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Molecular plant breeding with the aid of molecular markers has played an important role
in modern plant breeding over the last two decades. Many marker-based predictions
for quantitative traits have been made to enhance parental selection, but the trait
prediction accuracy remains generally low, even with the aid of dense, genome-wide
SNP markers. To search for more accurate trait-specific prediction with informative SNP
markers, we conducted a literature review on the prediction issues in molecular plant
breeding and on the applicability of an RNA-Seq technique for developing function-
associated specific trait (FAST) SNP markers. To understand whether and how FAST
SNP markers could enhance trait prediction, we also performed a theoretical reasoning
on the effectiveness of these markers in a trait-specific prediction, and verified the
reasoning through computer simulation. To the end, the search yielded an alternative to
regular genomic selection with FAST SNP markers that could be explored to achieve
more accurate trait-specific prediction. Continuous search for better alternatives is
encouraged to enhance marker-based predictions for an individual quantitative trait in
molecular plant breeding.

Keywords: quantitative trait, RNA-Seq, functional marker, breeding, marker-assisted selection, genomic
selection, trait-specific marker selection

INTRODUCTION

Molecular plant breeding with the aid of molecular markers has played an important role in
modern plant breeding over the last two decades (Moose and Mumm, 2008). Many useful markers
have been developed and applied to enhance parental selection in breeding programs (e.g.,
Randhawa et al., 2013; Grover and Sharma, 2016). Recent advances in next-generation sequencing
(NGS) technology (Varshney et al., 2009; Metzker, 2010) have helped to generate abundant
low-cost molecular markers and make the molecular markers more useful and informative for
plant breeding (Varshney et al., 2014). Currently, there are two major approaches applied for
molecular breeding: marker-assisted selection (MAS) and genomic selection (GS or Genome-
wide selection) (Jiang, 2013). Traditional MAS is based on the selection of statistically significant,
marker-trait associations and enhances parental selection for recessive trait and disease resistance
in conventional breeding program without observing phenotypic variation in the traits. However,
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traditional MAS is not well-suited for complex traits controlled
by many genes (Beavis, 1998). GS, introduced first in animal
breeding (Meuwissen et al., 2001), estimates genome-wide
marker effects and uses the estimates to predict individual genetic
potential (i.e., genomic estimated breeding values). Studies
have shown that GS outperforms MAS in parental selection,
particularly for those complex traits controlled by a large number
of genes (e.g., see Bernardo and Yu, 2007; Massman et al., 2013;
Sorrells, 2015; Liu et al., 2016). However, GS applications are not
lacking of technical issues and usually display low accuracies of
predicting trait performances (Jannink et al., 2010; Windhausen
et al., 2012; Riedelsheimer et al., 2013; Bassi et al., 2016; Rabier
et al., 2016). Thus, improving trait prediction accuracy is one of
the active research areas in molecular plant breeding, and the
development of genome-wide informative markers through NGS
remains a major theme of research (Yang et al., 2015).

RNA-Sequencing (or RNA-Seq) is a recently developed
genomic approach for transcriptome profiling, can be applied to
study each transcript of genes affecting a trait at a developmental
stage, and has opened many avenues to develop informative
markers associated with genes controlling genetically complex
traits of agronomical importance (Wang et al., 2009; Ozsolak
and Milos, 2011). Here we attempt to search for alternatives to
GS for more accurate trait prediction through a literature review
on the prediction issues in molecular plant breeding and on the
applicability of an RNA-Seq technique for developing function-
associated specific trait (FAST) SNP markers. We also perform
a theoretical reasoning on whether and how FAST SNP markers
could enhance individual trait prediction and verify the reasoning
through computer simulation. It is our hope that this effort would
seed an alternative with specific trait SNP markers that can be
explored to achieve more accurate prediction for a quantitative
trait in molecular plant breeding.

MOLECULAR PLANT BREEDING AND
ITS LIMITATIONS

Molecular plant breeding is generally termed as the application
of molecular markers to improve the characters of interest in
plants (Xu, 2010; Jiang, 2013), and is one of the modern breeding
strategies with the potential to accelerate breeding efficiency
(Moose and Mumm, 2008). Conventional plant breeding is
largely relied on phenotypic selection through cycles of crossing
and selection and requires substantial breeding efforts with
more than 10 years to develop an improved variety. The major
challenge lies in the low efficiency of phenotypic selection for
desirable traits of quantitative nature such as yield and disease
resistance that are controlled by many genes of small effects and
their interactions with environments. Thus, efficient methods
have been searched to improve the selection of individual plants
with desired traits, including MAS.

