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Chimeric fluorescent fusion proteins have been employed as a powerful tool
to reveal the subcellular localizations and dynamics of proteins in living cells.
Co-expression of a fluorescent fusion protein with well-known organelle markers in
the same cell is especially useful in revealing its spatial and temporal functions
of the protein in question. However, the conventional methods for co-expressing
multiple fluorescent tagged proteins in plants have the drawbacks of low expression
efficiency, variations in the expression level and time-consuming genetic crossing.
Here, we have developed a novel robust system that allows for high-efficient
co-expression of multiple chimeric fluorescent fusion proteins in plants in a time-saving
fashion. This system takes advantage of employing a single expression vector
which consists of multiple semi-independent expressing cassettes for the protein
co-expression thereby overcoming the limitations of using multiple independent
expressing plasmids. In addition, it is a highly manipulable DNA assembly system, in
which modification and recombination of DNA molecules are easily achieved through
an optimized one-step assembly reaction. By employing this effective system, we
demonstrated that co-expression of two chimeric fluorescent fusion reporter proteins
of vacuolar sorting receptor and secretory carrier membrane protein gave rise to their
perspective subcellular localizations in plants via both transient expression and stable
transformation. Thus, we believed that this technical advance represents a promising
approach for multi-color-protein co-expression in plant cells.

Keywords: protein co-expression, chimeric fluorescent fusion protein, protein subcellular localization and
dynamics, isothermal recombination reaction, transient expression, genetic stable transformation

INTRODUCTION

Green fluorescent protein (GFP) and its variants have been widely used for studying protein
localization and dynamics of events such as endomembrane trafficking and cytoskeletal
reorganization in living cells. Knowledge on the subcellular localization of proteins provides
significant clues for an understanding of their physiological functions and underlying molecular
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properties (Tsien, 1998; Tsien and Miyawaki, 1998; Zhang et al.,
2002; Giepmans et al., 2006; Wang, 2016). In particular, it is
useful to co-express a chimeric fluorescent fusion protein with
intracellular reporter proteins and organelles in the same cell
to better understand its spatiotemporal functions (Lippincott-
Schwartz et al., 2001; Zhang et al., 2002, 2004; Tse et al., 2004;
French et al., 2008; Lam et al., 2008; Wang et al., 2013, 2016).

In plants, the expression of a chimeric fluorescent fusion
protein can be achieved via transient expression or stable
transformation. Transient expression of fluorescent reporter
proteins is an established tool for quickly illustrating organelle
dynamics and protein localization (Miao and Jiang, 2007; Martin
et al., 2009; Wang and Jiang, 2011; Candat et al., 2013). It has
been performed on numerous plant cell types and tissues using
various methods of DNA delivery, including electroporation-or
polyethylene glycol (PEG)-mediated transient expression of
protoplasts derived from suspension-cultured cells or plant
leaves, biolistic bombardment and Agrobacterium infiltration of
tobacco leaves as indicated in Figures 1A,B (Miao and Jiang,
2007; Yoo et al., 2007; Wang and Jiang, 2011). However, it
requires a mixture of several individual plasmids in order to
co-express multiple proteins in a single plant cell as shown in
Figure 1A (Tse et al., 2004; Nishimura et al., 2006; Lee et al., 2012;
Niu and Sheen, 2012; Endler et al., 2015; Zhang C. et al., 2016).
Therefore, the efficiency of protein co-expression is relatively low
since the successful ratio of co-transforming multiple chimeric
fluorescent fusion plasmids in the same cell is lower than one.
The transformation efficiency dramatically decreases when the
number of co-expressed plasmids is increased. Meanwhile, the
expression levels of multiple fusion proteins are difficult to
control in the same cell likely due to the random amounts of each
plasmid entering into the cell (Zhang et al., 2004; Sainsbury and
Lomonossoff, 2014; Canto, 2016).

