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Meeting crop nitrogen (N) demand while minimizing N losses to the environment has
proven difficult despite significant field research and modeling efforts. To improve N
management, several real-time N management tools have been developed with a
primary focus on enhancing crop production. However, no coordinated effort exists
to simultaneously address sustainability concerns related to N losses at field- and
regional-scales. In this perspective, we highlight the opportunity for incorporating
environmental effects into N management decision support tools for United States maize
production systems by integrating publicly available crop models with grower-entered
management information and gridded soil and climate data in a geospatial framework
specifically designed to quantify environmental and crop production tradeoffs. To
facilitate advances in this area, we assess the capability of existing crop models
to provide in-season N recommendations while estimating N leaching and nitrous
oxide emissions, discuss several considerations for initial framework development,
and highlight important challenges related to improving the accuracy of crop model
predictions. Such a framework would benefit the development of regional sustainable
intensification strategies by enabling the identification of N loss hotspots which could be
used to implement spatially explicit mitigation efforts in relation to current environmental
quality goals and real-time weather conditions. Nevertheless, we argue that this long-
term vision can only be realized by leveraging a variety of existing research efforts
to overcome challenges related to improving model structure, accessing field data to
enhance model performance, and addressing the numerous social difficulties in delivery
and adoption of such tool by stakeholders.

Keywords: crop models, corn, in-season nitrogen management, leaching, nutrient recommendation

INTRODUCTION

Managing nitrogen (N) on over 130 million ha of cropland is critical for sustainable food
production due to the large impact of N fertilizer on farm profits and environmental health
(Anderson et al., 2008; Howarth, 2008). In Corn Belt of the United States, only 37± 30% of applied
N is utilized by the crop (Cassman et al., 2002), with the remaining portion being susceptible to
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environmental losses. Excessive N leaching from corn fields is a
leading source for degradation of water resources (Goolsby
and Battaglin, 2001; Ewing and Runck, 2015) while N
fertilizer inputs are also linked to increased nitrous oxide
(N2O) emissions (USEPA, 2014). Therefore, farmers are
increasingly faced with the challenge of increasing yields
and maximizing farm profits while minimizing negative
environmental tradeoffs to meet social demands being placed on
agriculture.

Weather patterns in a growing season are a primary
factor controlling crop uptake and environmental N losses
(Randall and Mulla, 2001). Christianson and Harmel (2015)
recently evaluated 40 years of research and found strong
relationships between precipitation and N leaching losses, as
well as higher crop yields in years with adequate precipitation.
In contrast, drought conditions can reduce plant growth and
N transport to plant roots, resulting in low N recovery
efficiency in dry years (Kim et al., 2008). Interestingly,
these weather effects are modified by soil properties and
agronomic management, which often result in the development
of hotspots of relatively higher N loss (Sogbedji et al., 2001;
Kurunc et al., 2011; Tremblay et al., 2012). Thus, it is
critical to develop decision support tools that can predict
crop yields, soil N supply, and environmental N loss to
assist farmers in optimizing N management in United States
corn production systems. With the aim of adjusting site-
specific N management decisions in the growing season,
several existing approaches include soil nitrate tests, sensor
based tools, and crop-based diagnostics (Scharf, 2015). Soil
nitrate tests are conducted to quantify residual N availability
from previous crop as well as to estimate soils N supplying
capacity in the corn growing season (Bundy and Malone, 1988;
Blackmer et al., 1989; Magdoff, 1991; Schmitt and Randall,
1994). Sensor-based tools include chlorophyll meters (CM)
and remote sensing approaches (Shanahan et al., 2008; Ziadi
et al., 2008; Tremblay et al., 2011; Yuan et al., 2016). Yet,
CM readings show wide variations with respect to cultivars,
growth stages, measurement methods, and agronomic practices
(Debaeke et al., 2006, 2012; Ziadi et al., 2008). Another
practical problem associated with the use of soil nitrate
tests and CMs is the time required to obtain representative
samples, particularly for larger farms. Remote sensing techniques
including hyperspectral imagery can be powerful tools to
assess chlorophyll content, biomass, and other biochemical and
biophysical properties (Yuan et al., 2016). However, remote
sensing methods have limitations resulting in low adoption
by farmers including the high cost of sensors and the degree
of computer and geospatial skills required to process grid
based data, and the need for continuous calibration against soil
tests.

