinases. Binding of insulin—a
major energy control hormone—to receptor tyrosine
kinase (RTK) triggers recruitment and phosphorylation
of insulin receptor substrate (IRS) adaptors. IRSs
activate phosphatidylinositol-3-kinase (PI3K) to generate
phosphoinositol (3,4,5)-triphosphate (PIP3) (Burke and
Williams, 2015). PIP3 binds plekstrin homology (PH) domain
and mediates the phosphoinositide-dependent kinase 1
(PDK1) and AKT kinase recruitment to the PIP3-containing
compartments in the PM (Pearce et al., 2010). PDK1-activated
AKT phosphorylates TSC2 to inhibit the TSC complex by
inducing its release from the lysosome (Alessi et al., 1997). The
TSC complex functions as a GAP for Ras homolog enriched in
brain (Rheb) small GTPase (Inoki et al., 2003). Rheb is located
within the lysosomal compartment, where GTP-loaded Rheb
activates mTORC1 via direct interaction with the catalytic
domain of mTOR (Long et al., 2005). Availability of nutrients,
in particularly amino acids, promotes mTORC1 activity via the
conserved Rag family of small GTPases (González and Hall,
2017).

Due to their autotrophic lifestyle, plants lack several key
upstream effectors of the TOR complex (e.g., TSC, AKT, and
several classes of PI3K). In plants, the most critical environmental
input comes from light energy, and suppression of TOR activity
negatively affects light-energy-dependent growth (Ren et al.,
2012). Upon nutrient deprivation conditions, TOR activity in
plants is modulated via potential antagonistic crosstalk with
SnRK1 kinase (sensor of cellular energy homeostasis) (Nukarinen
et al., 2016); light and sugar signaling through TOR maintain
the balance between hormone-promoted growth and carbon
availability (Xiong et al., 2013; Dong et al., 2015). Active
TOR promotes accumulation of the brassinosteroid-signaling
transcription factor BZR1 in response to environmental signals
and hormones (Zhang et al., 2016). Thus, TOR kinase
represents an evolutionary conserved regulator of metabolism.
In plants, disruption of the TOR signaling pathway affects
sugar metabolism (Dobrenel et al., 2013). TOR senses and
transduces photosynthesis-derived signals to specifically control
root meristem proliferation. Glucose promotes primary root and
root hair growth via the TOR pathway (Xiong and Sheen, 2012).
Glucose-TOR signaling was implicated in transcriptional control
of the cell cycle (Xiong et al., 2013).

Another integral part of the mammalian machinery that
stimulates mTOR is phospholipase D (PLD) (Wiczer and
Thomas, 2012). PLD enzymes harbor a phospholipid-binding
Pox domain (PX) and catalyze the hydrolysis of
phosphatidylcholine to phosphatidic acid (PA). PA is a
metabolite and secondary lipid messenger, which regulates
response to growth factors, stress and nutrients. In response
to nutrients, PI3K generates PI3P species, which interact with
the PX domain of PLD and promote production of PA. PA
binds the FRB (FKBP12-rapamycin binding) regulatory domain
of mTOR and displaces the DEPTOR subunit from mTOR to
rapidly activate mTORC1 (Fang et al., 2001; Yoon et al., 2015). In
plants, PLD mediates stress responses and signal transduction.
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FIGURE 1 | Evolutionary conservation of upstream TOR signaling pathway in plants and animals. The main inputs upstream of TOR are depicted. TOR, Raptor and
Lst8 form the core of the TORC1 complex and are conserved in all eukaryotes. Small GTPases represent the best described regulators of TOR kinase. See text for
details and abbreviations.

Plant TOR can be a key potential target of PA messengers
produced by PLD. Changes in lipid composition and membrane
integrity upon various abiotic stresses provoke PLD activity
(Bargmann and Munnik, 2006). PA-mediated stomatal closure,
root growth, tolerance to salinity and water deficits are the
subjects of intensive research in plant science. In plants, PLD is
induced by the stress hormone abscisic acid (Jacob et al., 1999).
The involvement of PLD in ABA responses raises intriguing
questions as to the potential role of abiotic stress and abscisic
acid in TOR activation. Moreover, the TOR signaling pathway
is involved in the regulation of ABA levels in Arabidopsis
(Kravchenko et al., 2015). Strikingly, PLD and PA are required
for auxin responses, providing hints of crosstalk between auxin
and phosphatidylinositol signaling pathways (Li and Xue, 2007).
There is now a growing body of evidence demonstrating that
TOR acts as an essential factor for auxin signal transduction
in Arabidopsis (Schepetilnikov et al., 2013; Dong et al., 2015;
Deng et al., 2016). Auxin has been also identified as the cellular
candidate for a role as an upstream TOR effector (Schepetilnikov
et al., 2013). In response to auxin signaling, the TOR pathway is
activated as manifested by phosphorylation of the 40S ribosomal
S6 kinase 1 (S6K1; a direct downstream target of TOR) at
TOR-responsive Thr449, and association of active TOR with
polyribosomes. Recently, glucose and light signals as well as
exogenously applied auxin were shown to activate S6K1, in shoot
meristems (Li et al., 2017).