Agrobacterium infiltration of tobacco leaves only mediates
the expression of one plasmid at a time. It is therefore
technically very challenging to insert multiple expression vectors
into one Agrobacterium for protein co-expression (Figure 1B)
(Sparkes et al., 2006; Manavella and Chan, 2009; Canto,
2016). Nevertheless, Agrobacterium-mediated stable genetic
transformation is an alternative and commonly used approach
to express chimeric fluorescent fusion proteins in plants
(Varrelmann et al., 2000; Nishimura et al., 2006; Liu et al.,
2012; Rosado et al., 2012; Xu et al., 2013; Karnik et al.,
2015; Li et al., 2017b). However, the binary expression vector
which is carried by Agrobacterium for plant transformation is
usually designed to express a single fluorescent fusion protein
as indicated in Figure 1B (Nishimura et al., 2006; Zhang et al.,
2006; Ishida et al., 2007; Li et al., 2017a). Thus, it requires further
conventional genetic crossing of two different homozygote plants
which express two individual fluorescent fusion protein for
protein co-expression. It is time-consuming to perform the
conventional genetic transformation procedures and subsequent
screening for progenies co-expressing multiple fluorescently
tagged proteins (Rosado et al., 2012; Karnik et al., 2013; Wang
et al., 2014; Zhang M. et al., 2016). Therefore, the development
of a convenient, highly efficient and time-saving system for co-
expressing multiple chimeric fluorescent fusion proteins in plants

via either transient expression or stable genetic transformation
will be greatly beneficial and useful to plant biologists.

Here, we present a novel robust system for co-expressing
multiple chimeric fluorescent fusion proteins in plants. It
differs from and overcomes the various limitations of the
previous conventional ones mentioned above. Thus, it would
surely significantly speed up studies by applying co-expression
of multiple fluorescent proteins in plants. Furthermore, we
simplify the procedure of constructing the plasmid and the
assembly of DNA molecules by the optimized isothermal
in vitro recombination assay which conveniently achieves the
recombination of multiple DNA fragments in a single reaction.

MATERIALS AND METHODS

Plant Materials, Pollen Tube Germination
and Chemicals
The maintenance of suspension culture tobacco (Nicotiana
tabacum) BY-2 cells was described previously (Jiang and Rogers,
1998; Tse et al., 2004). Arabidopsis thaliana (Col-0) seeds were
surface sterilized by vortexing mixture with 70% (v/v) ethanol
containing 0.05% Tween 20 for 10 min. Spin down the seeds
using a bench top centrifuge at max speed for 2 s, remove the
supernatant and wash the seeds with 100% ethanol once for 30 s.
The seeds were pipetted out onto a sterile filter paper in a sterile
hood, air dried and spread on 1/2 MS agar plates. The plates were
first incubated at 4◦C for 2 days and then transferred in the plant
growth chamber. The settings of growth chamber for Arabidopsis
germination and growth: Light intensity: 120–150 µm m−2 s−1;
Temperature: 22◦C; Light cycle: 16 h light/8 h dark.

Plasmids Construction by Optimized
Isothermal Recombination Assay
Briefly, the segmented promoter, target gene, fluorescent
tag and terminator were amplified using primers
(Supplementary Table S1) containing 5′-end overlapping
sequence with the adjacent fragment by standard PCR. The DNA
templates are derived from previous studies (Wang et al., 2011b,
2016). Then, the first-round PCR products above were mixed and
subjected to the optimized isothermal assembly reaction at 50◦C
for 60 min, followed by amplifying the entire expression cassette
using the reaction product as template with the outermost
primers (e.g., 1-FP35S and 1-RNOS for expression cassette 1).
Finally, the splicing multiple expression cassettes with ends
overlapping homologous could be directly assembled into Sma
I-linearized functional vectors (e.g., pUC18 or pCAMBIA1300)
by the optimized isothermal recombination reaction at 50◦C
for 60 min. The isothermal reaction was adapted and optimized
from previous studies (Gibson et al., 2009; Zhu et al., 2014).
In general, 400 µl 2× master mixture was prepared by adding
160 µl homemade 5× ISO stock buffer (500 mM Tris-HCl, pH
7.5; 50 mM MgCl2; 1 mM dNTP; 50 mM DTT; 25% PEG 8000
and 5 mM NAD) with 3 units of T5 exonuclease (Epicenter), 25
units of Phusion DNA polymerase (New England Biolabs, NEB),
2000 units of Taq DNA polymerase (NEB) and sterilized double
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FIGURE 1 | A novel robust system for co-expression of multiple chimeric fluorescent fusion proteins in plants. (A) Conventional approaches of co-expression of
multiple chimeric fluorescent fusion proteins in plants via transient expression including biolistic bombardment, electroporation, and polyethylene glycol
(PEG)-mediated transformation require mixture of several individual plasmids, which dramatically reduce the efficiency of protein co-expression. (B) Classical method
of Agrobacterium mediated either leaf infiltration or stable genetic transformation, the binary vector is usually designed to express a single fluorescent fusion protein
at one time. Multiple protein co-expression requires further genetic crossing of individual stable single expression plant. (C) Overview of the newly developed novel
multiple protein co-expression system. Transient co-expression of multiple chimeric fluorescent fusion proteins via a single transient expression vector in intact plant
cells or protoplasts derived from suspension-cultured cells or plant leaves. This was performed either by biolistic bombardment, electroporation or PEG-mediated
transformation. In addition, Agrobacterium mediated transient expression via tobacco leaf infiltration or stable genetic transformation to express multiple chimeric
fluorescent fusion proteins can be achieved via a single binary vector (D).
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distilled H2O. Aliquot 15 µl per tube and store at −20◦C. Add
5 µl mixture of equimolar DNA fragments to 15 µl 2× master
mixture for recombination and incubate at 50◦C for 60 min.