The idea for the use of markers to assist plant selection
could date back to the association analysis done by Sax (1923)
between seed color (monogenic trait) and seed weight (polygenic,
quantitatively inherited trait) in beans (Phaseolus vulgaris L.)
and the promotion made by Thoday (1961) on the mapping

of polygenic traits with the help of monogenic morphological
markers. Although allozyme markers were applied in the
early 1980s to identify genotypes, the idea of MAS was
not flourished until the development of the first DNA-based
genetic markers, restriction fragment length polymorphisms
(Botstein et al., 1980). Since then, large efforts have been
made to develop molecular markers such as random-amplified
polymorphic DNAs, amplified fragment length polymorphisms,
simple sequence repeats or single nucleotide polymorphisms
(Grover and Sharma, 2016). Such advance in molecular
markers not only stimulated the theoretical investigation
on MAS efficiency (e.g., see Lande and Thompson, 1990),
but also made the MAS practically feasible to complement
and enhance the conventional plant breeding (Moose and
Mumm, 2008). Accordingly, many MAS techniques have been
developed, including marker-assisted backcrossing (MABC),
marker-assisted recurrent selection (MARS), and GS (Jiang,
2013). With the recent advance in NGS and the development
of genome-wide SNP markers, GS will be more efficient, even
in MABC and MARS. These technical developments have made
the molecular breeding a standard practice complementary to
conventional breeding to improve traits with complex genetic
bases (Moose and Mumm, 2008).

As expected with the promise of MAS, several reviews have
confirmed that the research and use of molecular markers
in plant breeding have continued to increase in the public
and private sectors, particularly since the 2000s (Beavis, 1998;
Holland, 2004; Collard and Mackill, 2008; Xu and Crouch,
2008; Brumlop and Finckh, 2011; Boopathi, 2013). Successful
stories for MAS applications are not lacking (e.g., see Collard
and Mackill, 2008; Boopathi, 2013; Randhawa et al., 2013).
For example, many molecular markers were deployed to assist
selection for disease resistance, agronomic and quality traits in
several wheat (Triticum spp.) cultivars released for commercial
cultivation in Canada (Randhawa et al., 2013). However,
MAS applications mainly focused on simply inherited traits,
such as monogenic or oligogenic resistance to diseases/pests,
although quantitative traits were also involved (Collard and
Mackill, 2008). Also, these MAS applications have not achieved
the results as expected previously in terms of extent and
success (e.g., release of commercial cultivars). For example,
Collard and Mackill (2008) listed 10 reasons for the low
impact of MAS in general and Jiang (2013) highlighted seven
issues associated with MAS applications. Among them are
(1) not all markers are breeder-friendly, (2) not all markers
can be applicable across populations due to lack of marker
polymorphism or reliable marker-trait association, (3) false
selection may occur due to recombination between the markers
and the genes or quantitative trait loci (QTL) of interest,
and (4) imprecise estimates of QTL locations and effects
result in slower progress than expected. Improvement of most
agronomic traits that are of complicated inheritance and
economic importance like yield and quality is still a great
challenge for MAS including the newly developed GS (Jannink
et al., 2010). Jiang (2013) indicated that MAS is not universally or
necessarily advantageous, at least from the viewpoint of a plant
breeder.
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Last several years have seen increased researches directed
toward GS applications (e.g., see Spindel et al., 2015; Bassi et al.,
2016). With the advances in the development of cost-effective
genome wide markers, it is no doubt that some of the old
challenges faced with the MAS applications can be addressed
(Jannink et al., 2010). Several applications have demonstrated its
usefulness in actual plant breeding programs (e.g., see Sorrells,
2015; Bassi et al., 2016). However, some marked features of
GS in plant breeding have also started to emerge (Windhausen
et al., 2012; Riedelsheimer et al., 2013; Spindel et al., 2015).
First, the accuracy of the genome-wide marker prediction on
trait performance has a range of estimates, but is generally
low, depending on many factors including crop, trait, marker,
training population, GS model, and environment (Rabier et al.,
2016). To update the current status of prediction accuracy,
we selected 31 peer-review journal publications from 2015 to
July of 2016 that reported genomic selections in crop and
tree species, and obtained 187 genomic predictions of trait
performance with a range of 0.05 to 0.83 and a mean of 0.50
(Figure 1 and Supplementary Table S1). For example, a range
of prediction accuracies from 0.31 to 0.63 for several traits were
found in rice (Oryza sativa L.) (Spindel et al., 2015); 0.14 to
0.58 for spring barley (Hordeum vulgare L.) and 0.40 to 0.80
for winter barley in malting quality traits (Schmidt et al., 2016);
0.10 to 0.51 in maize (Zea mays L.) root traits (Pace et al.,
2015); and 0.39 to 0.61 in Canola (Jan et al., 2016). Second,
some studies have shown that more genomic markers evenly
distributed across the genome do not always help to increase
the prediction accuracy and as low as 1000 genomic markers
can achieve the same level of prediction accuracy for some
traits (Spindel et al., 2015; Jan et al., 2016). These features help
to explain partly some less optimistic views of GS potential
(Bernardo, 2016), and suggest that more research are required
on the choice and development of informative genomic markers
for GS.