Phosphorylation is a common post-translational modification
that indicates an active status of mTOR kinase. Only three
phospho-sites have been reported to date in mTOR (Ser 1261,
2448, and 2481; Acosta-Jaquez et al., 2009). A Rheb-driven
phosphorylation event at mTOR Ser1261 within the HEAT
repeat domain promotes autokinase activity at Ser2481, resulting
in mTOR activation, while the C-terminal Ser2448 is likely
phosphorylated by S6K1 via a feedback loop. Mapping of
orthologous phosphorylation sites in Arabidopsis reveals the high

conservation of mammalian Ser2448 and plant Ser2424 epitopes
(Schepetilnikov et al., 2013). To date, Ser2424 is the only the
TOR specific phospho-site with a confirmed biological function
in auxin and ROP2 signaling (Schepetilnikov et al., 2013, 2017).

Many animal viruses have developed multiple mechanisms to
activate mTOR signaling in favor of viral replication cycles. One
such strategy results in stimulation of the PI3K-AKT pathway
upstream of TOR kinase (for a review, see Walsh et al., 2013). The
plant pararetrovirus, Cauliflower mosaic virus (CaMV), appears
to be the first among plant and mammalian viruses known to
trigger TOR activation (Schepetilnikov et al., 2011). Indeed, viral
transactivator/viroplasmin (TAV) protein binds TOR directly,
triggering its activation and recruitment to polysomes. TAV
represents a unique example of a pathogenicity effector that
specifically targets a basal defense system of plants and suppresses
innate immune responses to non-viral pathogens in a TOR-
dependent manner (Zvereva et al., 2016).

SMALL GTPases CONTROL THE
FUNCTION AND LOCALIZATION OF TOR
COMPLEXES

The molecular mechanism of TOR activation is complex
and diverse. Small GTPases emerge as the most significant
direct upstream regulators of TOR complexes, and function
as molecular switches, which, upon activation, interact with
downstream effectors and stimulate multiple signaling pathways
(Table 1). It is well established that yeast and mTOR are regulated
by a plethora of small GTPases, including Rho, Rheb, Rag,
Rac, Ral, Arf, and Rab, each responsible for perception of a
unique type of stimulus. In mammals, small GTPases from
the Rheb and Rag families are the two main direct upstream
regulators of TOR complexes. Mammalian TORC1 is controlled
primarily by Rheb GTPase. However, activation of mTORC1 in
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TABLE 1 | Small GTPase regulators of TOR complexes.

GTPase Function

Ras family (signal transduction)

Rheb Ras-homolog enriched in brain (Rheb) small GTPase is essential for mTORC1 activation. Rheb binds TOR directly. Rheb
is not involved in TOR recruitment—this function is provided by Rags, which presents TOR to Rheb for proper
activation. Rheb must be in a GTP-bound state to activate TOR (Long et al., 2005).

RalB In response to nutrients, RalB GTPase activates mTORC1. RalB functions downstream of Rheb, suggesting cross-talk
between amino acid-sensing signaling pathways (Maehama et al., 2008; Martin et al., 2014).

Rap1 In amoeba, Rap1 GTPase binds directly the regulatory subunit of Sin1 and activates TORC2 (Khanna et al., 2016).

RasC In yeast and slime molds, RasC GTPase activates the TORC2 complex (Cai et al., 2010; Charest et al., 2010).

Rit1 In response to oxidative stress, Rit1 GTPase binds and activates mTORC2 (Cai and Andres, 2014).

Ras related family (signal transduction)

RagA/B/C/D Rag GTPases form a heterodimer RagA/BGTP and RagC/DGDP. Rags function as a central regulator of mTORC1
activation in response to amino acids via TOR complex recruitment to lysosomal membranes. Rags interact directly with
the Raptor subunit of the mTORC1 complex. Proper GTP/GDP charging is crucial for their functioning (Kim et al., 2008;
Sancak et al., 2008).

Rho family (signal transduction)

Rac1 Rac1 activates both mTORC1 and mTORC2 complexes. Rac1 binds directly to TOR via its C-terminal positively
charged lysine-rich motif. Rac1 recruits TOR complexes to the plasma membrane in a GTP-independent manner (Saci
et al., 2011).