Agrobacterium Mediated Generation of
Transgenic Arabidopsis Plants
The general procedure of Agrobacterium transformation was
performed as previously described (Clough and Bent, 1998; Tse
et al., 2004; Zhang et al., 2006; Manavella and Chan, 2009). In
brief, electroporation is used to mediate the transformation of
the binary vector into Agrobacterium (EHA105). Agrobacterium
competent cells were thaw on ice for 30 min, then mix
the competent cells with 2 µl high-quality plasmid DNA
(100–200 ng) which is extracted by plasmid extraction kit
(Qiagen) and dissolved in double distilled H2O rather than
TE buffer. Sit the mixture on ice for 5 min. Transfer the
mixture to a pre-chilled 0.1 cm electroporation cuvette (Bio-Rad).
Insert cuvette into the Gene Pulser (Bio-Rad) and perform
the electroporation with following settings: 25 µF, 1.6 kV,
600 ohms. After the electroporation, add 1 ml super optimal
broth with catabolite repression (SOC) immediately into the
cuvette and transfer the cells into a 2 ml Eppendorf tube and
shake at 28◦C, 200 rpm for 120 min. Centrifuge at 6000 rpm
at room temperature (RT) for 5 min, resuspend and spread
the cells on a LB plate with suitable antibiotics and incubate
at 28◦C for 2–3 days. To generate the transgenic plants,
the resulting constructs were introduced into Agrobacterium
tumefaciens and transformed into wild-type Columbia-0 by floral
dip (Clough and Bent, 1998). The chimeric fluorescent fusion
protein co-expression transgenic line was generated using the
pCAMBIA1300 plasmid. T0 generations were screened with
hygromycin. Seeds were surface sterilized and sown on plates
with 1/2 Murashige and Skoog (MS) salts plus 0.8% agar.
The seeded plates were kept at 4◦C for 3 days before being
moved to the growth chamber. The plates were incubated at
22◦C under a long-day (16 h light/8 h dark) photoperiod.
Seven-day old plants were checked for fluorescent signals
under the fluorescent microscope prior to transferred into
soil.

Particle Bombardment
BY-2 cells cultured for 3 days were used for particle
bombardment. The sequential procedures for gene delivery
into BY2 cells via particle bombardment were the same with the
steps for pollen tube bombardment as described before (Wang
et al., 2010, 2016; Wang and Jiang, 2011). The bombarded cells
were kept in dark in plant growth chamber (27◦C) for 6–12 h
prior to observation for fluorescent signals. The expression
efficiency of chimeric fusion proteins in tobacco BY-2 cells
is approximate 5–7% that is consistent with previous studies
(Wang and Jiang, 2011; Wang et al., 2011b, 2013).

Drug Treatment
Stock solutions of wortmannin (1 mM in DMSO; Sigma–Aldrich)
and brefeldin A (BFA) (1 mM in DMSO; Sigma–Aldrich) were
prepared and stored at −20◦C. These drugs were diluted in

growth medium to appropriate working concentrations before
incubation with plant roots.

