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This study was designed to investigate at the molecular level how a transgenic

version of rice “Nipponbare” obtained a drought-resistant phenotype. Using multi-omics

sequencing data, we compared wild-type rice (WT) and a transgenic version (erf71) that

had obtained a drought-resistant phenotype by overexpressing OsERF71, a member of

the AP2/ERF transcription factor (TF) family. A comprehensive bioinformatics analysis

pipeline, including TF networks and a cascade tree, was developed for the analysis of

multi-omics data. The results of the analysis showed that the presence of OsERF71 at

the source of the network controlled global gene expression levels in a specific manner

to make erf71 survive longer than WT. Our analysis of the time-series transcriptome

data suggests that erf71 diverted more energy to survival-critical mechanisms related

to translation, oxidative response, and DNA replication, while further suppressing

energy-consuming mechanisms, such as photosynthesis. To support this hypothesis

further, we measured the net photosynthesis level under physiological conditions, which

confirmed the further suppression of photosynthesis in erf71. In summary, our work

presents a comprehensive snapshot of transcriptional modification in transgenic rice and

shows how this induced the plants to acquire a drought-resistant phenotype.

Keywords: rice, drought stress, drought tolerance, transcription factors, network analysis, NGS data analysis

INTRODUCTION

Plants respond to abiotic stress in various ways. By utilizing high-through put technologies, such as
microarrays and sequencing, changes in transcript levels can be detected by measuring transcripts
at multiple time points as abiotic stress continues. Thus, we now have unprecedented opportunities
to associate phenotypical changes with molecular-level changes in the cell. For example, the RNA
sequencing (RNA-seq) technique has been used to measure expression profiles of tens of thousands
of genes (37,869 gene loci in rice with evidence of expression up until 2013; Sakai et al., 2013)
simultaneously under various conditions.
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One important research problem that can be investigated by
using the new technologies is to understand how plants respond
to drought conditions. Characterizing the effects of drought-
induced stress in the agricultural business has historically been
a major research topic related to the productivity of crops
(Venuprasad et al., 2007; Jeong et al., 2010; Ambavaram et al.,
2014). Drought has become a more serious issue due to
recent dramatic climate changes. The Intergovernmental Panel
on Climate Change (IPCC) estimates that the global mean
temperature will increase somewhere between 1 and 4◦C until
2,050, and that climate-change-related drought will significantly
reduce crop productivity in Africa and Asia (IPCC, 2014).
Therefore, developing strategies for handling drought stress is
a very important issue in plant science and also in maintaining
sustainable agricultural systems.

Leveraging technological advances, plant scientists have
performed analyses of time-series gene expression profiles under
drought stress and reported hundreds of drought-responsive
genes in rice (Rabbani et al., 2003; Rodriguez et al., 2006; Gorantla
et al., 2007; Zhou et al., 2007; Rabello et al., 2008; Degenkolbe
et al., 2009). So far, plant scientists have discovered many genes
that play important roles in mechanisms underlying responses
to drought stress, such as stomatal closure (Huang et al., 2009),
osmoprotectant synthesis (Ge et al., 2008), aquaporins (Lian
et al., 2004; Guo et al., 2006), cuticular wax biosynthesis (Islam
et al., 2009), and phytohormone response (Iuchi et al., 2001;
Qin and Zeevaart, 2002; Du et al., 2010). Additionally, a large
number of drought-induced transcription factor (TF) families
are reported to control drought stress responses transcriptionally
(Shinozaki and Yamaguchi-Shinozaki, 2007).

However, our knowledge of biological mechanisms related to
drought stress is still limited (Debnath et al., 2011; Hadiarto and
Tran, 2011). In particular, we have not investigated thoroughly
how drought-stress-related genes are regulated. Understanding
functions, communication, and interactions of drought-stress-
related genes is critical for understanding how plants respond
to drought stress. The widely used differentially expressed gene
(DEG) analysis, one of the single-gene analyses, is often limited
in deducing meaningful biological interpretations since it does
not consider relationships among genes (Shojaie andMichailidis,
2009). Fortunately, there has been significant progress in
network-based analysis techniques (Barabasi and Oltvai, 2004;
Barabasi et al., 2011; Gitter et al., 2013; Ma et al., 2014) that
consider complex relationships among genes. These powerful
network-based analysis techniques have yet to be used for
analyzing omics data for rice in the context of TFs and their target
genes.

In this study, we used rice plants overexpressing OsERF71
to study drought resistance mechanisms. The OsERF71 gene
belongs to the AP2/ERF family of transcription factors. AP2/ERF
is one of the well-known TF families that regulate drought-
responsive genes (Chen et al., 2002; Shinozaki et al., 2003).
The members share a highly conserved DNA-binding domain
known as the AP2/ERF domain (Nakano et al., 2006). Members
of the AP2/ERF family have been shown to exhibit diverse
functions in cellular processes, such as flower development
(Elliott et al., 1996), spikelet meristem determinacy (Chuck et al.,

1998), leaf epidermal cell identity (Moose and Sisco, 1996),
embryo development (Boutilier et al., 2002), and stress tolerance
(Dubouzet et al., 2003). Moreover, overexpression of AP2/ERF
transcription factors enhances tolerance to drought in several
plant species: Arabidopsis, tomato, wheat, and rice (Haake et al.,
2002; Hsieh et al., 2002; Pellegrineschi et al., 2004; Oh et al.,
2005, 2009). Recently JK Kim and his colleagues (Lee et al.,
2016) reported that rice plants overexpressing the OsERF71 TF
showed enhanced survival over the wild-type under drought
stress at the vegetative stage of growth and a 23–42% increase
in total weight gain over the wild-type under drought stress
at the reproductive stage of growth. They also investigated the
target genes of OsERF71 and found that OsERF71 regulates
OsCINNAMOYL-COENZYME A REDUCTASE1, a gene playing
a role in lignin biosynthesis, and that rice plants overexpressing
OsERF71 formed enlarged aerenchyma and had high lignification
levels.

To study drought resistance mechanisms, we investigated
transcriptomic changes in response to dehydration stress
between wild-type rice (WT) and OsERF71-overexpressing rice
(erf71) lines. The goal was to elucidate the association between
the erf71-specific response at the transcriptome level and the
drought-resistant phenotype. For the investigation, we generated
comprehensive multi-omics data, such as RNA-seq data, micro
RNA (miRNA) sequencing data, and whole-genome bisulfite
DNA methylation sequencing data, collected at 0, 1, and 6 h
after treatment (HAT) under dehydration stress (i.e., aeration and
without watering), from the two rice genotypes. A comprehensive
bioinformatics analysis pipeline, including TF networks and a
cascade tree, was developed and used for the analysis of the
multi-omics data.

MATERIALS AND METHODS

Plant Material and Drought-Stress
Treatments
We germinated seeds of WT (Oryza sativa ssp. japonica
“Nipponbare”) plants and rice plants overexpressing OsERF71
(Os06g0194000) in a “Nipponbare” background (Lee et al., 2016)
on petri-dishes and then cultured them in Yoshida’s solution
(Yoshida et al., 1976) maintained in a temperature-controlled
culture room at 29◦C under 16/8-h light/dark conditions. Rice
plants at the three-leaf stage were subjected to dehydration stress
by removal of the culture solution. Untreated plants were used
as a control. After treatment, entire plants were immediately
transferred into liquid nitrogen. After a pilot experiment to
measure the expression of the Dip1 gene in WT using reverse-
transcription (RT)-PCR, we selected 0, 1, and 6 HAT as time
points tomeasure omics data. The whole plants harvested at these
time points were kept frozen in liquid nitrogen until DNA/RNA
extraction.