Rho1 In response to stress, Rho1 GTPase binds directly to the N-terminal domain of the Raptor subunit, resulting in inhibition
of TORC1 activity. In yeast, Rho1 is a negative regulator of TOR activity. Rho1 disrupts membrane association of
TORC1 (Yan et al., 2012; Yang et al., 2012).

ROP/RACs In response to auxin, ROP2 GTPase binds directly to plant TOR via its C-terminal positively charged lysine-rich motif,
which is similar to mammalian Rac1. GTP-bound active ROP2 recruits TOR complex on the membranes of early
endosomes, which is similar to RAGs. ROP2-TOR interaction is indispensable of GTP/GDP charging, GTP is required
for ROP2-mediated activation of TOR, which is similar to Rheb (Schepetilnikov et al., 2017).

Arf family (intracellular trafficking)

Arf1 Arf1 activates mTORC1 on lysosomes, specifically in response to glutamine (Gln). GTP binding and hydrolysis by Arf1 is
required for mTORC1 activation. Arf1 signaling to mTOR is specific to Gln and independent of ER-Golgi intracellular
trafficking (Jewell et al., 2015).

Rab family (intracellular trafficking)

Rab6 In yeast, Ryh1 GTPase, ortholog of mammalian Rab6, activates TORC2. In response to glucose, the GTP-bound active
form of Rhy1 interacts physically with the TORC2 complex via its effector domain (Tatebe et al., 2010; Hatano et al.,
2015).

response to amino acids requires GTPases of the Rag family
(Sancak et al., 2008). Two heterodimeric Rag complexes (RagA/C
and RagB/D) bind lysosomal membranes via a lysosomal adaptor
RAGULATOR—a scaffold complex with GEF activity toward
Rag GTPases (Bar-Peled et al., 2012). Amino acids promote
the reciprocal charging of RagA/C and RagB/D with GTP and
GDP, respectively, and their binding to mTORC1 via Raptor
to relocate mTORC1 to lysosomes for mTORC1 presentation
to GTP-bound Rheb (Kim et al., 2008; Sancak et al., 2008).
Interestingly, Rac1, a member of the Rho family of small
GTPases, affects signaling through both mTORC1 and mTORC2
complexes. Rac1 regulates TOR intracellular localization: upon
serum stimulation, Rac1 binds mTOR directly via its C-terminal,
lysine-rich motif in a GTP-independent manner and governs its
movement from the perinuclear region to the PM (Saci et al.,
2011). Thus, Rac1-mediated mTOR activation is independent of
the PI3K-AKT-TSC axis. This is opposite to Rheb GTPase, which
must be in the GTP-bound state to activate mTOR.

Several amino acids can stimulate mTORC1 in a Rag
GTPase independent manner. Glutamine-mediated mTORC1
recruitment to lysosomes requires an alternative pathway via
the Arf family GTPase Arf1, which is normally involved
in intracellular vesicular trafficking, and vacuolar ATPase (v-
ATPase) (Jewell et al., 2015). Several other small GTPases have
been identified as indirect upstream actors in the TOR signaling
pathway. In yeast, glucose activates TORC2 via the Rab family
GTPase Ryh1 (Tatebe et al., 2010; Hatano et al., 2015). Moreover,
a member of the Rho GTPase family, Rit, was suggested to
bind directly to the hSin1 subunit and activate the mTORC2
complex in response to oxidative stress (Cai and Andres, 2014).
Recent data suggest a cross-talk between GTPases RalB and Rheb
in nutrient perception and mTORC1 control (Maehama et al.,
2008; Martin et al., 2014). Among many small GTPases in yeast,
Rho1 GTPase of the Rho family can negatively regulate mTORC1
under stress conditions. Rho1 GTPase is the master regulator of
the yeast cell wall integrity (CWI) pathway that controls actin
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polarization, cell morphogenesis, and cell wall expansion (Levin,
2005). In response to environmental or intracellular stresses,
Rho1 binds directly to the Raptor subunit and inhibits mTORC1
activity (Yan et al., 2012; Yang et al., 2012).