Confocal Microscopy and Colocalization
Calculations
In general, the confocal fluorescence images were collected
using a Zeiss 710 system with the following parameters: 63×
water objective, 700 gain, 0 background, 0.168 mm pixel size,
and photomultiplier tubes detector. The images from cells
were collected with a laser level of 3% to ensure that the
fluorescent signal was within the linear range of detection
(typically 0.5% or 1% laser was used). Colocalizations between
two fluorophores were calculated by using ImageJ program
with the Pearson-Spearman correlation (PSC) colocalization
plug-in (French et al., 2008). Results were presented either as
Pearson correlation coefficients or as Spearman’s rank correlation
coefficients, both of which produce r values in the range
(−1 to 1), where 0 indicates no discernable correlation while
+1 and −1 indicate strong positive and negative correlations,
respectively.

RESULTS

Development of a Novel System for
Co-expressing Multiple Chimeric
Fluorescent Fusion Proteins
We have developed a novel and high-efficient system which
differs from the classical approaches (Figures 1A,B) for
co-expressing multiple chimeric fluorescent fusion proteins in a
time-saving fashion (Figures 1C,D). It is fully compatible with
current approaches of transient expression and stable genetic
transformation in plants. In this procedure, we employ a single
expression vector which contains multiple protein expression
cassettes as shown in Figures 1C,D. Each cassette has its
own promoter, fluorescent tag, target protein, and terminator,
respectively, and is responsible for expressing its individual
chimeric fluorescent fusion protein (Figure 2). Therefore, it
functions semi-independently as a basic “Lego” element and can
be manipulated independently according to different expression
demands including the requirement for a specific promoter
and preference of N- or C-terminal fusion of fluorescent tags
with target proteins. Furthermore, all the expression cassettes
are linked and integrated into a final single expression vector
which is designed for either transient expression or stable
plant transformation depending on different experimental
requirements.

Additionally, the strategy for assembly of DNA molecules to
generate the cassettes for expressing chimeric fluorescent fusion
proteins, and the combination of multiple protein expression
cassettes with a single destination vector are all conveniently
achieved by an optimized isothermal in vitro recombination
method which is adapted from previous studies (Gibson et al.,
2009; Zhu et al., 2014). This takes advantage of homologous
recombination of overlapping short DNA sequences to create
DNA fusion elements or plasmids with various types of sequence
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FIGURE 2 | The strategy of constructing a single vector for co-expressing multiple chimeric fluorescent fusion proteins. Schematics of the strategy for constructing a
single expression vector for the co-expression of multiple chimeric fluorescent fusion proteins either for transient expression in plant cells or for stable transformation
in plants. The expression vector is composed by multiple expression cassettes, each of which contains its own promoter (35S promoter), fluorescent tag (GFP or
RFP), target protein (AtVSR2 or AtSCAMP4) and terminator (NOS) respectively, and is responsible for expressing its individual chimeric fluorescent fusion protein.
Interlinkage of all the DNA molecules is conveniently achieved by an optimized isothermal in vitro recombination method mediated with the overlapping DNA
fragments.

manipulation in one-single reaction. Therefore, ligation of
multiple DNA molecules as well as recombination with the
destination expression vector are all effectively achieved in one
reaction at one time without the need of multiple steps of
restriction enzyme digestion and DNA ligation.

Therefore, we have developed at once a robust system for
the convenient co-expression of multiple chimeric fluorescent
fusion proteins in plants. In addition, it is a highly manipulable
“Lego” system that can be easily modified and re-constructed via
a one-step DNA junction reaction.

Co-expression of Vacuolar Sorting
Receptor (VSR) and Secretory Carrier
Membrane Protein (SCAMP) in Plant
Cells
To test this system, we chose two marker proteins: the
vacuolar sorting receptor (VSR) and the secretory carrier
membrane protein (SCAMP) which participate in the secretory
and endocytic pathways, respectively (Tse et al., 2004; Lam
et al., 2007a; Wang et al., 2010, 2011a). VSRs are type-I
integral membrane family proteins with a single transmembrane
domain (TMD) and a short cytosolic tail (CT). VSR mediates
the transport of cargo proteins which contain vacuolar
sorting determinants (VSDs) to the vacuole via the secretory
pathway. The VSR N-terminus is responsible for cargo
protein recognition and binding whereas the TMD and
CT are sufficient for its correct targeting and localization
(Tse et al., 2004; Shen et al., 2014). Subcellular localization
studies by confocal immunofluorescent and immunogold EM
have shown that VSR proteins are mainly localized to
prevacuolar compartments (PVCs) which have been identified
as multivesicular bodies (MVBs) in tobacco BY-2 cells (Tse
et al., 2004). In contrast, SCAMPs are type-IV membrane
proteins localizing to the plasma membrane (PM) and early