Measuring Gene Expression Levels
Our eight mRNA-seq data sets (0, 0.5, 1, 3, and 6 HAT mRNA-
seq data for WT, and 0, 1, 6 and HAT mRNA-seq data for erf71
upon drought stress) were processed accordingly. After total
RNA was extracted using Tri-Reagent (MRC, Cincinnati, OH,
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USA), poly(A) RNAs were isolated using poly-T oligo-attached
magnetic beads. These were next fragmented, and primer
was attached to them. cDNA strands were then synthesized,
and an adaptor was ligated. After PCR amplification, an
mRNA library was prepared. mRNA deep sequencing (TruSeq
RNA sample preparation Guide, Illumina) produced short
reads. After clipping adapter/primer sequences from the short
reads, we mapped them to the IRGSP1.0 reference genome
(Kawahara et al., 2013; Sakai et al., 2013) using Tophat
(Trapnell et al., 2009). We quantified the expression level
of each gene using Cufflinks (Trapnell et al., 2010) based
on gene information that was downloaded from the Rice
Annotation Project website (http://rapdb.dna.affrc.go.jp/). DEG
analysis was then performed using cuffdiff in the Cufflinks
package.

Network-Based Characterization of
OsERF71 Transgenic Rice
To investigate how overexpression of the OsERF71 TF gene
affected other genes, we used a TF-network-based analysis.
The challenge here was that we had limited knowledge of the
relationships between the TF and its target genes. In addition,
a TF activates or suppresses other TFs, producing chains of
activation and suppression events. Hence, we developed a two-
step bioinformatics strategy of TF-network-based analysis, as
described in Figure 1.

• Step 1: Constructing a dehydration TF network utilizing gene
expression data from databases and a dehydration experiment.

• Step 2: Instantiating phenotype-differential dehydration
networks and identifying DEG modules.

Network Analysis Step 1: Constructing a
Dehydration TF Network Utilizing Gene
Expression Data from Databases and a
Dehydration Experiment
To construct a reliable dehydration TF network, we first
constructed a template TF network utilizing large-scale
microarray data. Before constructing a template TF network,
factors, such as choice of network construction method, the
data set size, and cutoff values were thoroughly investigated. A
recent study investigated many network construction methods
and reported that mutual-information and correlation-based
methods recovered feed-forward loops most reliably (Marbach
et al., 2012). Since the goal of this study was to investigate
the effect of OsERF71-overexpression on other genes through
relationships between the TF and its target genes, which can
be seen as a feed-forward propagation from OsERF71 to other
genes, we selected Pearson’s correlation coefficient (PCC) as
the network construction method. Large-scale gene expression
data sets (1,893 microarray data sets) were downloaded from
the OryzaExpress Gene Expression Network website (http://
bioinf.mind.meiji.ac.jp/OryzaExpress/). Probe-IDs that were
used for microarray experiments were converted to gene-IDs
according to a previous study (Miller et al., 2011). Since PCC is
shown to converge as the sample size increases, we performed
an empirical study to determine whether the data set size

was beyond the convergence threshold and was sufficient
to construct a template TF network robustly. Varying the
number of samples, we produced different sample-size subsets
of the microarray data by random sampling from the 1,893
microarray data sets. For each subset, PCCs between TF and
target genes were then computed and PCC density distributions
and network topologies were investigated (see “TF network
construction” in Discussion). We observed that the density
distributions and the network topologies converged with a
sample size greater than approximately 800. This showed
that 1,893 microarray data sets were sufficient to produce a
robust template TF network. Recent studies that used the PCC
method for biological network construction detected modular
structures of genes in Arabidopsis, rice, and maize networks
(Mao et al., 2009; Ficklin and Feltus, 2011). These studies
reported that each of the modules had a specific biological
function. Based on this result, we defined functionality score as
follows.

Functionality Score(G) = −
∑

ci ∈C

|ci|

N
log10(pci )

In the formula, G is a network and it is divided into a set of
gene clusters, C = [c1, c2, ..., cn], using a graph-based clustering
algorithm (Blondel et al., 2008). N is the number of genes in
the network, and pci is the p-value of the most significant gene
ontology (GO) term in a GO enrichment test of the cluster ci. The
functionality score measures how well a network is divided into
functional gene modules. We investigated functionality score for
each network constructed at different PCC cutoff values (see “TF
network construction” in Discussion). The cutoff value of 0.67
was chosen because the functionality score was maximized at the
cutoff value. TF-target gene pairs with strong association (|PCC|
> 0.67) in the 1,893 microarray data sets were then defined as
edges in the template TF network. The template TF network
consisted of 10,740 genes (898 TFs and 9,842 nonTFs) and
135,550 links (4,073 TF-TF links and 131,477 TF-nonTF links). A
dehydration TF network was then constructed by selecting edges
in the template TF network that had strong association (|PCC| >
0.67) in eight dehydration experiment mRNA-seq data sets. The
constructed dehydration TF network consisted of 7,319 genes
(729 TFs and 6,590 nonTFs) and 50,672 links (1,375 TF-TF links
and 49,297 TF-nonTF links). The topology of the dehydration TF
network is shown in Supplemental Data Set 1. The topology of
the network was visualized using Cytoscape (Saito et al., 2012).

Network Analysis Step 2: Instantiating
Phenotype-Differential Dehydration
Networks and Identifying Differentially
Expressed Gene Modules
In this step, our goal was to identify DEG modules between
WT and erf71 from the dehydration TF networks. To do so, we
employed the following strategy.

- Step 2–1: Phenotype-differential dehydration TF networks
were instantiated by mapping gene expression differences to
node values of the dehydration TF network.
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FIGURE 1 | Transcription factor (TF) network analysis workflow. A template TF network was constructed by selecting strongly co-expressed TF-target gene pairs in

1,893 public domain microarrays. A dehydration TF network was then constructed by selecting strongly co-expressed TF-target gene pairs in eight dehydration

experiment mRNA sequencing data sets. Phenotype-differential dehydration networks were instantiated by mapping gene expression differences to node values.

Clustering analysis was then performed. Differentially expressed gene modules were selected by t-test, and the biological function of gene modules was characterized

by gene ontology (GO) analysis.

- Step 2–2: Graph-based network clustering broke down the
phenotype-differential dehydration TF networks into several
gene clusters according to connectivity.

- Step 2–3: Differential expression and GO enrichment tests
were performed for each cluster.

- Step 2–4: DEG modules were selected and designated as
“modules.”

In Step 2–1, we instantiated phenotype-differential dehydration
TF networks by mapping gene expression differences

between time points for each plant (i.e., log2(W1/W0) and

log2(W6/W0)) as well as differences across plants (i.e.,

log2(E1/A0)-log2(E1/W0)) to nodes of the dehydration TF

network, where “W” and “E” stand for WT and erf71, and

“0”, “1,” and “6” stand for 0, 1, and 6 HAT, respectively. In

Step 2–2, the phenotype-differential dehydration TF networks
were broken down into several gene clusters using a multi-
level network clustering method (Blondel et al., 2008) that
groups highly connected nodes into a cluster of nodes. In Step
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2–3, a paired sample t-test was performed on each cluster
to determine whether each gene cluster was differentially
expressed or not. Also, biological functions of each cluster were
characterized by GO enrichment analysis based on Fisher’s exact
test. In Step 2–4, the clusters showing high-level significance
(p < e-9) in both tests were selected and designated as
“modules.”