In eukaryotes, small regulatory G domain proteins of Ras
superfamily are divided into five main families based on their
structure, sequence and function: Ran GTPases function in
nuclear trafficking; Rab and Arf/Sar—in intracellular vesicular
trafficking; Ras and Rho family members regulate signal
transduction. ROPs of plants are structurally distinct from the
proteins in the Rho, Rac, and Cdc42 subfamilies of Rho GTPases
of other eukaryotes (Brembu et al., 2006), but were originally
defined as RACs based on sequence similarity to animal Rac
GTPases. Since plants lack orthologs of Rheb and Rag GTPases,
the ROP/RACs are the only candidates for plant-specific TORC1
upstream regulators. Strikingly, ROP2 interacts directly with
TOR both in vivo and in vitro in a manner independent of its
GTP-bound state, but it activates TOR, when bound to GTP.
Accordingly, Arabidopsis plants with high endogenous auxin
levels, or Arabidopsis seedlings treated by auxin, or expressing
high GTP-bound ROP2 levels, are characterized by increased
TOR phosphorylation (Schepetilnikov et al., 2013, 2017). As
expected, TOR phosphorylation in response to auxin is abolished
in rop2 rop6 ROP4 RNAi plants (Schepetilnikov et al., 2017).
As expected, Arabidopsis plants expressing constitutively active
GTP-bound ROP2 (CA-ROP2 line) are more resistant to TOR
inhibitors, and display a significant delay in AZD-8055-sensitive
suppression of primary root growth and root hair elongation
(Schepetilnikov et al., 2017), as normally occurs in WT seedlings
in response to this TOR inhibitor (Montané and Menand,
2013). Similarly, active GTP-bound ROP2 triggered root hair
elongation, but, in addition, ROP2 up-regulation promotes
initiation of additional misplaced hairs (Jones et al., 2002).

In plants, as with most small GTPases, membrane association
of ROPs is mediated by post-translational modifications,
including prenylation and S-acylation (Hancock et al., 1989; Li
et al., 1999; Fu et al., 2005, 2009; Sorek et al., 2011), similar to that
shown for members of the Ras superfamily of small G-proteins
(Michaelson et al., 2001). Recent research has revealed that ROPs
1–6 and mammalian Rac1 share a common sequence motif
comprising several basic lysine residues that direct interaction
with TOR (Saci et al., 2011; Schepetilnikov et al., 2017).
The next important issue to be resolved is the intracellular
compartmentalization of TOR upon auxin treatment. The PM
operates as a platform for diverse receptor signaling and vesicle
trafficking events. Active GTP-bound ROPs associate closely with
the PM, which allows recruitment of ROPs from the cytoplasm
(Sorek et al., 2011). ROP GTPases are not known to be localized
in intracellular vesicles, suggesting rather a transient association
with intracellular compartments or a unique redistribution in the
PM. Since ROP2 interacts physically and functionally with TOR,
it may participate in TOR relocation to the PM. Interestingly,
ROP2 association with PM is indispensable for subsequent
TOR activation—ROP2 GTPase lacking a prenylation domain
is still capable of interacting with, but not activating, TOR
(Schepetilnikov et al., 2017). Phosphorylated TOR accumulates
in microsomal fractions of CA-ROP2 plants, and colocalizes

with endosomes in the cytoplasm in a ROP2-dependent manner.
Note that the Lst8 subunit has been also found colocalized with
endosomes (Moreau et al., 2012). TOR binding to endosomes
is not sensitive to disruption of ER-to-Golgi intracellular
vesicular trafficking, but may rely on the endocytic pathway.
Primarily, ROP GTPases are considered to control cytoskeleton
reorganization, thus interfering with vesicular trafficking. In
response to auxin, GTPases of the ROP family coordinate the
recycling of PINFORMED (PIN) transporters between the PM
and endomembrane compartments (Chen and Friml, 2014).
Accordingly, TOR may move to specific intracellular locations
via interaction with appropriate subsets of small regulatory
GTPases.

Many questions remain unanswered: what are the effects
of ROP2 that increase intrinsic phosphorylation activity of
TOR, and do other ROPs contribute to TOR activation? TOR
complexes have been found at several subcellular locations,
including the cytoplasm and the nucleus. Nevertheless, how
TOR can mediate activation on lysosomes and be translocated
to 40S preinitiation complexes (40S PIC) to regulate the cell
translation machinery is still an open question. In addition, TOR
is known to be localized in mitochondria, the PM and stress
granules in response to different inputs (Betz and Hall, 2013).
In the unicellular green alga Chlamydomonas, TOR activity is
restricted to ER membranes (Díaz-Troya et al., 2008, 2011).
Further work is obviously required to examine the intracellular
location and trafficking of TOR, in both active and inactive states,
and whether TOR activation takes place before or after its loading
on endosomes.