endosome (EE) or trans-Golgi network (TGN) in the endocytic
pathway. SCAMP has been used as a reporter protein to
follow the endocytic process in plant cells (Lam et al., 2007a).
Although the protein secretory pathway and endocytosis are
two distinct pathways for protein trafficking and targeting,
it has been revealed that TGN serves as a junction for the
secretory and endocytic pathways in plant cells (Lam et al.,
2007b). Nevertheless, the underlying molecular mechanism
regulating the coordination of the two pathways in terms
of cell development and morphogenesis remains unsolved.
Therefore, co-expression of VSR and SCAMP proteins should
provide essential hints toward a better understanding of the
spatiotemporal interactions in the secretory and endocytic
pathways in plant cells.

By applying this newly developed co-expression approach
of multiple chimeric fluorescent fusion proteins, RFP-AtVSR2
and AtSCAMP4-GFP were first inserted into two independent
expression cassettes as shown in Figure 2. All of the DNA
fragments in these two expression cassettes were joined via
the improved isothermal recombination reaction by short
overlapping DNA sequences (Figure 2 and Supplementary
Table S1). Thereafter, the expression cassettes which express
RFP-AtVSR2 and AtSCAMP4-GFP, respectively, were linked
and integrated into the destination vector pUC18 which is
used for transient expression or pCAMBIA for plant stable
transformation by applying the same DNA assembly strategy
(Figure 2). Transient co-expression of RFP-AtVSR2 and
AtSCAMP4-GFP in N. tabacum BY2 suspension cells was tested
by biolistic bombardment. RFP-AtVSR2 gave rise to a punctate
pattern as shown in Figure 1C. In contrast, AtSCAMP4-GFP
localized on the PM with only some cytosolic punctate dots. As
shown in Figure 3A, the subcellular localization of RFP-AtVSR2
is therefore clearly distinct from that of AtSCAMP4-GFP.
In addition, RFP-AtVSR2 and AtSCAMP4-GFP were stably
co-expressed in Arabidopsis plants via Agrobacterium-mediated
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FIGURE 3 | Co-expression of chimeric fluorescent fusion of vacuolar sorting receptor (VSR) and secretory carrier membrane protein (SCAMP) in plant cells.
(A) Transient co-expression of RFP-AtVSR2 and AtSCAMP4-GFP via biolistic bombardment in tobacco BY2 suspension cells. Scale bar: 50 µm. (B)
A representative image of a transgenic Arabidopsis root cell expressing RFP-AtVSR2 and AtSCAMP4-GFP via a single binary vector. Scale bar: 50 µm. (C,D)
Transgenic Arabidopsis plant root expressing RFP-AtVSR2 and AtSCAMP3-GFP after treatment with 16.5 µM wortmannin and 10 µg ml−1 brefeldin A (BFA) for
30 min, respectively. Prevacuolar compartment (PVC) enlargement caused by homotypical fusion of PVCs induced by wortmannin is shown in (C), and early
endosome aggregation induced by BFA treatment is indicated by arrow in (D). Scale bar: 50 µm. (E) A representative image of a transgenic Arabidopsis root hair
expressing RFP-AtVSR2 and AtSCAMP4-GFP via a single binary vector. (F,G) Transgenic Arabidopsis plant root hairs expressing RFP-AtVSR2 and AtSCAMP4-GFP
after treatment with 16.5 µM wortmannin and 10 µg ml−1 BFA for 30 min, respectively. PVC enlargement caused by homotypical fusion of PVCs induced by
wortmannin is shown in (F), and early endosome aggregation induced by BFA treatment is indicated by arrow in (G). Scale bar in (E–G) is 30 µm. The ImageJ
program with the Pearson-Spearman correlation (PSC) colocalization plug-in was used to calculate the colocalizations between these two fluorophores. Results are
presented either as Pearson correlation coefficients or as Spearman’s rank correlation coefficients, both of which produce r-values in the range −1 to +1, where 0
indicates no discernable correlation while +1 and −1 indicate strong positive or negative correlations, respectively.