Measuring Photosynthesis Levels Using a
Liquid CO2 Supply System to Confirm
Suppression of Photosynthesis under
Drought Stress
Since the suppression of photosynthesis was a key observation
from analyzing sequencing data, we confirmed photosynthesis
levels using a liquid CO2 supply system. For this confirmation
experiment, we re-grew rice while measuring CO2 levels. Since
we needed a large amount of CO2, we had to change experimental
conditions from the three-leaf stage to the eight-leaf stage of
rice and also the time points used. We selected time points
corresponding to the same physiological status and degree of
dehydration stress by measuring gene expression levels of Dip1
through RT-PCR.

For photosynthesis measurements, rice plants at the eight-leaf
stage were subjected to drought stress for 24, 48, and 72 h by
removal of the culture solution. For measurements of Pnet and
Cs, a Li-Cor 6400 photosynthesis measurement system (Li-Cor,
Lincoln, NE) was used to measure gas-exchange ability. Gas-
exchange measurements were performed at four stages: before
treatment, and 24, 48, and 72 h after drought stress treatment.
Leaves were measured in 2 × 3 cm photosynthesis measuring
cuvettes under 1,500mol m−2 s−1 light emitting diode (LED)
light, 400 mmol L−1 CO2 and a cuvette temperature of 25◦C.
Measurements were conducted using the youngest among the
3–4 fully expanded leaves of the WT and erf71 transgenic
plants. Once a leaf was clamped in the chamber, data were
automatically collected every 10 s for 3min, while mid-point
measurements were collected as representative data. A liquid
CO2 supply system (Li-Cor 6400-01, Lincoln, NE) attached to
the photosynthesis measurement system was used to measure
photosynthetic changes based on changes in supplied CO2

concentration. CO2 concentration was adjusted to 400, 300, 200,
100, 50, and 0mmol L−1 CO2. The conditions in the cuvette were
1500mol m−2 s−1 photosynthetically active radiation, 25◦C, and
30–60% relative humidity.

Constructing a TF Cascade Tree with
OsERF71 as the Root Node from the
Dehydration TF Networks
Dehydration differential TF networks were converted into
an OsERF7-centric cascade tree to investigate the connection
between the OsERF71 transgene and the five modules that were
identified in the TF network analysis. To achieve this goal, we
added new edges of strong association (|PCC| > 0.5) to the TF
network to compensate for the loss of connectivity between the
OsERF71 transgene and the five modules. The strong association
value of 0.5 was chosen because it was the lower boundary

that was used for network construction in previous rice species
network studies (Lim et al., 2010; Zhang L. et al., 2012; Lu et al.,
2013; Yang et al., 2013; Hwang et al., 2014). We confirmed that
the five modules were maintained after addition of the new
edges by measuring the clustering coherency value (Fowlkes
and Mallows, 1983). The network was then converted into an
OsERF71-centric cascade tree through level-wise construction
of relationships starting at OsERF71. In this process, OsERF71
was located to the top of the tree and the direct target genes of
OsERF71 in the TF network were then connected with OsERF71
in the cascade tree and located at the level below in the tree.
This process was performed repeatedly for all genes of the five
modules. The full landscape of interactions in the constructed
tree was very complex and it included multiple paths to a single
gene and back edges (i.e., the edges from the TF to the target
gene of previous levels). This complex relationship needed to
be simplified to focus the effect of OsERF71 overexpression.
Therefore, we selected the single path with the greatest PCC
score and removed the other paths as well as the back edges. The
topology of the TF cascade tree is shown in Supplemental Data
Set 2.

Measuring miRNA Expression Levels and
Inferring miRNA-Gene Interaction
We prepared a small RNA library by attaching 3′ and 5′ adaptors
to total RNA, amplifying them by PCR and performing gel
purification. After deep sequencing (Illumina’s TruSeqTM small
RNA sample prep kit), 51-nt-length reads were generated. After
the adaptor sequence was removed, miRanalyzer (Hackenberg
et al., 2011) was used to quantify the expression of known rice
miRNA sequences from the miRBase database (Kozomara and
Griffiths-Jones, 2014). The number of reads matching known
miRNAs divided by the total aligned reads was used to determine
the expression level of miRNAs. Using psRNATarget, a webserver
for predicting small RNA targets in plants (Dai and Zhao, 2011),
candidate miRNA-target gene pairs were generated. For each
of those candidates, the miRNA-target gene pairs showing a
strong negative association of expression (PCC < −0.67) in our
dehydration experiment were selected for the final miRNA-target
gene interactions.

Measuring DNA Methylation Levels and
Identifying Differentially Methylated
Regions
After isolating DNA, we performed whole-genome bisulfite
sequencing from samples of WT and erf71 collected at 0, 1, and
6 HAT. Adaptor sequences were removed from the raw reads,
and the sequences were aligned to the rice genome using BS-
MAP (Xi and Li, 2009). CpG sites with two reads or fewer aligned
were not considered for further analysis. For each CpG site,
we determined the methylation level as the number of methyl
cytosines (i.e., cytosine transformed into thymine by bisulfite
treatment) aligned to the site divided by the number of reads
aligned to the site. This resulted in a normalizedmethylation level
from 0 (hypo-methylated) to 1 (hyper-methylated).
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We then considered a CpG site as a differentially methylated
cytosine if the difference in maximum and minimum
methylation levels among six samples was greater than 0.7,
a measure for differential methylation in the CpG context in
previous studies (Hsieh et al., 2009; Chodavarapu et al., 2012;
Stroud et al., 2013), at the CpG site. The number of differentially
methylated cytosines was 163,982 (1.4%) among 11,512,277 CpG
sites with at least three reads mapped. We defined a differentially
methylated region (DMR) as a genomic region containing more
than eight differentially methylated cytosines in succession (p <

1.0e-12 by Poisson probability). The number of DMRs was 1,607
and they covered 0.14% (526,064 nt/373,245,519 nt) of the rice
genome.

RESULTS

Time-Series Experiments and Multi-Omics
Sequencing Data
We carried out a pilot study to select proper time points for
measuring omics data. Yi and colleagues (Yi et al., 2010) reported
that Dip1 (Os02g0669100) is induced upon dehydration stress
treatment, reaching a peak at 2 HAT and remaining constant
until 8 HAT, which could be used as a response marker for
water deficiency. Thus, we measured the expression level of Dip1
using RT-PCR at different time points during the dehydration
treatment. The expression level of Dip1 peaked at 3 HAT and
continued to be expressed until 6 HAT. This was also confirmed
by the mRNA-seq experiment (Supplemental Figure 1). Thus,
three time points, 0, 1, and 6 HAT, before and after the peak
expression level of Dip1, were selected to study how the plants
responded to dehydration stress. We first performed mRNA
sequencing for six samples, i.e., WT and erf71 for 0, 1, and 6HAT.
We also performed small RNA sequencing and whole-genome
bisulfite sequencing to see if small RNAs or methylation have
any major regulatory roles under drought stress in addition to
TFs. In summary, we generated three types of omics datasets
(mRNA-seq, small RNA sequencing, and whole-genome bisulfite
sequencing) from the two rice plants at three time points under
dehydration stress.