Our analysis of the GS applications with respect to prediction
accuracy concurs well with the renewed argument that more
research efforts are needed to develop functional markers
for MAS, taking advantage of the recent advances in NGS
application (Lau et al., 2015; Yang et al., 2015). This realization
is not surprising, as the idea for developing functional DNA
markers for plant breeding is not new (e.g., see Andersen
and Lübberstedt, 2003; Varshney et al., 2005). However, large
efforts have been made with limited success, even in major
crop species (Iyer-Pascuzzi and McCouch, 2007; Liu Y. et al.,
2012; Lau et al., 2015; Yang et al., 2015). The searching
for functional markers via QTL and expression QTL (eQTL)
analyses (Druka et al., 2010) or gene cloning with limited
genomic resources is technically challenging, labor extensive
and time consuming (Yang et al., 2015). Acquiring a relevant
set of functional or useful markers through genome-wide
association mapping (GWAS) is technically possible for marker-
based prediction of trait performance, but practically depends
highly on the genotyping accuracy and linkage disequilibrium
(LD), and is largely limited to the assayed populations in
given environments (e.g., see Eichler et al., 2010; Desta and
Ortiz, 2014; Spindel et al., 2016). Dr. Hong-Bin Zhang at

FIGURE 1 | The distribution of 187 prediction accuracies from genomic
selection for several traits in crop and tree species, as reported in a selection
of 31 peer-review journal publications from 2015 to 2016 (see the
Supplementary Table S1).

Texas A&M University has promoted the idea of gene-based
breeding system since 2014 and demonstrated substantial
gains in trait prediction from gene-based markers in both
cotton (Gossypium hirsutum; Liu et al., 2017) and maize
(Zhang et al., 2017). For example, using 474 Gossypium fiber
length genes, they were able to predict fiber length with
correlation coefficients ranging from 0.67 to 0.85 (Liu et al.,
2017). However, inadequate attention has been paid to gene-
based breeding system. This dilemma seems to suggest that a
paradigm shift is needed to develop functional or function-
associated markers, particularly focusing on specific quantitative
traits.

RNA-Seq AND SNP MARKERS FOR
SPECIFIC TRAITS

RNA-Seq is a recently developed genomic technology using
NGS to study transcriptome (Marioni et al., 2008; Nagalakshmi
et al., 2008; Wilhelm et al., 2008). The transcriptome is usually
defined as the set of all RNA molecules transcribed in an
organ or tissue at a particular point of time under a given
set of environmental conditions. Generally, RNA-Seq has two
major components. First, RNA is purified from a sample
of interest and converted to a library of cDNA fragments
with adaptors attached to one or both ends. Each cDNA
fragment, with or without enriched with PCR amplification,
is then sequenced using one of high throughput sequencing
methods to obtain short sequences from one end (single-
end sequencing) or both ends (pair-end sequencing). Second,
a suite of bioinformatics tools are used to process the
raw sequence reads, typically 30–400 bp, map the processed
sequences to a reference genome or reference transcripts, or
de novo assemble without the genomic sequence, and analyze
the alternative gene spliced transcripts, post-transcriptional
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modifications, gene fusion, mutations/SNPs and changes in
gene expression (Garber et al., 2011; Lopez-Maestre et al.,
2016).

RNA-Seq has a number of advantages over hybridization-
based microarrays. First, it does not require existing genomic
sequence information to identify transcripts, making its
application to non-model plants more feasible. Second, the
detection of differentially expressed genes is more accurate,
sensitive and reproducible, with fewer systematic discrepancies
among technical replicates (Marioni et al., 2008; Nagalakshmi
et al., 2008). Third, RNA-Seq allows for quantification of the
abundance or changes of each transcript in a developmental stage
or under a specific treatment condition (Mortazavi et al., 2008),
making the study of a complex transcriptome possible. The
paired-end tag sequencing strategy of RNA-Seq further improves
cDNA sequencing efficiency with expanded length of short
reads for better understanding of the dynamic transcriptomes
(Fullwood et al., 2009).

A variety of RNA-Seq applications have been found, ranging
from transcriptome profiling to gene discovery, alternative
splicing analysis and molecular marker development (Conesa
et al., 2016). RNA-Seq has been successfully applied to study
the transcriptomes of different tissues such as root (Postnikova
et al., 2013), leaf (Li et al., 2010), flower (Mantegazza et al., 2014),
fruit (Kang et al., 2013; Martínez-López et al., 2014), and seed
(Jones and Vodkin, 2013). Also, it has been employed to analyze
gene expressions for biotic and abiotic responses like diseases
resistance (Kong et al., 2015), drought stress (Kakumanu et al.,
2012; Bhardwaj et al., 2015), cold stress (Sinha et al., 2015; Hu
et al., 2016) and chemical stress (He et al., 2015). Moreover, RNA-
Seq applications have been reported in many plant species such
as Arabidopsis, rice, maize, as well as non-model species such as
soybean [Glycine max (L). Merr.] and wheat (Jiao et al., 2009;
Filichkin et al., 2010; Li et al., 2010; Severin et al., 2010; Ramirez-
Gonzalez et al., 2015). These applications have demonstrated
its tremendous power in characterizing transcriptomes, as it
can detect low-expressed transcripts, splice variants, and novel
transcripts (Socquet-Juglard et al., 2013). Therefore, RNA-Seq is
now regarded as the latest and most powerful tool for sequencing
and profiling of transcriptome (Han et al., 2015; Conesa et al.,
2016).