genetic transformation. In transgenic root cells and root hairs
as shown in Figures 3B,E, RFP-AtVSR2 and AtSCAMP4-GFP
were successfully co-expressed and their perspective subcellular
localizations were consistent with the results obtained from
BY2 cells. Moreover, pharmaceutical treatments of the
transgenic Arabidopsis roots and root hairs with wortmannin
and BFA confirmed that the RFP-AtVSR2-labeled PVC
responded to wortmannin by forming ring-like structures
(through homotypical fusion of MVBs and AtSCAMP4-
GFP-labeled TGN) and responded to BFA (by forming Golgi
aggregates) (Figures 3C,D,F,G). Therefore, co-expression of
fluorescent tagged VSR and SCAMP using this novel protein
expression system via either transient expression or stable plant

transformation reliably delivers correct subcellular localizations
in plant cells (Tse et al., 2004; Lam et al., 2007a; Wang et al., 2010,
2011b).

DISCUSSION AND CONCLUSION

The development of gene expression vectors and plant
transformation technology overcomes the barriers of species
and enables introduction of genes into plants from other
species or kingdoms. It is broadly used in and staple with
plant biotechnology and agricultural industry (Liu et al., 1999;
Varrelmann et al., 2000; Qin et al., 2008; Li et al., 2017a).
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Here, we have developed a highly efficient system which
allows for convenient co-expression of multiple chimeric
fluorescent fusion proteins in a single plant cell or a whole
plant in a time-saving fashion. However, every technology has
its advantages and drawbacks. Gene silencing is one group
of annoying exceptions when introducing additional copies
of a transgene or increasing the gene expression level in
plants. Usually, more active and progressive promoter such as
cauliflower mosaic virus promoter (CaMV 35S) is employed to
enhance the transgene expression instead of using its endogenous
native promoter. However, in some instance, the result was
not over expression of the gene as expected, but a dramatic
reduction of the expression of the introduced gene caused by
gene silencing. Under this circumstances, gene silencing appears
to be unpredictable with the silencing ratio from 2 to 100%
(Dehio and Schell, 1994; Bruening, 1998; Wassenegger and
Pelissier, 1998). Gene silencing can be induced by expression
of a transgene via both transient expression and genetic
transformation. Additionally, gene silencing is more likely to
occur in the plants with multiple copies/high-level transcription
of the transgene and co-expression of multiple transgenes
(Turnage et al., 2002; Golenberg et al., 2009). To minimize
the effects of gene silencing in our robust chimeric fluorescent
fusion protein co-expression system, avoid continuous usage
of the same active promoter in distinct protein expression
cassettes when the numbers of co-expressed fusion proteins
is more than two. For example, 35S promoter and ubiquitin
(UBQ) promoter are suggested to be rotationally used for
constitutive co-expressing multiple chimeric fluorescent fusion
proteins. Furthermore, the capacitability of the numbers of
chimeric fluorescent fusion proteins which can be inserted in
the final single expression vector is depending on the backbone
plasmid and the size of introduced genes. Different expression
vectors such as pCAMBIA1300 and artificial chromosome (TAC)
vector with distinct replicon are capable of hosting different
size and numbers of insertion transgenes (Liu et al., 1999,
2000).

Taken together, the advantages of the new protein
co-expression system are: (i) it employs a single expression vector
that is capable of co-expressing multiple fluorescent chimeric
fusion proteins thereby overcoming the various limitations of
using multiple expression plasmids; (ii) each expression cassettes
contained in the single expression vector is semi-independent
and can be flexibly manipulated, respectively, according to
different expressing demands; (iii) it is a highly efficient and
manipulable DNA assembly system, in which recombination of

all DNA fragments is simply achieved through an optimized
one-step reaction without cutting and joining DNA molecules
with restriction enzymes and ligation; and (iv) it is fully
compatible with existing fluorescent protein based applications
such as fluorescence resonance energy transfer (FRET) and
bimolecular fluorescence complementation (BiFC) analysis
for illustration of protein–protein interactions. Therefore, this
technical advance represents a promising approach for wild
aspects of biological discoveries by employing co-expression of
multiple chimeric fluorescent fusion proteins in plant cells.
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