Gene Expression Profile Comparison
between WT and OsERF71-Overexpressing
Rice
A total of 18,567 and 18,555 genes with FPKM (Fragments Per
Kilobase of exon per Million fragments mapped) greater than 1.0
were present in WT and erf71 samples, respectively. The overall
expression level of genes decreased as the dehydration stress
continued in both WT and erf71 (Figure 2A). The p-values were
2e-45, 1e-434, 2e-80, and 1e-348 for the paired t-tests with H1:
W0 > W1,W1 > W6, E0 > E1, and E1 > E6, respectively, where
“W” and “E” stand for WT and erf71, and “0”, “1,” and “6” stand
for 0, 1, and 6 HAT. This observation indicated that both WT
and erf71 responded to dehydration by lowering gene expression
levels globally. DEG analysis determined DEGs as genes being
differentially expressed with p < 0.05 in statistical tests using
Cuffdiff (Trapnell et al., 2010) and showed that the number of

DEGs increasedmore than 3-fold between the 0-to-1 HAT period
and the 0-to-6 HAT period in both plants (Figure 2B). These
two results showed that the transcriptomes of both plants were
affected gradually as dehydration stress continued.

However, erf71 showed a lesser degree of change in gene
expression under dehydration stress in the 0-to-1 HAT period.
The decrease in global gene expression in erf71 was smaller
than that in WT with a significance of p < 0.05 by paired t-
test with H1: log(W1/W0) < log(E1/E0). Most prominently, the
difference in the number of DEGs between WT and erf71 was
more distinctive in the early response phase (i.e., the 0-to-1 HAT
period) than in the late response phase (i.e., the 0-to-6 HAT
period). The number of DEGs in erf71 (220 genes) was four times
smaller than that in WT (925 genes) in the 0-to-1 HAT period.
These results suggest that erf71 was less sensitive to dehydration
stress at the global transcriptome level in the early response phase
(i.e., the 0-to-1 HAT period).

We next performed a GO enrichment analysis of DEGs in
the 0-to-1 HAT period by employing Fisher’s exact test. We
identified 16 and 10 GO terms being enriched with p < 0.05
for WT and erf71, respectively. Five GO terms were commonly
found in WT and erf71, such as “oxidation-reduction process”
and “protein ubiquitination”. Eleven GO terms were specific
to WT, whereas five were specific to erf71 (Supplemental Table
1). However, the GO terms that were specifically enriched to
WT or erf71 were not intuitive for elucidating the difference of
response between WT and erf71, which showed the limitations
of the DEG-based analysis. Recent studies reported that network
analysis has benefits for analyzing genomics data at the level
of individual genes (i.e., DEG analysis) because it considers
relationships between genes (Chi et al., 2014) and results are
often easier to interpret and potential causal mechanisms can
be identified (The Mutation and Pathway Analysis Working
Group of the International Cancer Genome, 2015). Thus, we
developed and performed a systemic bioinformatics pipeline that
utilizes a transcriptional network to characterize the difference in
gene expression response between WT and erf71. Especially, we
focused on gene regulation mechanisms by TFs since our goal
was to investigate the transcriptomic influence affected by the
overexpression of OsERF71, a TF gene.

Network-Based Characterization of
OsERF71-Overexpressing Rice
The goal of this step was to characterize the differences in
gene expression response between WT and erf71 utilizing a
TF-target gene regulatory network (TF network hereafter).
In a TF network, nodes are genes (TFs and nonTFs) and
edges are connections between TFs and potential target genes
including TFs. Our TF network did not include edges between
nonTF genes since we focused on transcription-factor-centered
regulation. To achieve this goal, we developed and implemented
a bioinformatics pipeline for TF network analysis (see “Network-
based characterization of OsERF71 transgenic rice” in Materials
and methods).

A template TF network was constructed by selecting TF-
target gene pairs with strong associations (|PCCs| > 0.67) in
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FIGURE 2 | Gene expression profiles under dehydration stress. (A) Gene expression levels in FPKM (Fragments Per Kilobase of exon per Million fragments mapped)

for six samples (i.e., two plants for three time points): WT (white) and erf71 (gray) for 0, 1, and 6 h after treatment (HAT). Medians of gene expression (black lines in the

center of the boxes) decrease as the dehydration stress continued. (B) The number of differentially expressed genes (DEGs) in WT (white) and erf71 (gray). In the

0-to-1 HAT period, the number of DEGs in the WT (925 genes) is much greater than that in erf71 (220 genes).

eight mRNA-seq data sets from our experiment and in 1,893
microarray data sets in the public domain. Differences in gene
expression levels (i.e., log2 fold change) were then assigned to
the genes in the network. Figures 3A,B shows the constructed
dehydration TF networks of WT and erf71, respectively, where
red/blue dots denote up/down-regulated genes before and after
dehydration stress (i.e., 0 HAT vs. 1 HAT). Figure 3C shows a
phenotype-differential TF network where red/blue dots denote
relatively differentially regulated genes between WT and erf71.
In other words, red dots indicate genes that are relatively up-
regulated (more up-regulated or less down-regulated) in erf71
under dehydration stress.

We divided the TF network into 88 gene clusters by grouping
highly connected genes into a cluster by a graph-based network
clustering algorithm. We then characterized each cluster by
differential gene expression and GO enrichment tests. Finally, we
identified five gene clusters, with 713, 1,363, 537, 1,586, and 1,605
genes, showing high-level significance (p < e-9) in both tests.
We designated the five clusters as “modules.” Figure 4 shows
the characteristics of the five modules—plots of the expression
levels, the position in the TF-TG network, and the results of GO
enrichment tests.

As shown in Figure 4A, the mean expression levels of the
five modules were changed in one direction (i.e., increased or
decreased) as dehydration stress continued in both rice plants,
but the degree of change was different between the two rice
plants. Module 1 was up-regulated in both types of rice but
less up-regulated in erf71. Modules 2, 3, and 4 were down-
regulated in both types of rice but less down-regulated in erf71.
Module 5 was down-regulated in both types of rice but more
down-regulated in erf71.

The results of GO enrichment analysis showed that each
module had different enriched GO biological process terms.
Module 1 included drought-response-related TFs. A majority of
genes in Module 2 were related to translation; most of the genes

in Module 3 were related to response to oxidative stress; Module
4 included genes with diverse functions but many genes were
related to the cell division cycle; and a large number of genes in
Module 5 were related to photosynthesis. Figure 4C summarizes
the results of the differential gene expression test and GO terms
enrichment test for the five modules. The next section presents
detailed analysis on each module.

Analysis of Module 1:
Drought-Response-Related TFs Are
Up-Regulated Less in
OsERF71-Overexpressing Rice
The GO term highly enriched in Module 1 was DNA-dependent
regulation of transcription (GO:0006355). According to the TF
list obtained from the plant TF special database, PlantTFDB (Jin
et al., 2014), about a fifth of the genes in Module 1 (143/713)
consisted of TFs: WRKY (27), ERF (23), NAC (17), C2H2 (10),
bZIP (9), bHLH (7), MYB (6), GRAS (6), HSF (5), MYB related
(5), Trihelix (4), C3H (4), HD-ZIP (2), Dof (2), NF-YB (2),
SBP (2), G2-like (2), ARR-B (2), NF-YC (1), CO-like (1), RAV
(1), CAMTA (1), VOZ (1), ARF (1), CPP (1), and DBB (1),
where the numbers in parentheses indicate the number of genes
included in the module. Among them, TF families, such as
WRKY, ERF, NAC, C2H2, bZIP, bHLH, and MYB are well-
known drought-stress-related TF families (Chen et al., 2012;
Mizoi et al., 2012; Nakashima et al., 2012, 2014; Lindemose
et al., 2013; Singh and Laxmi, 2015). Moreover, alterations in
the expression of 10 TFs in Module 1, Os01g0797600 (OsAP37)
(Oh et al., 2009), Os01g0968800 (OsDREB1F) (Wang et al.,
2008), Os02g0654700 (OsAP59) (Oh et al., 2009), Os03g0741100
(OsbHLH148) (Seo et al., 2011), Os03g0815100 (SNAC1) (Hu
et al., 2006), Os03g0820300 (ZFP182) (Zhang H. et al., 2012),
Os05g0322900 (OsWRKY45) (Qiu and Yu, 2009), Os11g0127600
(ONAC045) (Zheng et al., 2009), Os11g0184900 (OsNAC5)
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FIGURE 3 | Phenotype-differential dehydration transcription factor (TF) networks. The three dehydration differential networks were instantiated by mapping gene

expression differences to node values of the dehydration TF network. The node values are represented by red-white-blue-gradation. The two time-point differential

networks (A,B) were instantiated by mapping gene expression differences between time points, such as log2(W1/W0) and log2(E1/E0), respectively, where “W” and