Last several years have seen increased efforts toward the
development of SSR and/or SNP markers through RNA-Seq in
many organisms (e.g., see Wei et al., 2011; Yang et al., 2011; Salem
et al., 2012; Ulloa et al., 2015; Zhou et al., 2016). Abundant RNA-
Seq SNP markers have been developed to sample polymorphisms
within the transcribed region of all genes associated with
many traits. Many of these markers may be function-associated
with some traits of interest, differing from those selectively
neutral markers, but not necessarily are qualified as functional
markers for a specific trait. This may reflect the fact that many
RNA-Seq analyses were performed with the goals to generate
dense, genome-wide function-associated markers for linkage
mapping and association mapping, not necessarily for direct GS
application. Also, it is challenging to develop truly functional
markers for specific complex traits, as it requires specific RNA-
Seq designs for specific traits and the resulting SNP markers are

required to verify their associations with causal genes influencing
the traits.

However, it is practically feasible to develop FAST SNP
markers through specific RNA-Seq designs and the developed
markers have a high probability of being functionally relevant
when compared to randomly selected polymorphisms. Note
that FAST markers are not technically new, but termed here
to distinguish them from others. For example, Salem et al.
(2012) conducted an RNA-Seq whole-transcriptome analysis of
pooled cDNA samples from a population of rainbow trout
(Oncorhynchus mykiss) selected for improved growth versus
unselected genetic cohorts and developed many FAST SNP
markers for growth traits for fish breeding. Similarly, Ulloa
et al. (2015) performed an RNA-Seq analysis of eight low-
growth and eight high-growth Zebrafish (Danio rerio) and
developed 164 SNPs, five of which were associated with genes
affecting fish growth. Chopra et al. (2015) applied an RNA-Seq
to develop and validate a set of gene-based SNPs in sorghum
(Sorghum bicolor) genotypes with contrasting responses to cold
stress. Ramirez-Gonzalez et al. (2015) implemented an RNA-
Seq analysis of bulked pools sampled from a F2 population to
identify 175 putative SNP markers associated with Yr15, the
yellow rust (Puccinia striiformis f.sp. tritici) resistance in wheat
germplasm. Clearly, the most successful applications in plants
were those using RNA-Seq in combination with bulked segregant
analysis (Michelmore et al., 1991; Liu S. et al., 2012). Similarly,
this approach has also facilitated the development of the high
resolution SNP maps for wheat grain protein content (Trick
et al., 2012) and for the fertility restorer genes of cytoplasmic
male-sterility in radish (Raphanus sativus L.) and onion (Allium
cepa L.) (Lee et al., 2014; Kim et al., 2015). These successful
applications are encouraging for developing FAST SNP markers
for individual traits of breeding target.

THEORETICAL REASONING AND
COMPUTER SIMULATION

Our literature review indicates the importance of using functional
markers to increase the trait prediction accuracy for GS. This
should not be surprised, as functional markers should be
more informative to acquire genetic effects of causal genes for
trait prediction than genome-wide neutral markers (Mackay,
2001). Using more random, non-causal SNP markers can inflate
individual genomic relationships and decrease trait prediction
accuracy (Spindel et al., 2015; Edwards et al., 2016). Also,
functional markers can avoid marker validation like those
random markers in different breeding populations and could
be gene or trait specific (Lau et al., 2015; Yang et al., 2015).
Our review also indicates various challenges in the development
of ideal functional markers for specific traits, but shows the
feasibility of developing FAST SNP markers through RNA-Seq.
Thus, we reasoned that FAST SNP markers may not supersede
the ideal functional markers, but should be more informative,
to predict genetic effects associated with a given trait than those
dense, genome-wide neutral markers. This reasoning is based
on two expectations that the extent of LD between FAST SNP
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markers and causal genes is generally larger than those between
genome-wide neutral markers and casual genes, and that the trait
prediction accuracy is positively related to LD (Meuwissen et al.,
2001; Fernando et al., 2007).