TOR PROMOTES TRANSLATION
REINITIATION IN PLANTS

Plants are sessile organisms that continuously monitor and
transduce environmental inputs into regulation of protein
synthesis pathways. Indeed, much effort has been directed
to demonstrate that translation of many mRNAs is affected
by a multitude of environmental signals, for example, cold
(Juntawong et al., 2013), heat (Matsuura et al., 2013), dehydration
(Kawaguchi et al., 2004; Kawaguchi and Bailey-Serres, 2005; Park
et al., 2012), salinity (Park et al., 2012), hypoxia (Branco-Price
et al., 2005, 2008), and light (Khandal et al., 2009; Juntawong
and Bailey-Serres, 2012; Floris et al., 2013). However, the
underlying molecular mechanisms that affect protein synthesis
efficiency are largely unknown and in need of further research.
A recent study revealed that heat stress can rapidly induce
an mRNA degradation process where involving LARPs (La
and related Proteins) (Deragon and Bousquet-Antonelli, 2015).
Strikingly, mammalian LARP1 was implicated in translation
regulation of TOP (5′-terminal oligopyrimidine tract)-containing
mRNAs under the control of TOR (Tcherkezian et al., 2014);
however, whether translation of many plant TOP-containing
mRNAs (Dobrenel et al., 2016) depends on TOR remains
to be identified. Moreover, the contribution of TOR to the
overall control of cap-dependent translation initiation via
phosphorylation of eIF4E-binding proteins (4E-BPs)—the best
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studied mechanism of translation control in response to stress
in other eukaryotes (Siddiqui and Sonenberg, 2015)—has been
questioned in plants due to the lack of data on plant 4E-BPs.
A discussion of cap-dependent translation control in plants,
including a key mechanism of down-regulation of translation by
phosphorylation of eIF2α, is beyond the scope of this review, and
it is well described recently (Browning and Bailey-Serres, 2015).

Conversely, Arabidopsis plants silenced for TOR expression
display significantly reduced polysomal abundance (Deprost
et al., 2007), suggesting a role for TOR in plant translation.
Additionally, it was reported that auxin signaling can affect
translation, as manifested by phosphorylation of ribosomal
protein S6 (RPS6) and up-regulation of polysomal levels in
Arabidopsis suspension cultures (Beltrán-Peña et al., 2002;
Turck et al., 2004). Accordingly, application of new generation
TOR inhibitors, as well as existing TOR-deficient plants, has
uncovered TOR function in the translation reinitiation of a
specific pool of cellular mRNAs that harbor upstream open
reading frames (uORFs) within their leader regions (uORF-
mRNAs; Schepetilnikov et al., 2013). The current model suggests
that TOR can receive signals from auxin via a small GTPase
ROP2 to boost production of important regulatory proteins in
a post-transcriptional manner by targeting a specific translation
mechanism: reinitiation (Figure 2).

Upstream open reading frames are defined as 5′-UTR cis-
elements of mRNAs defined by a start codon that is out-
of-frame with the main ORF. Mounting data suggest the
critical importance of post-transcriptional control via translation
reinitiation (Roy et al., 2010; Schepetilnikov et al., 2013; von
Arnim et al., 2014). Nowadays, uORFs are considered as
prevalent translation repressors in eukaryotes (Johnstone et al.,
2016). This is not surprising since more than 30% of eukaryotic
mRNAs harbor relatively long leaders that contain multiple
uORFs (Calvo et al., 2009). Among these are ARF family of
transcription factors (von Arnim et al., 2014) and human tyrosine
kinases (Wethmar et al., 2016); uORFs play a role of molecular
switches in pathophysiology (Wethmar et al., 2010) and in
stem cell regulation and organogenesis in plants (Zhou et al.,
2014). To understand how translation reinitiation is controlled
by upstream signals and contributes to overall protein synthesis,
we first review briefly how uORFs can alter expression of the
main ORF located downstream of the leader. The scanning
model of eukaryotic translation initiation states that the 40S
ribosomal subunit prebound by a multisubunit complex (eIF3,
eIF1 and eIF1A, eIF5) and a ternary complex (TC, eIF2-GTP-
Met-tRNAiMet) loads at the capped 5′-end of mRNA via eIF4F-
bound to cap, scans in a 3′-direction until it recognizes an
initiation codon in a suitable initiation context, where 60S
joins and translation elongation begins (Browning and Bailey-
Serres, 2015; Hinnebusch et al., 2016). The preceding translation
event would negatively interfere with translation reinitiation
at a downstream ORF, mainly due to loss of eIFs that have
been recruited during the cap-dependent initiation event. It is
generally accepted that reinitiation at the downstream AUG
codon can occur, if (1) the initiation context of the 5′ AUG codon
is not optimal and is recognized only inefficiently by scanning
ribosomes (leaky scanning mechanism—Kozak, 1986), and there