“E” stand for WT and erf71, and “0”, “1”, and “6” stand for 0, 1, and 6 h after treatment. In these networks, the red/blue color represents up-/down-regulation of gene

expression under dehydration stress. A phenotype-differential network (C) was instantiated by mapping gene expression differences between the two rice plants,

such as log2(E1/E0)-log2(W1/W0). In this network, the red/blue color represents relative up-/down-regulation of gene expression in erf71 compared with WT. The

dehydration differential TF networks showed gene cluster structures distinctively, where a gene cluster indicates a sub-network with member genes highly connected

to each other. They also showed a trend that member genes within gene clusters had common gene expression difference patterns.

FIGURE 4 | (A) Gene expression levels of the five differentially expressed modules. The y-axis shows the mean log2 fold change in gene expression level with respect

to the 0 h after treatment (HAT) time point. Error bars are standard error of the means (SEMs). Module 1 was up-regulated in both types of rice but less so in erf71.

Modules 2, 3, and 4 were down-regulated in both types of rice but less down-regulated in erf71. Module 5 was down-regulated in both types of rice but more

down-regulated in erf71. (B) Module structures of the five modules with different colors in the dehydration network. Numbers in circles represents each module. (C)

Results of the differential expression test and the gene ontology (GO) enrichment test of the five gene modules. The differential expression test of each module was

performed using a t-test at 0-to-1 HAT between WT and erf71. The GO enrichment test was performed by Fisher’s exact test. A p-value cutoff (p < 10−9) was used

to decide differential expression and enriched GO terms.

(Song et al., 2011), and Os12g0583700 (ZFP252) (Xu et al.,
2008), have already been reported to produce drought-resistant
phenotypes.

We conducted RT-PCR experiments to confirm the
expression levels of the TFs in Module 1 that have
not yet been documented to affect drought resistance.
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Among them, eight TF genes, Os02g0764700 (OsERF103),
Os03g0180900 (TIFY11C, OsJAZ2), Os03g0327100 (ONAC039,
OsCUC1), Os03g0820400 (ZFP15), Os04g0671800 (OsC3H32),
Os04g0676700, Os06g0670300, and Os12g0123800 (ONAC132,
ONAC300), were shown to be up-regulated in both plants but less
up-regulated in erf71 during the 0-to-1 HAT period in response
to drought stress (Supplemental Figure 2). Os03g0180900
(TIFY11C, OsJAZ2) is a gene of the JAZ family that contains
a well-conserved domain called ZIM or TIFY (Vanholme
et al., 2007). It was induced under drought stress and also
by the overexpression of OsbHLH148, a gene that causes
drought tolerance when overexpressed. Also, OsJAZ2 exhibited
a weak interaction with OsbHLH148 and has been proposed to
target activation of OsbHLH148 (Seo et al., 2011). Os03g0327100
(ONAC039,OsCUC1) andOs12g0123800 (ONAC132,ONAC300)
were reported to be responsive to drought, salt, and cold stress
(Fang et al., 2008). These results show that the eight TFs were
differentially regulated in WT and erf71 during the 0-to-1
HAT period and putatively related to the drought-resistance
mechanism.

Genes in Module 1 were up-regulated in both WT and
erf71, and Module 1 was the only up-regulated module among
all five modules. As overall gene expression levels decreased
with continued dehydration stress, indicating the suppression
of various activities, up-regulation was a relatively unexpected
phenomenon. We found that Module 1 contained many up-
regulated DEGs (31 up-DEGs among total 112 up-DEGs in
both plants in the 0-to-1 HAT period) with a significance
level of p < 1.0e-23 by Fisher’s exact test. In summary, the
expression level of TF genes was increased in our dehydration
response network, and those TF genes seemed to form a modular
structure in the network clustering analysis, suggesting that there
might be particular biological functions of the TF module. This
observation needs further investigation, which was beyond the
scope of this study.

OsERF71, the overexpressed gene, was present in Module 1
and it had three direct neighbors (Os03g0701700, Os10g0346600,
and Os11g0157200) in the module. Genes in Module 1 were
directly connected to the transgene, unlike those in the other
modules.

Although gene expression levels increased in Module 1,
the degree of change differed between WT and erf71. Gene
expression increased less in erf71 in the early response phase
(i.e., the 0-to-1 HAT period). This trend, relatively small gene
expression changes in erf71 in the early response phase, was
observed consistently in the results of other analyses: the number
of DEGs was smaller in erf71, and the magnitude of change in
expression was smaller for genes in Modules 2, 3, and 4 and
globally during the 0-to-1 HAT period.

Analysis of Modules 2, 3, and 4: Critical
Survival-Related Genes Are Maintained
Three modules, Module 2, Module 3, and Module 4, included
genes that were relatively up-regulated in erf71 compared
with WT. The enriched GO terms were genetic information
processing and translation for Module 2; response to oxidative

stress for Module 3; and cell cycle for Module 4. All significantly
enriched GO terms were commonly related to essential biological
processes for sustaining life.

In Module 3, 54 genes were related to oxidative reduction
(GO:0055114) while 23 were related to response to oxidative
stress (GO:0006979). Oxidation is closely related to water
deficiency tolerance in plants. In particular, reactive oxygen
species (ROS) are known to be overproduced in response to
abiotic stress. ROS are highly reactive and toxic, causing damage
to proteins, lipids, carbohydrates, and DNA when they exceed
the cell’s antioxidant removal capacity (Miyamoto et al., 2003;
Gill and Tuteja, 2010). Since those genes in erf71 were down-
regulated to a lesser extent than in WT, it is possible that erf71
is more capable of detoxifying the rising level of oxidation,
preventing severe damage to the plant.

Analysis of Module 5: Expression of Genes
That Are Related to Photosynthesis Is
Down-Regulated Further
Module 5 consisted of genes that were down-regulated more in
erf71 compared with WT. The significant GO terms enriched in
the module were related to photosynthesis (p < e-13). During
photosynthesis, the plant synthesizes chemical compounds using
energy from light. However, such photosynthetic metabolic
processes require energy use by the plant. For example, toxic
elements are generated as a subsidiary product that must be
detoxified, requiring the production of anti-toxic elements by
the plant. Thus, maintaining such photosynthetic metabolism
during a critical situation, such as dehydration, will hinder the
survival of the plant (Ramachandra Reddy et al., 2004). In our
analysis, erf71 transgenic rice showed strong down-regulation
of gene expression levels of photosynthetic genes compared
with WT, suggesting that erf71 was possibly able to shut down
photosynthesis mechanisms in response to dehydration stress.