To understand these two expectations, Fernando and his
colleagues conducted extensive computer simulations (e.g.,
Fernando et al., 2007; Kizilkaya et al., 2010) to illustrate the
impacts of LD between SNP markers and casual genes on trait
predictions of young cattle (Bos taurus). In one simulation on an
ideal pattern of LD with marker loci either in complete LD or
linkage equilibrium with QTL, they found only the prediction
method of Bayes-B (Meuwissen et al., 2001) could achieve up
to 0.98 prediction accuracy, while the other two methods RR-
BLUP and TP-BLUP displayed lower, unstable trait predictions
(Fernando et al., 2007). Considering scenarios with more realistic
LD patterns for 30 chromosomes with up to 2000 markers
each, they found the accuracy of trait prediction by Bayes-B
did not increase after 500 markers per chromosome (Fernando
et al., 2007). These findings clearly indicate the importance
of LD patterns in a trait prediction. To verify their simulated
findings, they used actual 50K SNP data of 1,086 purebred
(PB) and 924 multibreed (MB) Angus cattle from eight sire
breeds, simulated a trait with the heritability of 0.5 controlled
by 50, 100, 250, or 500 additive QTL selected randomly from
50K SNPs, and examined five marker panels (mp) with variable
levels of LD for genetic evaluation (Kizilkaya et al., 2010).
Specifically, for each QTL scenario, mp1 is an ideal case with
only QTL genotypes; mp2 is another extreme with both QTL
genotypes and equal number of marker loci with the highest
linkage disequilibrium (HLD) for each QTL; mp3 reflects the
common practice with all genome-wide SNPs, including QTL;
mp4 represents a case of markers each having HLD with an QTL;
and mp5 reflects a case of markers with all the SNPs minus
QTL. The simulated correlations between true and predicted
genotypic values by Bayes-B in the PB validation data set are
shown in Table 1. As expected, the ideal functional markers
with QTL genotypes (mp1) displayed the highest prediction
accuracies, ranging from 0.72 to 0.95 and increasing with fewer
QTL. When there were more than 100 QTL, the highly linked
markers (mp4) showed higher prediction accuracies than all
genome-wide SNPs including QTL (mp3). Thus, these simulation
results are consistent with the two expectations mentioned
above for FAST SNPs, as FAST SNPs should approach the
behavior of those highly linked markers to QTL (mp4) for a trait
predication.

To confirm the simulation results in Angus cattle, particularly
with respect to mp4, we also conducted a computer simulation
based on existing SoySNP50K data (Song et al., 2015), following
exactly the same simulation approach used by Kizilkaya et al.
(2010) in Angus cattle. First, we randomly selected 800 soybean
plants from the 18,480 domesticated soybean accessions with
42,509 polymorphic SNP markers. After excluding the scaffold
SNPs and minor alleles (of frequency less than 0.05) and replacing
missing data with common haplotypes, we obtained a final
soybean data for this simulation with 800 plants with 36,543
SNP markers and divided them into half, each representing
a training or validation set. Second, we simulated the same

four QTL scenarios as in cattle with 50, 100, 250, and 500
additive QTL that were randomly selected from 36,543 SNPs,
and applied the same five marker panels (mp1 to mp5) as
described above and two additional marker panels (mp6 and
mp7). Specifically, mp6 consisted of the marker loci in which
two markers were randomly selected from loci with the highest
20 LD values for each QTL (HLDr2), and mp7 included both
mp6 and a set of random SNP markers (rSNP) each falsely
representing an QTL. Third, we also considered two heritabilities
0.5 and 0.2, and applied two extra genomic selection models
(Bayes-C, and RR-BLUP), besides Bayes-B. Fourth, for each
marker panel with different QTL scenarios, random select 400
soybean marker data representing as the training population and
another 400 plants as the validation population for prediction
for five times, we generated five more replicates than Kizilkaya
et al. (2010) did to get average correlations between true and
predicted trait values in each random selected validation set.
The simulation was conducted with a custom R script (R Core
Team, 2015) that was specifically developed for this confirmation
and is available upon request to the first author. Marker effect
estimation and genetic value prediction were made using the
BGLR statistical package in R (Pérez-Rodriguez and de los
Campos, 2014) implemented with three genomic prediction
models [RR-BLUP ( = GBLUP), Bayes-B and Bayes-C] and
confirmed with the rrBLUP mixed.solve function (Endelman,
2011).

Our simulation not only confirmed those observed in the
Angus cattle, but also revealed some interesting patterns of
trait prediction (Table 1 and Supplementary Table S2). First,
the patterns of prediction accuracy by Bayes-B in soybean are
the same as in cattle for the QTL scenarios of QTL250 and
QTL500. In any QTL scenario, soybean functional markers
(mp1) always showed the highest accuracies of trait prediction,
followed by highly linked markers (mp4) and all genome-wide
SNP markers (mp3) (Table 1). Also, the patterns of decreased
prediction accuracies by functional markers (mp1) with more
QTL were also observed in soybean data (Table 1). Second,
soybean markers with a little relaxed LD to QTL like mp6 or mp7
still displayed higher prediction accuracies than those genome-
wide SNP markers (mp3) in any QTL scenarios assayed. For
example, for a trait of heritability 0.5 with 100 QTL, 200 HLDr2
markers (mp6) displayed a correlation of 0.67 while all 36,543
SNP markers (mp3) had only a correlation of 0.61 (Table 1).
Third, several extra patterns of prediction accuracy were also
observed in soybean (Table 1 and Supplementary Table S2).
Three different prediction methods did not show much difference
in prediction accuracy. The prediction accuracies became lower
for a trait of lower heritability. The prediction accuracies using
36,543 SNPs for a trait of heritability 0.2 ranged from 0.48 to
0.53, while those using highly linked markers (mp6 or mp7)
ranged from 0.49 to 0.63. All together, these simulation results
demonstrated the potential gain in prediction accuracy from
the application of FAST SNP markers in molecular breeding.
More evenly distributed markers unlinked to causal genes do not
enhance, but rather reduce, trait prediction accuracy.