FIGURE 2 | Auxin signaling pathways within the cytoplasm. Auxin signal is
recognized via an as yet uncharacterized receptor(s) in the target cells, and
transmitted to the cytosol. Auxin mediates recycling of small
GTPases—ROP2-GDP to ROP2-GTP—by several GEFs. ROP2 interacts
directly with TOR and activates TOR kinase if ROP2 is bound to GTP. TOR
activation could occur upon complex formation with ROP2 on earlier
endosomes. ROP2 then dissociates from TOR and requires recycling. Active
TOR is targeted to eIF3-containing preinitiation complexes and polysomes,
where it promotes translation reinitiation of uORF-mRNAs.

is no downstream secondary structure that would improve its
recognition (Kozak, 1990); or (2) the initiation context is optimal,
but is located in close proximity to the 5′-end of mRNA (Kozak,
1991); and (3) the preceding translation event was short (short
uORF of 2 to ∼30 codons) (Kozak, 1999). In the latter case,
reinitiation is less efficient, but can be improved slightly by
having a sufficiently long intercistronic distance between the
uORF and the “main” ORF (Kozak, 1987; Luukkonen et al.,
1995; Hinnebusch, 1997). The reinitiation potential of ribosomes
depends on specific features of uORFs, as well as their amount
and combination (von Arnim et al., 2014), and can be regulated
by specific trans-acting factors (Rahmani et al., 2009; Medenbach
et al., 2011).

Beside these features of uORFs, stalled translation of
sequence-specific short uORFs can block translation reinitiation
of a leader downstream ORF (Sachs and Geballe, 2006).
Sequence-specific uORFs are common in genes involved in
a variety of control mechanisms, and encode attenuator
peptides that act in a sequence-dependent manner to inhibit
its own translation termination, often through a delay of
peptidyl-tRNA hydrolysis in response to saturating levels of a
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regulatory signal, usually a metabolite. For example, a 48–55
codon uORF is responsible for the translational repression of
the SAMDC (S-ADENOSYLMETHIONINE DECARBOXYLASE)
gene in response to stress conditions and high polyamine levels
(Hanfrey et al., 2005). Sequence-specific uORFs control the
synthesis of AtbZIP transcription factors and several of their
paralogs, as well as trehalose-6-phosphate phosphatase, in a
manner sensitive to carbohydrates (Wiese et al., 2004; Hayden
and Jorgensen, 2007). It seems certain that more short sequence-
specific uORFs that would irreversibly abolish reinitiation of the
main ORF translation in response to various regulatory signals or
under certain conditions will be identified.

How does the 40S terminating subunit solve the problem
of rapid loading of factors necessary for the reinitiation event,
i.e., Met-tRNAiMet and 60S? The most likely explanation is
that initiation factors that have been recruited during the
cap-dependent initiation event dissociate from 40S gradually,
and might remain associated with the translating ribosome
for a few elongation cycles (Kozak, 1987). These reinitiation
promoting factors (RPFs) could assist 40S ribosomal subunits
to resume scanning, rapidly acquire TC and 60S de novo and
thus stay reinitiation-competent. A new study using in vivo
RNA-protein Ni2+-pull down assay directly demonstrated that
eukaryotic initiation factor 3 (eIF3) physically associates with
early elongating ribosomes on the GCN4 mRNA (Mohammad
et al., 2017). eIF3 is composed of 13 distinct subunits in
humans and plants, and facilitates rapid recruitment of TC
to 40S and assembly of the 43S preinitiation complex on
mRNA (Burks et al., 2001; Hinnebusch, 2006). Mammalian RPFs
include, in addition to eIF3 (Cuchalová et al., 2010; Munzarová
et al., 2011), the cap-binding complex eIF4F (Pöyry et al.,
2004).

In plants, eIF3 non-core subunit h (eIF3h) greatly elevates the
reinitiation competence of mRNAs coding for the Arabidopsis
basic zipper transcription factors (bZIPs) and several ARFs
(Roy et al., 2010; Zhou et al., 2010); while the 60S ribosomal
protein L24B (RPL24B), which is encoded by SHORT VALVE1,
lifts translation of uORF-containing mRNAs that encode ARF3
(ETTIN) and ARF5 (MONOPTEROS; Nishimura et al., 2005;
Zhou et al., 2010). Thanks to a mutant allele of eif3h-1
carrying a C-terminally truncated eIF3h and a short valve1 (stv1)
mutant lacking the RPL24-encoding gene, it was demonstrated
that both mutants display similar defects in auxin-mediated
organogenesis and undertranslate uORF-containing bZip11 and
several ARF mRNAs (Zhou et al., 2010). Although eIF3h can
be dispensable for cap-dependent translation initiation (Kim
et al., 2004; Roy et al., 2010), a global analysis of ribosomal
loading confirmed that many mRNAs containing uORFs are
less abundant in polysomes in the eif3h-1 mutant (Tiruneh
et al., 2013), thus confirming that translation of the majority
of uORF-containing mRNAs depends on eIF3h. Future studies
will clarify the mechanism of eIF3h function in reinitiation of
translation.