Photosynthesis Is Suppressed
Physiologically Further in
OsERF71-Overexpressing Rice
Smaller changes in gene expression in erf71 in the early response
phase (i.e., the 0-to-1 HAT period) were observed consistently.
For instance, the number of DEGs was smaller in erf71, and
the magnitude of the decrease in expression was smaller in
erf71 when considering all genes. TF network analysis also
showed that genes in Modules 2, 3, and 4 were related to
survival-associated biological functions under stress conditions,
such as microtubule-based movement, translation, and response
to oxidative stress, and these were down-regulated less in
erf71 compared with WT. This observation is intuitive since
maintaining gene expression levels of survival-related genes
promotes the dehydration-resistant phenotype. However, genes
in Module 5 that were related to photosynthesis showed a greater
response in erf71 (i.e., the genes in Module 5 were down-
regulated more in erf71). Since this was a key observation in
this study, we measured the photosynthetic levels of WT and
erf71 plants under dehydration stress through an experiment
at the physiological level. The experiment confirmed that net
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FIGURE 5 | Differences in net photosynthesis levels in WT and erf71 plants under drought stress treatment. The net photosynthesis levels were measured for WT and

erf71 at four time points under drought stress and then normalized with respect to the control sample (i.e., stress treated sample–control sample). Error bars are

pooled standard error of the means (pooled SEMs). The net photosynthesis level was down-regulated in both types of rice but more so in erf71.

photosynthesis levels decreased in both plants but with greater
magnitude (2-fold) in erf71 (Figure 5).

OsERF71 Cascade Tree Analysis at 1 and 6
HAT
We investigated the effects of overexpression of OsERF71 in
erf71 by converting the differential TF regulatory network
of five gene modules described in the previous section into
an OsERF71-transgene cascade tree. The OsERF71-transgene
cascade tree is a tree graph structure with OsERF71 as the
root node and putative downstream genes in the five modules
as child nodes. The network was transformed into a tree by
applying the single-source shortest TF regulatory path strategy
(see “Constructing TF cascade tree with OsERF71 as the root
node from dehydration differential TF networks” in Materials
and methods). The resulting OsERF71 cascade tree is shown in
Figure 6. We defined “depth” in the tree as the number of edges
in the shortest path from OsERF71 to the gene. Small-world
networks are known to have a property called six degrees of
seperation, in which all nodes in the network are connected to
each other within a few steps. The cascade tree preserves this
property since OsERF71 is connected to all the genes within
six depth levels in our cascade tree. In addition, we found in
the cascade tree, major paths starting at the OsERF71 transgene
followed by regulatory hub TFs. Here, regulatory hub TFs
(described by the large rectangle nodes in Figure 6) indicated
transcription factors that had a large number of genes (more than
200 genes) in their downstream in the cascade tree. Moreover, we
observed that there were nine dominant major paths covering
the majority of genes of each module in the cascade tree. For

instance, 79% of the genes in Module 5 were downstream of
two major regulatory paths. One of the paths included 56% of
the genes of Module 5. The upstream of the path consisted of a
chain of hub TFs, Os06g0194000, Os07g0583700, Os03g0854500,
and Os06g0105800, which are tagged by numbers 1, 2, 3, and
4 in Figure 6. The major regulatory paths are summarized in
Table 1. We discuss regulation of the modules in detail in
“Potential regulatory paths to the five functional modules” in the
Discussion.

Multi-Omics Data Analysis of Differential
Network Modules
The TF network analysis suggested that the five modules in the
dehydration TF network were differentially expressed between
WT and erf71 in response to dehydration stress. To further
investigate the regulation of the five modules in the dehydration
TF network, we generated and analyzed the DNA methylome
and miRNA sequencing data measured at 0, 1, and 6 HAT. DNA
methylation sequencing data was used to investigate whether
expression of genes in the five modules in the dehydration
TF network was affected by DNA methylation, i.e., TF-DNA
interaction, especially in the promoter regions. In addition, we
also used miRNA sequencing data to investigate whether these
genes were affected by miRNAs.

DNA Methylation Analysis to Investigate
TF-DNA Interaction
Whole-genome bisulfite sequencing was performed at 0, 1, and 6
HAT in WT and erf71 rice plants. Analysis of DNA methylation
profiles showed that the average methylation levels in erf71
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FIGURE 6 | OsERF71 cascade tree. This tree structure network was created by transforming the transcription factor (TF) regulatory network in Figure 3 into an

OsERF71-rooted cascade tree. Nodes (n = 5,804) are TF or nonTF genes that are colored according to modules. Edges are TF regulatory relationships between pairs

of genes that are colored according to positive/negative correlation. The cascade depth level on the left indicates the number of edges in the shortest path from

OsERF71 to that point. Hub TFs that have more than 200 genes in their downstream are highlighted by using large node sizes with gene numbers from 1 to 18,

whose corresponding gene IDs are Os06g0194000, Os07g0583700, Os08g0157900, Os04g0543500, Os03g0854500, Os06g0105800, Os03g0711100,

Os03g0680800, Os03g0795900, Os06g0140400, Os01g0211800, Os12g0597700, Os03g0318600, Os04g0676700, Os10g0561400, Os06g0152200,

Os11g0544700, and Os07g0496300, respectively. This network shows a holistic picture of potential regulatory paths to the five gene modules.

were slightly lower than those in WT at the whole-genome
level. Meanwhile, differences in methylation level between time
points were not seen (Figure 7A), which suggested that DNA
methylation did not change over the time course of dehydration
stress. We then investigated differences in the methylome
between WT and erf71 and found 1,607 DMRs with p < e-
12 under Poison’ distribution (see “Identifying differentially
methylated regions” in Materials and methods). The DMRs
covered 0.15% of the genome, and the majority of DMRs
(1,436 DMRs) were hypomethylated in erf71. This result is
consistent with studies observing that transgenic plants show
stable hypomethylation on overall DNA compared with non-
transgenic plants (Stroud et al., 2013; Stelpflug et al., 2014).

Searching for overlaps between promoters of genes and
DMRs, we found that promoters of 494 genes (1.3% of total
genes) overlapped with DMRs. Among them, 62 genes belonged
to the five modules (2, 15, 5, 9, and 21 genes to Modules 1 to
5, respectively). From the Fisher’s exact test, the hypothesis that
there was a greater number of DMR-overlapping genes in the five
modules vs. DMR-overlapping genes not in the five modules was
not significant (i.e., p> 0.05), as shown inTable 2. This suggested
that gene expression differences of the modules were not likely
due to differences in DNA methylation.

miRNA Analysis to Show Potential miRNA
Interference on Modules
In addition to TFs, another major mechanism of gene control
is by miRNAs. To investigate whether miRNAs affected genes in
the OsERF71 cascade tree, small RNA sequencing was performed

at 0, 1, and 6 HAT in WT and erf71 rice plants. At 1 and
6 HAT, differentially expressed miRNAs (DEmiRNAs) were
identified (fold change >2 or fold change <1/2) (Figure 7B).
There was one DEmiRNA during the 0-to-1 HAT period in
both plants, and 20 and 15 DEmiRNAs during the 0-to-6 HAT
period in WT and erf71, respectively. Among DEmiRNAs, we
found that osa-miR166j was down-regulated during the 0-to-
6 HAT period in both WT and erf71. Down-regulation of the
MIR166 family in response to drought in rice was reported
in previous studies (Zhou et al., 2010; Barrera-Figueroa et al.,
2012; Cheah et al., 2015). As a next step, we performed a
target gene analysis for the 32 unique DEmiRNAs and found
742 genes as potential targeted genes. Among them, 222 genes
belonged to the five modules (4, 66, 10, 55, and 87 genes
to Modules 1 to 5, respectively). The result of Fisher’s exact
test showed that DEmiRNA target genes were significantly
represented in the modules (five modules and Modules 2, 4, and
5) compared with target genes not in the modules, as shown
in Table 3. This suggested that gene expression differences in
the modules were possibly due to regulation by miRNAs as well
as TFs.