Our simulation on soybean data had a simple goal
to reason the potential of FAST SNP markers and thus
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TABLE 1 | Comparative simulation results on the accuracies of predicting a quantitative trait with heritability 0.5 by genomic prediction model Bayes-B based on 50K
Angus cattle and 36,543 soybean SNP data with respect to QTL scenario and marker panel.

Angus cattle∗ Soybean∗

QTL scenario/marker panel8 Correlation# QTL scenario/marker panel8 Correlation#

QTL50 QTL50

mp1: 50 QTL 0.953 mp1: 50 QTL 0.94 (0.01)

mp2: 50 QTL + 50 HLD 0.931 mp2: 50 QTL + 50 HLD 0.93 (0.01)

mp3: 50K SNPs with QTL 0.766 mp3: 36543 SNPs with QTL 0.64 (0.07)

mp4: 50 HLD 0.570 mp4: 50 HLD 0.83 (0.03)

mp5: 50K SNPs − 50 QTL 0.388 mp5: 36543 SNPs − 50 QTL 0.63 (0.07)

mp6: 100 HLDr2 0.73 (0.06)

mp7: 100 HLDr2 + 50 rSNP 0.72 (0.06)

QTL100 QTL100

mp1: 100 QTL 0.938 mp1: 100 QTL 0.88 (0.02)

mp2: 100 QTL + 100 HLD 0.914 mp2: 100 QTL + 100 HLD 0.87 (0.02)

mp3: 50K SNPs with QTL 0.585 mp3: 36543 SNPs with QTL 0.61 (0.09)

mp4: 100 HLD 0.513 mp4: 100 HLD 0.77 (0.05)

mp5: 50K SNPs − 100 QTL 0.289 mp5: 36543 SNPs − 100 QTL 0.60 (0.09)

mp6: 200 HLDr2 0.67 (0.07)

mp7: 200 HLDr2 + 100 rSNP 0.66 (0.08)

QTL250 QTL250

mp1: 250 QTL 0.840 mp1: 250 QTL 0.78 (0.03)

mp2: 250 QTL + 250 HLD 0.788 mp2: 250 QTL + 250 HLD 0.77 (0.04)

mp3: 50K SNPs with QTL 0.399 mp3: 36543 SNPs with QTL 0.61 (0.07)

mp4: 250 HLD 0.510 mp4: 250 HLD 0.71 (0.05)

mp5: 50K SNPs − 250 QTL 0.247 mp5: 36543 SNPs − 250 QTL 0.61 (0.07)

mp6: 500 HLDr2 0.63 (0.06)

mp7: 500 HLDr2 + 250 rSNP 0.62 (0.06)

QTL500 QTL500

mp1: 500 QTL 0.720 mp1: 500 QTL 0.70 (0.06)

mp2: 500 QTL + 500 HLD 0.642 mp2: 500 QTL + 500 HLD 0.70 (0.07)

mp3: 50K SNPs with QTL 0.254 mp3: 36543 SNPs with QTL 0.60 (0.08)

mp4: 500 HLD 0.372 mp4: 500 HLD 0.65 (0.08)

mp5: 50K SNPs − 500 QTL 0.200 mp5: 36543 SNPs − 500 QTL 0.60 (0.08)

mp6: 1000 HLDr2 0.62 (0.08)

mp7: 1000 HLDr2 + 500 rSNP 0.61 (0.08)

∗The results for Angus cattle were acquired from Table 2 of Kizilkaya et al. (2010) and those for soybean were obtained from this simulation.
8Both cattle and soybean simulations applied the same QTL scenarios and the first five marker panels (mp), but soybean simulation had two extra panels. For each QTL
scenario, mp1 is an ideal case with only QTL genotypes; mp2 is another extreme with both QTL genotypes and equal number of marker loci with the highest linkage
disequilibrium (HLD) for each QTL; mp3 reflects the common practice with all SNPs, including QTL; mp4 represents a case of markers each having HLD with an QTL;
and mp5 reflects a case of markers with all the SNPs minus QTL; mp6 consists of the marker loci in which two markers are randomly selected from loci with the highest
20 LD values for each QTL (HLDr2), and mp7 considers both mp6 and a set of random SNP markers (rSNP) each falsely representing an QTL.
#The correlations between true and predicted genotypic values in the validation data sets and their standard deviations in parentheses. Training and validation sets
consisted of 924 multibreed and 1086 purebred cattle, respectively, and for soybean, training and validation populations had 400 plants each.

was not comprehensive. Further detailed simulations are
possible to consider all existing marker prediction models,
the related parameters associated with QTL genetic model,
marker distribution and informativeness, training set and test
environment (Heffner et al., 2009, 2010; Zhong et al., 2009;
Hickey et al., 2014). However, our simulation results are
consistent with several empirical reports from GS analyses that
prediction accuracies were higher using only the QTL-linked
markers or a subset of informative markers (e.g., Spindel et al.,
2015; Thavamanikumar et al., 2015; Arruda et al., 2016; Edwards
et al., 2016; Huang et al., 2016; Liu et al., 2016). Thus, the
simulations in Angus cattle and soybean, along those empirical

reports, provided support for our theoretical reasoning to search
for more informative FAST SNP markers through RNA-Seq to
improve trait prediction accuracy.