To overcome these limitations, a number of site-specific
fertilizer recommendation tools based on crop models have
recently been developed. For example, Adapt-N which was
developed by Cornell University and later commercialized
by Agronomic Technology Corporation, is a tool which
integrates daily weather, soils data, and field-specific agronomic
management information to estimate N recommendations for

corn production (van Es et al., 2002). Recently, in 113
on-farm strip trials in Iowa and New York, Adapt-N was
found to reduce N rates and N losses by 34 and 38%,
respectively, relative to farmers’ practices with no significant
difference in yield (Sela et al., 2017). In similar lines, The
Climate Corporation has developed FieldView, an online tool
capable of providing N recommendations for corn farmers. To
our knowledge, the effectiveness of FieldView in maintaining
crop yield or reducing environmental N losses has not
been assessed. The release of these products represents a
breakthrough for this field, with potentially large benefits for crop
production.

Despite these promising advances, in this Perspective
paper we argue that if these new technologies are to have
broader sustainability impacts, several key issues need to
be addressed. First, the underlying source codes for both
Adapt-N and FieldView are not available in the public
domain, which hinders other researchers from improving
and integrating new mechanisms associated with soil N
supply, crop growth, and environmental loss. For instance,
Moore et al. (2014) suggested that quality assurance processes,
documentation procedures, and access to model source
codes are important aspects while selecting crops models for
assessing proposed greenhouse gas abatement methodologies
in Australian agriculture. Moreover, previous research has
suggested that there are number of non-technological factors
such as broad social learning for participatory development of
extension specialists, farmers, and scientists to ensure effective
adoption of such decision support tools by farmers (Jakku
and Thorburn, 2010). Therefore, to enhance the engagement
of the broader research community in the development and
robust validation of such tools, it is preferable that publicly
available models are used rather than commercial products.
Second, when making N management decisions, farmers
are understandably driven by economic considerations, thus
current tools are focused on increasing soil N supply and
yields with little emphasis on environmental effects. To
encourage use by multiple stakeholders, it is advisable that
N loss estimates are converted into actionable knowledge
for farmers, for example by providing an interpretation
of values with respect to established targets for a farm
or region (Ledgard et al., 1999; Cox et al., 2008; Wheeler
et al., 2008). Third, and perhaps most importantly, no
coordinated effort exists to leverage field-scale N loss
estimates to inform the development of regional sustainable
intensification strategies. If such tools were to be adopted by
farmers at a sufficient scale, information that is not presently
available would become available to support novel geospatial
assessments of tradeoffs between crop yields and N losses,
greatly improving our ability to develop targeted mitigation
efforts.

Here we address three areas requiring further attention in
order for N management decision support tools to systematically
improve environmental sustainability outcomes: the suitability
of current, publicly available crop models, initial considerations
in geospatial framework development, and important challenges
related to model improvements.
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TURNING AVAILABLE CROP MODELS
INTO REAL-TIME N MANAGEMENT
TOOLS

We reviewed the literature to assess the capability of existing
publicly available crop models to serve as in-season N
management tools for farmers. A total of 12 crop models were
assessed according to their current ability to (1) incorporate real-
time weather data and provide in-season N recommendations,
and (2) simultaneously estimate crop yields and negative
environmental tradeoffs related to N management (Table 1).

Several existing crop models that are capable of simulating
both crop growth and soil N transformations could potentially
be used to provide N recommendations in the growing season.
However, only Maize-N and QUEFTS are currently used for
in-season N recommendations (Janssen et al., 1990; Setiyono
et al., 2011). Maize-N combines the Hybrid-Maize model for
estimating yield (Yang et al., 2004) with a soil organic matter
(SOM) mineralization scheme (Yang and Janssen, 2000) and
empirical method for predicting the response of maize yield to N
uptake (Setiyono et al., 2011). QUEFTS was primarily developed
for tropical conditions with limited application in the United
States Midwest. The model recommendations are based on soil
fertility status and economic profitability while fewer details are
provided on mechanisms controlling the fate of soil N within a
growing season.