DISCUSSION

TF Network Construction
The TF network is the major computational resource for
investigating biological mechanisms under dehydration
conditions. Thus, we investigated all issues related to the TF
network construction thoroughly.
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TABLE 1 | The major regulatory paths to the five modules that were observed in the OsERF71 cascade tree. Nine major regulatory paths that covered more than 10% of

genes in the modules were observed in the OsERF71 cascade tree.

No Genenumber Gene ID Genedescriptions Coverage (% of

Module)

The most significant

GO term

P-value

1 1 Os06g0194000 OsERF71 66 % of Module 1 Translation 2.1e-55

12 Os12g0597700 Similar to WRKY2

2 1 Os06g0194000 OsERF71 21 % of Module 1 Translation 1.4e-10

2 Os07g0583700 WRKY transcription factor 78

3 Os08g0157900 Similar to NAM protein

3 1 Os06g0194000 OsERF71 56 % of Module 5 Photosynthesis 2.6e-21

2 Os07g0583700 WRKY transcription factor 78

5 Os03g0854500 Similar to Heat shock transcription factor 31

6 Os06g0105800 Homeodomain-like containing protein.

4 1 Os06g0194000 OsERF71 23 % of Module 537 % of

Module 3

Citrate transport 3.9e-04

2 Os07g0583700 WRKY transcription factor 78

5 Os03g0854500 Similar to Heat shock transcription factor 31

8 Os03g0680800 Similar to cDNA clone: J013124I05

5 1 Os06g0194000 OsERF71 46 % of Module 2 Translation 7.9e-10

16 Os06g0152200 Zinc-finger protein R2931

17 Os11g0544700 Repressor protein.

6 1 Os06g0194000 OsERF71 35 % of Module 2 Translation 2.4e-100

12 Os12g0597700 Similar to WRKY2

13 Os03g0318600 Similar to Transcription factor HBP-1b

15 Os10g0561400 Similar to Transcription factor MYBS3.

7 1 Os06g0194000 OsERF71 51 % of Module 327 % of

Module 4

Response to oxidative

stress

1.9e-12

2 Os07g0583700t WRKY transcription factor 78

9 Os03g0795900 Similar to Heat shock transcription factor 31

10 Os06g0140400 Similar to HAHB-6

8 1 Os06g0194000 OsERF71 19 % of Module 4 Lipid metabolic

process

2.3e-05

2 Os07g0583700 WRKY transcription factor 78

9 Os03g0795900 Similar to Heat shock transcription factor 31

11 Os01g0211800 Similar to VirE2-interacting protein VIP1.

9 1 Os06g0194000 OsERF71 14 % of Module 4 DNA replication 2.3e-06

12 Os12g0597700 Similar to WRKY2

13 Os03g0318600 Similar to Transcription factor HBP-1b

14 Os04g0676700 Similar to H0101F08.8 protein

Gene numbers in the second column indicate the numbers given in Figure 6. The gene IDs of TFs in the paths are shown in the third column, where bold text indicates that the genes

belong to Module 1. The most enriched GO term and its p-value for the downstream genes in each regulatory path are described in right-most column.

• Choice of the correlation-based TF network construction
method.

• Effect of amount of omics data for network construction.
• Effect of cutoff values for a minimum correlation between

genes.
• Comparison with other network construction and analysis

methods.

Choice of the Correlation-Based TF
Network Construction Method
Gene regulation network construction methods centered around
TFs have been extensively studied over the years, and

network-based analysis of omics data has been successful in
reconstructing gene regulatory paths under specific conditions.
For example, Califano and colleagues (Basso et al., 2005)
demonstrated a reverse-engineered construction of regulatory
networks in human B-cells using gene expression data. A
recent comprehensive study (Marbach et al., 2012) of biological
network construction methods classified network construction
methods into several groups based on the techniques used:
regression (Haury et al., 2012), mutual information (Faith et al.,
2007), correlation (Butte and Kohane, 2000), Bayesian networks
(Statnikov and Aliferis, 2010), other approaches (Huynh-Thu
et al., 2010), and meta predictors (Greenfield et al., 2010).
According to the study (Marbach et al., 2012), correlation-based
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FIGURE 7 | Profiles of miRNA and DNA methylation. (A) Average DNA methylation level of CpG sites in genomic regions. This shows that DNA was hypomethylated

in erf71 but not significantly changed as the dehydration stress continued. (B) The number of differentially expressed micro RNAs (DEmiRNAs) at 0-to-1 and 0-to-6 h

after treatment periods.

TABLE 2 | Results of the association test between differential DNA methylation

and the five gene modules.

Gene

module

DMR genes

in module

Genes in

module

DMR genes not

in module

Genes not

in module

p-value

Module 1 2 713 492 37,156 1.00

Module 2 15 1,363 479 36,506 0.78

Module 3 5 537 489 37,332 0.83

Module 4 19 1,586 475 36,283 0.68

Module 5 21 1,605 473 36,264 0.53

After identifying differentially methylated regions (DMRs), genes whose promoters

overlappedwith DMRswere investigated. Fisher’s exact test was then used to evaluate the

hypothesis that DMR-overlapping genes were observed more frequently in the modules

compared with not in the modules. The results showed no significant association between

differential DNA methylation and the five gene modules.

network construction is effective for investigating feed-forward
networks. Our study on the role of OsERF71 in the acquisition
of the drought-resistant phenotype can be seen as investigating
feed-forward networks originating from OsERF71. Therefore,
we used a method based on Pearson’s correlation for network
construction.

Effect of Amount of Omics Data for
Network Construction
In addition to the methods used for network construction,
the amount of omics data used for network construction has
a significant impact on the network topology. Hence, it was
important to investigate whether the omics data we used for this
study was sufficient to produce a network topology invariant
of the size of data set used. To investigate this, we performed
comprehensive network construction experiments with varying
numbers of microarray data sets, from four to 1,893, doubling
the microarray data size at each round. To reduce sampling bias,

TABLE 3 | Results of the association test between target genes of differentially

expressed miRNAs (DEmiRNAs) and the five gene modules.

Gene

module

DEmiRNA

genes

in module

Genes in

module

DEmiRNA

genes not

in module

Genes not

in module

p-value

Module 1 4 713 738 37,156 1.00

Module 2 66 1,363 676 36,506 2.0e-11

Module 3 10 537 732 37,332 0.61

Module 4 55 1,586 687 36,283 3.7e-05

Module 5 87 1,605 655 36,264 1.2e-17

After determining target genes of the DEmiRNAs, Fisher’s exact test was used to evaluate

the hypothesis that DEmiRNA target genes were observed more frequently in the modules

compared with not in the modules. The results showed that the associations between

DEmiRNA target genes and Modules 2, 3, and 5 were significant (Bold value indicates

p < 0.05).

we used 10 randomly sampled microarray data sets for each
network experiment with n samples from n = 4 to n = 1,893;
i.e., the network was constructed 10 times given a sample size n.
We then found that as the sample size increased, the Pearson’s
correlation coefficients converged into a normal-distribution-like
shape (Supplemental Figure 3). As the sample size increased,
the topology differences among the 10 networks with different
samples disappeared, converging into a single network topology.
The network topology was the same in more than 90% of
network construction experiments from sample size 800 to 1,893
(Supplemental Figure 4).