AN ALTERNATIVE FOR INDIVIDUAL
TRAIT PREDICTION

Based on the literature review and theoretical reasoning, we
synthesized that FAST SNP markers can be developed through
RNA-seq for an individual quantitative trait and applied to
increase the trait prediction accuracy. To better utilize this
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FIGURE 2 | Capturing genes of major and minor effects for a quantitative trait of interest through RNA-Seq function-associated specific trait (FAST) SNP markers in
molecular plant breeding. Marker-specific selection uses the specific markers developed from the major QTL of the trait to select desirable parents. Genomic
selection applies genome-wide random markers to estimate breeding values in various traits for parental selection. The derived alternative named trait-specific
marker selection (TSMS) employs FAST SNP markers developed from RNA-Seq to predict individual performances in a trait of interest for parental selection.

synthesis, we conceived a marker-based and trait-specific strategy
as an alternative to regular GS with FAST SNP markers for plant
breeders to facilitate parental selection. We termed it as trait-
specific marker selection (TSMS) for ease of interpretation and
comparison to marker-specific selection and GS. It is our hope
that this alternative or its modifications later can provide a useful
breeding tool to improve the accuracy of marker-based prediction
on individual trait performance.

Trait-specific marker selection represents an added option
to GS that can be applied to assist parental selection by
predicting specific trait breeding values of individual plants in
a breeding population through the separate development and
application of RNA-Seq FAST SNP markers for specific traits of
interest (Figure 2). It requires the development and validation
of FAST SNP markers for a given trait in other populations,
before the application to genotype a breeding population of
interest; estimates the marker “effects” in a training set of
the breeding population; and applies the estimated marker
“effects” to predict trait performance in the same breeding
population. Such an approach differs from traditional MAS
with QTL-specific markers in genotyping and prediction, but
follows the same idea of GS to predict trait performance with
RNA-Seq FAST SNP markers, rather than the genome-wide
selectively neutral SNP markers. To make the strategy more
understandable, we outline the two major components of TSMS
in Figures 3, 4 for developing FAST SNP markers through RNA-
Seq technology and for performing SNP marker prediction of
breeding values, respectively. The proposed RNA-Seq method
(Figure 3) considers multiple pairs of individual plants with
two extreme trait values and collects their sample tissues at
given developmental stages for gene expressions associated with
the trait of interest. The collected samples will be subjected
to RNA-Seq analysis through RNA extraction, cDNA library

preparation, multiplexing with barcoding and cDNA sequencing.
The collected RNA-Seq data will be analyzed through de
novo assembly using various bioinformatics tools to identify
differential transcripts for each pair and to generate consensus
differential transcripts from all the assayed pairs. Identification of
a differential transcript in a pair is made based on the presence
or absence of a transcript or the difference in abundance of
the transcript detected in both plants. Multiple pairs are used
to enhance the reliability of identifying differential transcripts
for the trait. Based on the consensus differential transcripts,
SNP call will be made from all the samples and the detected
SNPs will be filtered to generate putative SNPs for the trait
based on the differences in allelic frequency between two trait-
extreme sets of assayed samples. An empirical validation of
putative SNPs in separate population(s) is required to confirm
if the acquired SNP markers are truly associated with the trait
performance. The validated SNP markers can be applied to
genotype all the breeding materials of interest, and some of
these genotyped plants will also be assessed with their trait
performance as a training set (Figure 4). These marker and
trait data in the training set can be analyzed using existing
marker prediction models for GS such as RR-BLUP or Bayes-B
implemented in various R packages (Endelman, 2011; Pérez-
Rodriguez and de los Campos, 2014) to estimate marker “effects.”
The estimated marker “effects” will be utilized to predict these
breeding values in the prediction set for genetic ranking of
parental lines.

The advantage of this alternative over regular GS mainly lies
in the potential gains in marker prediction of individual trait
performance through the application of FAST SNP markers.
Realizing the gain in trait prediction highly depends on the
development of the FAST SNP markers for individual traits, and
requires further empirical investigations in breeding programs.
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FIGURE 3 | A general procedure for developing plant FAST SNP markers
through RNA-Seq. It involves multiple pairs of individual plants with extreme
trait values, tissue sampling, RNA-Seq, bioinformatics analysis for differential
transcripts for each pair and consensus different transcripts from all the pairs,
SNP calls for specific trait markers, putative SNP identification and empirical
validation. Identification of a differential transcript in a pair is made based on
the presence (T+) or absence (T−) of a transcript or the difference in
abundance (T+H or T+L) of the transcript detected in both plants. Putative
SNPs are identified with a SNP filter based on the differences in allelic
frequency between two trait-extreme sample sets.