Taken together, translation of mRNAs with several short
uORFs is still possible, albeit with lowered efficiency, while
reinitiation after long ORF translation is largely prohibited in
eukaryotes. However, viruses often break basic cellular rules.

Indeed, there are a few abnormal cases of reinitiation after long
ORF translation, best studied in mammalian caliciviruses (Royall
and Locker, 2016) and plant caulimoviruses (Ryabova et al.,
2006). The subgenomic mRNA of caliciviruses is bicistronic, with
two long ORFs that encode structural proteins VP1 and VP2
overlapping by four nucleotides, and its translation relies on a
termination-dependent reinitiation strategy, where expression of
the downstream cistron is dependent on the ribosome binding
site (TURBS) within the upstream VP2 ORF located close to VP1
ORF stop codon. The motif was shown to bind 40S ribosomal
subunits and eIF3 (Luttermann and Meyers, 2007; Pöyry et al.,
2007). Thus, in caliciviruses, the ribosome might be held at the
stop/restart region by base pairing of TURBS with the 18S rRNA
(Luttermann and Meyers, 2009; Zinoviev et al., 2015), and can be
further stabilized by binding of eIF3 to promote reinitiation by
post-terminating 80S ribosomes (Pöyry et al., 2007).

The second unique example of reinitiation after long ORF
translation comes from CaMV, where reinitiation critically
depends on a single viral protein TAV (De Tapia et al., 1993).
To promote reinitiation, TAV interacts with the host translation
machinery via eIF3 (Park et al., 2001), reinitiation supporting
protein (RISP; Thiébeauld et al., 2009), and TOR, where TAV
activates TOR via an as yet unknown mechanism (Schepetilnikov
et al., 2011). According to the current model, TAV is responsible
for retention of RPFs on translating ribosomes during the long
elongation event, thus increasing the reinitiation competence of
ribosomes. Indeed, sucrose gradient analysis of extracts isolated
from Arabidopsis plants transgenic for TAV revealed greatly
increased accumulation of eIF3, RISP, and TOR in addition to
TAV in polysomes as compared with WT plants (Thiébeauld
et al., 2009). Moreover, TAV function in reinitiation is strongly
dependent on active TOR (Schepetilnikov et al., 2011). RISP
appears to be a specific target of TOR/S6K1 signaling, and
its phosphorylation promotes both its binding to TAV and
TAV function in translation reinitiation. Indeed, TOR and RISP
binding to polyribosomes correlates with RISP phosphorylation,
while phosphorylation of RISP is abolished in polysomes isolated
from plants transgenic for a TAV deletion mutant that failed
to associate and thus activate TOR (Schepetilnikov et al.,
2011). In conclusion, it was proposed that TOR function in
polysomes would be to maintain the high phosphorylation
status of RISP, and possibly other RPFs, to promote viral
pathogenesis.

In mammals, eIF3 was identified as a platform for
phosphorylation of S6K1 by TOR, where active mTOR or
inactive mS6K1 enter the cell translation machinery via
interaction with the eIF3-containing preinitiation complex in a
dynamic order of events (Holz et al., 2005). Although the eIF3
complex is prebound by inactive mS6K1 in mTOR inactivation
conditions, binding of mTOR, when it is activated, results in
phosphorylation and dissociation of mS6K1. In yeast, TORC2
was detected in polysomes, where it maintains co-translational
phosphorylation of Akt kinase (Oh et al., 2010). In Arabidopsis,
TOR, when active, associates with polysomes also prebound by
inactive S6K1, phosphorylates S6K1, triggering its dissociation
(Schepetilnikov et al., 2011, 2013). Further phosphorylation of
S6K1 may involve PDK1 (Deak et al., 1999).
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In plants, active TOR accumulates mainly within 40S
preinitiation complexes, and at significantly lowered levels in
polysomes, which can explain the low reinitiation capacity of
Arabidopsis plants. Although partial depletion of TOR revealed
defects in polysomal loading of uORF-containing mRNAs that
require reinitiation; TOR, when up-regulated in response to
either auxin or by GTP-ROP2, promotes polysomal loading and
translation of ARF3, ARF5, bZIP11, and other uORF-containing
mRNAs (Schepetilnikov et al., 2013, 2017). Active TOR can
up-regulate translation reinitiation via phosphorylation of the
plant reinitiation factor eIF3h in polysomes to maintain the high
phosphorylation status of eIF3h-promoting reinitiation events
(Schepetilnikov et al., 2013). A new study has identified mTORC1
as the key factor contributing to translation of uORF-mRNA
that encodes ATF4, a member of the CREB/ATF family of bZIP
transcription factors, where TOR may regulate ATF4 mRNA
translation through a uORF-dependent mechanism and 4E-BPs
(Park et al., 2017).