Effect of Cutoff Values for a Minimum
Correlation between Genes
The network topology is determined by a cutoff value for a
minimum correlation value between two genes. To choose a
reliable cutoff value, we measured the functionality scores as
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defined in Materials and methods using varying cutoff values
and then found that the cutoff value of 0.67 maximized the
functionality score (Supplemental Figure 5). To investigate the
effect of cutoff value, we generated networks using varying cutoff
values. We observed that the five modules were consistently
produced at PCC cutoff values ranging from 0.5 to 0.85
(Supplemental Figure 6). This result shows that the TF network
module analysis generated robust results for varying cutoff
values.

Comparison with Other Network
Construction and Analysis Methods
Our choice of the correlation-based network construction
method was based on a recent study byMarbach et al. (2012) that
reported that correlation-based network construction is the most
effective method for recovering feed-forward loops, which can be
seen as a regulation mechanism of the feed-forward propagation
from OsERF71, which was the subject of this study. However,
we also examined two major network construction and analysis
methods as described below.

We constructed another template TF network using a state-of-
the-art gene-expression-based TF network construction method,
Narromi (Zhang et al., 2013). Using 1,893 microarray data sets,
Narromi produced 6,213,143 TF-target gene edges (p < 0.05).
Edges of strong association (|PCC| > 0.67) in eight mRNA-seq
data sets were then selected. The Narromi-based dehydration
TF network consisted of 23,236 genes and 1,286,285 edges. Of
these, 7,314 genes, and 28,616 edges were common with our
correlation-based network. In the network, seven gene cluster
structures were observed (Supplemental Figure 7A). Among
the clusters, we found that five gene clusters were differentially
expressed (Supplemental Table 2). In summary, the discovery
of five functional modules was confirmed by the network
constructed using Narromi.

Another TF network analysis was performed using RiceNet
(Lee et al., 2011), a well-curated gene-gene interaction network.
RiceNet consists of 14,949 TF-target gene edges. Since our goal
was to characterize the role of a knockout TF, we excluded
edges between nonTFs. Edges with strong association (|PCC|
> 0.67) in eight mRNA-seq data sets were then selected. The
RiceNet-induced dehydration TF network consisted of 2,345
genes and 3,667 edges. Of these, 1,234 genes and 456 edges were
common with our correlation-based network. In the network,
137 gene cluster structures were observed (Supplemental Figure
7B). Among the clusters, we found that one gene cluster
was differentially expressed (Supplemental Table 2). Only one
network module was detected in the RiceNet network. We
conjecture that this is because we excluded edges between two
nonTF genes, which could affect the formation of gene clusters.
In addition, RiceNet is a general template network that is not
designed for condition-specific gene expression data.

Characteristic Physiological Mechanisms
in Modules
Many genes in Module 5 were related to photosynthesis
and energy-generating mechanisms: functions of genes

were related to light (e.g., Os01g0764500, similar to
uvrB/uvrC motif-containing protein) and photosynthesis
(e.g., Os01g0773700, similar to photosystem II reaction
center W protein; Os03g0267300, similar to fructose-1,6-
bisphosphatase; Os12g0291100, Rubisco small subunit), energy
transfer (e.g., Os03g0278900, ATPase; Os11g0661300, similar
to ADP/ATP translocase-like protein), and subsequent anabolic
pathways, such as those for carbohydrate (e.g., Os01g0686200,
UDP-glucuronosyl/UDP-glucosyltransferase family protein),
carbohydrate movement and translocation (e.g., Os03g0363500,
similar to vacuolar monosaccharide symporter 1), amino
acid synthesis (nitrogen fixation) (e.g., Os06g0694500, similar
to nitrogen fixation like protein; Os07g0658400, similar to
ferredoxin-dependent glutamate synthase), and lipid synthesis
(e.g., Os02g0589000, lecithin:cholesterol acyltransferase family
protein). In summary, based on functions of the genes in Module
5, biological mechanisms of Module 5 were related to energy
generation, storage and transfer. Recall that genes in Module
5 were more down-regulated in erf71 than in WT at 1 HAT.
This suggests a fast and flexible response in the early stages of
drought stress that may be directly and/or indirectly related to
the successive physiological mechanisms observed in Modules 2,
3, and 4.

Discontinuation of water supply to the plant is known to
result in loss of tension and decrease in water potential in the
cells of leaves, which directly affects most metabolic pathways,
particularly photosynthesis as shown above. The widely known
water split process that activates an electron and releases it
from the water molecules in the reaction center of PSII is
affected by water shortage in photosynthetic cells. Most of
the genes that code for proteins of PSII were down-regulated
in both WT and erf71, which is consistent with our current
knowledge.

ROS, including hydrogen peroxide (H2O2), superoxide
anion (O−

2 ), hydroxyl radical (
.OH) and singlet oxygen (1O2),

are produced in chloroplasts, mitochondria, peroxisomes, cell
membranes and cell wall spaces (Moradi and Ismail, 2007).
Many enzymes and physical processes are involved in ROS
production and scavenging. A large portion of ROS is
produced by NADPH oxidase (NOX) during photosynthesis
and photorespiration, and representative ROS scavenging
enzymes are superoxide dismutase (SOD), catalase (CAT),
peroxidase (Perox), and ascorbate peroxidase (APX) while
non-enzymatic scavenging systems include various flavonoids,
alkaloids, phenolic compounds, tocopherols, carotenoids, and
metallothioneins (MTs) (Ueda et al., 2013; Han et al., 2014).
It has traditionally been believed that under conditions of
limited water supply the response of rice plants is to overcome
physical and chemical damage and that the generation of
ROS is the result of accumulation from cellular breakdown.
However, recent studies have revealed that ROS may confer
protection against water stress (Kar, 2011). ROS may be involved
in homeostasis and various metabolic changes, morphological
and anatomical changes, and metabolic adaptation by rice
plants under water stress closely related to drought avoidance
or postponement and alleviation of stress-induced cellular
injuries.
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Potential Regulatory Paths to the Five
Functional Modules
TF network analysis showed that Module 1 was associated with
drought-stress-related TFs. That is, 20% of genes in Module 1
consisted of TFs, most of which belonged to water-stress-related
TF families. In addition, only Module 1 was up-regulated in both
WT and erf71 in response to dehydration stress whereas the
other modules were down-regulated. Overexpressing OsERF71
influenced Module 1 by reducing the up-regulation of expression
of the member genes under dehydration stress. Analysis of
an OsERF71 cascade tree showed that TFs in Module 1 were
present in every upstream of nine major regulatory paths as
highlighted in bold type in Table 1. These results suggest that the
down-regulation of overall gene expression is initiated upon up-
regulation of the stress-induced TFmodule. We also suggest nine
major regulatory paths determining how the downstream genes
of themodules are regulated during dehydration stress treatment.
However, since these were established by inference, they should
be validated by further experiments. In addition, we found that
miRNA was also involved in the control of gene expression of
the five differentially expressed modules. For instance, we found
that osa-miR319a was up-regulated under dehydration stress in
erf71, which is consistent with the observations of a previous
study (Zhou et al., 2010). The 8, 12, 2, and 5 predicted target genes
of osa-miR319a were distributed in Modules 2 to 5, respectively.
Regulation by both TF and miRNA as we suggest is statistically
supported, but there needs to be experimental validation for each
path and thus future study is required.
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