To facilitate the development of FAST SNP markers through
RNA-Seq (Figure 3), we proposed a new procedure, following
the principle of BSR-Seq developed by Liu S. et al. (2012) and
the methods used by Salem et al. (2012) and Ramirez-Gonzalez

FIGURE 4 | A general procedure for trait performance prediction using
RNA-Seq function-associated specific trait (FAST) SNP markers in a breeding
population. It follows the same idea of genomic selection to have a training set
of breeding materials for both genotyping and phenotyping to develop a
trait-specific prediction model of marker effects. The developed prediction
model will be applied to predict the trait performance with assayed RNA-Seq
FAST SNP markers in the prediction set of breeding population for individual
ranking and parental selection. Note that in the prediction equations, y or Y is
the vector of trait values, u is the vector of marker effects, g or G is the
genotype matrix and ε is the random error vector.

et al. (2015). However, it differs from using multiple pairs of
individual plants with extreme trait values. We reasoned that the
use of multiple pairs should be more powerful than bulking, as it
can address not only many issues associated with BSR-Seq such
as replication, but also, more importantly, increase the power
of identifying consensus differentially expressed transcripts and
the accuracy of putative SNP discovery with allelic differential
(Figure 3). We suggest 10 or more pairs for the effort, but the
optimum pairs to be used remain to be empirically determined
and they may vary with respect to trait and plant mating system.

However, issues are not lacking in the development and
application of FAST SNP markers through RNA-Seq. A complete
set of genome wide function-associated SNP markers can
be effectively generated through exome capture technology
(Mascher et al., 2013; Warr et al., 2015) simultaneously for
many traits, but not necessarily specified for a trait of interest.
RNA-Seq can produce FAST SNP markers, but these markers
may not be comprehensive for the trait, as gene expressions
have spatio-temporal specificity. Successful identification of SNP
markers associated with casual genes will depend on the gene
expression in related tissues over different development stages,
so tissue selection and sampling for RNA collection are critical
and may vary in effectiveness for different traits. Our proposal
(Figure 3) did not consider the multiple developmental stages
of RNA sampling to capture all expressed genes associated
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with the trait performance and may miss some trans-regulatory
genes (Druka et al., 2010). Some quantitative traits such as
yield, maturity and disease resistance may need more research
effort and proper experimental design to sample genes expressed
at different developmental stages. Also, research efforts to
develop FAST SNP markers for different traits may vary, as
the genetic basis of different traits may differ. Uncertainty
may also exist in the informativeness of RNA-Seq FAST SNP
markers developed in one population for their applicability into
other populations. Moreover, developing FAST SNP markers
may be more complicated and more consideration may be
needed in outcrossing, than selfing, plant species, as the
genetic background for a trait in outcrossing plants is more
heterogeneous.

In spite of these issues, FAST SNP markers for specific
traits can be developed for plant breeding, either following
our proposed procedure (Figure 3) or using existing methods
such as eQTL analysis, GWAS, or those methods used in fish
breeding (e.g., Salem et al., 2012). The good examples are
the successful developments of FAST SNP markers through
RNA-Seq in fish (e.g., see Salem et al., 2012; Ulloa et al.,
2015) and 175 putative SNP markers associated with Yr15, a
major disease resistance gene for wheat yellow rust (Ramirez-
Gonzalez et al., 2015). Built upon these leading efforts, our
derived alternative will provide an option for plant breeders
with new procedures to develop and focus on a set of
FAST SNP markers for trait prediction to enhance parental
selection. Even with a small number of FAST SNP markers
available for a given trait, our alternative is still applicable
and may yield more informative parental selection than
those with the aid of individual QTL markers in traditional
MAS. Also, our synthesis is encouraging, as continuous
search for better alternatives based on the other genetic
characteristics of a quantitative trait is possible and may be
more fruitful to provide much needed accuracy in marker-
based prediction of a quantitative trait for molecular plant
breeding.

CONCLUDING COMMENTS

Our search for a better marker-based prediction of trait
performance through literature review and theoretical reasoning
yielded an alternative to regular genome selection for individual
trait prediction. More accurate trait predictions can be
theoretically achieved through the development of FAST SNP
markers with RNA-Seq technique and the application of these
markers to genotype plants and to predict breeding values
following existing genomic prediction methods in breeding
populations. Further empirical investigation is needed to realize

how much gain in trait prediction with respect to breeding
efficiency could be achieved from the derived alternative in
a plant breeding program. The derived alternative may be
questioned for its breeding efficiency in multiple-traits breeding,
as function-associated SNP markers unspecified for specific
traits could be more efficiently developed from exome capture
technology than the proposed FAST SNP markers. However,
our synthesis is encouraging, as continuous search for better
alternatives based on the other genetic characteristics of a
quantitative trait is possible and may yield more accurate trait
prediction for molecular plant breeding.
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