Translation/reinitiation events within bZIP11, ARF3, and
ARF5 5′-UTRs impede or block ribosomal movement toward
the main ORF, causing inefficient translation of uORF-mRNAs
under WT conditions (Zhou et al., 2010). Indeed, it was shown
that uORFs downregulate main ORF translation for ARF5 by
15-fold, ARF3 by 2-fold (Zhou et al., 2010), and bZIP11 by
4-fold, if only uORFs 1, 2, and 4 are removed (Kim et al.,
2004). Accordingly, polysomes isolated from WT Arabidopsis
are deficient in loading of active TOR and bZIP11, ARF3 and
ARF5 uORF-mRNAs, and their levels are not much higher
than in plants grown on medium containing the TOR inhibitor
AZD-8055 (Schepetilnikov et al., 2013, 2017). Here, the classic
means of determining whether up-regulation of gene expression
at the translational level has occurred on mRNAs via a shift
of these mRNAs into the polysomal fraction is not easily
applied to mRNAs that carry multiple uORFs within their long
leader regions that would require reinitiation events. Indeed,
the increased abundance of initiating/reinitiating 40S, and likely
uORF-translating 80S, within their long leaders shifts these
mRNAs toward 80S or even light polysomal fractions, even when
translation of the main ORF is strongly inhibited, depending on
the number and arrangement of uORFs (Schepetilnikov et al.,
2017). Upon introduction of TOR-activated conditions, TOR
phosphorylation, and, consequently, uORF-mRNA loading into
polysomes is increased (Schepetilnikov et al., 2017). Strikingly,
studies of mRNA abundance across sucrose gradients in WT
versus CA-ROP2 plants (Schepetilnikov et al., 2017) revealed a
high proportion of uORF-mRNA (about 64–80%) sedimenting
to the top fraction of the gradient in WT conditions, while
only 20–25% of uORF-mRNA remained in the top gradient
fraction in CA-ROP2 conditions, regardless of the fact that
total transcript levels did not differ significantly between WT
and CA-ROP2 extracts. These data correlate with the high
translation efficiencies of uORF-mRNAs in plant mesophyll

protoplasts prepared from plants expressing high active TOR
levels.

TOR up-regulation of reinitiation events could be as harmful
in plants as in mammals, where up-regulation of the protein
synthesizing machinery contributes to the development of cancer
(Ruggero and Pandolfi, 2003). In the opposite situation of
reinitiation defects, the developmental abnormalities identified
in rpl24b and eif3h-1 mutants are largely similar to auxin-related
developmental defects (Zhou et al., 2010). Further investigation
is needed to understand the roles of ROP2 in TOR activation, as
well as to identify other upstream TOR effectors in plants and
their roles in translation.

CONCLUSION AND PERSPECTIVES

The last 10 years have witnessed striking advances and rapidly
emerging data on the composition of the TOR complex, the
TOR pathway, and its function and control in plants, in
part due to the appearance of a new generation of TOR
inhibitors that bind to the TOR kinase domain within the
ATP-binding pocket and inactivate TOR (Chresta et al., 2010;
Montané and Menand, 2013). Many critical questions remain
unanswered. Recent work has revealed the role of TOR in
sensing environmental conditions, including various stresses and
phytohormones, but the molecular mechanisms underlying these
signaling events remain unknown. It is not yet known whether,
and how, TOR controls general translation by sensing amino
acid levels. Finally, a key issue is the existence of functional
ortholog of TORC2 in plants. Recent data have revealed that
the molecular composition of the TOR complex varies in
different cell types. Identification of a novel binding partner
of TOR—GIT1 (G-protein-coupled receptor kinase-interacting
protein 1)—suggested a unique mTOR complex lacking both
Raptor and Rictor (Smithson and Gutmann, 2016). Therefore
plants can contain more than one functional TOR complex.
A challenge for future studies in plants will be to elucidate further
TOR signaling pathways in plant translation, and to reveal how
TOR can control mRNA translation at the initiation step.
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