When models were assessed against the second selection
criteria, seven had the ability to simultaneously simulate both
grain yield and environmental loss in response to N fertilizer
use (Li et al., 1992; Abrahamsen and Hansen, 2000; Jones et al.,
2003; Stockle et al., 2003; Xiong et al., 2008; Holzworth et al.,
2014). Four models (Maize-N, NCSOIL, QUEFTS, and SoilN)
do not incorporate algorithms for estimating denitrification
and leaching losses of fertilizer applied N (Molina et al.,
1983; Bergstrom et al., 1991; Hanson et al., 1998; Wang
et al., 2012). The EPIC model, which is primarily designed
to predict the effects of soil erosion on crop productivity,
can simulate leaching but not denitrification losses (Wang
et al., 2012). As no publicly available models met both
criteria, models that estimated environmental tradeoffs are
considered here to be the most promising candidates for
tool development, assuming they could be integrated with
real-time weather as discussed below. Two critical points
not considered in this review require further attention. First,
important differences may exist regarding the relative capability
of these models in predicting N losses vs. crop growth
processes and yield (Bassu et al., 2014; Muller et al., 2017).
To serve as an indication of which models have a stronger
focus on simulating crop growth processes and yield, Table 1
includes a column noting whether individual cultivars can
be specified as an input. Similarly, there is an important
difference between whether a model is capable of predicting
an output (such as crop yield or N leaching losses) and how
extensively the model has been evaluated in predicting an
output under a variety of conditions. These aspects would need
to be evaluated prior to model selection for geospatial tool
development.

With a long-term vision of creating in-season N management
decision support tools, we now discuss several important
attributes to consider for geospatial framework development
for corn production systems of the United States (Figure 1).
The aim of our proposed tool would be to estimate crop yield
and environmental loss in the growing season and identify
site-specific actions for farmers in the regional sustainability
context (Moore et al., 2014). The first step would be designing a
user interface by integrating the selected crop model with daily
weather, site-specific soils, information and hydrological data
from United States Geological Survey (USGS). For the models
reviewed above, the majority of previous modeling applications
have been conducted retrospectively at individual sites. Since we
are unaware of any publicly available model-based framework
linking weather, soils, and farmer management to estimate N
losses in real-time in United States maize production systems,
a real-time modeling interface would represent an important
technological advance in this area, with farmers being able to
provide minimal inputs including geographical location and
relevant crop management practices, while the user interface
would automatically incorporate other necessary input data from
public resources (Melkonian et al., 2008).

A second consideration would be to transform model
outputs into user-friendly sustainability indices for minimizing
N leaching and N2O emissions associated with N management
for corn production systems of the United States. Currently,
public and private models do not provide a context for
interpreting the magnitude of N loss estimates, thus an
opportunity exists to assess whether estimates require action in
relation to regional environmental quality goals. For example,
if tool developments were focused on N loss to waterbodies
in the United States Midwest, watershed-specific numeric
nutrient criteria (if available) or regional targets set by United
States Environmental Protection Agency (USEPA) could act
as thresholds for maximum N losses from farmland (INLRS,
2016). The geospatial framework should be designed to account
for farm location in addition to management, as some farms
contribute disproportionately higher N loads to waterbodies
depending on their geographical location, stream network,
and presence of riparian buffer zones (Batie, 1985). It has
also been shown that the effectiveness of various practices to
control N pollution can vary widely across different geographical
locations in a watershed (Arbuckle, 2013). Recently, Tomer
et al. (2013) developed a rigorous framework for identifying
the most effective site-specific practices for reducing nutrient
losses within watersheds at Hydrological Unit Codes (HUC-12).
This method or similar approaches could be adapted to serve
as a foundation for prioritizing the effectiveness of practices in
future tools, recognizing that the resolution of analysis would
need to be adjusted to match the goals of the tool (in this
case a finer resolution would be needed to estimate farm-level
N pollution). Regarding air quality impacts, though several
models can predict denitrification loss, only four models (APSIM,
Cropsyst, DAYCENT, DNDC) have algorithms to estimate N2O
emissions (Table 1). As a first step, mechanisms for separating
N2O emissions from denitrification loss should be incorporated
and robustly tested against field datasets for these models. Unlike
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TABLE 1 | Status of the current public available crop models to estimate crop-growth and environmental tradeoffs.

Model Spatial scale Crop
growth

Cultivars
within
a crop

Environmental tradeoffs Ability to predict both
crop yield and

environmental loss?Denitrification N2O emissions Volatilization Leaching

APSIM Point + + + + − + +

Cropsyst Point + + + + + + +

DAISY Point + − + − + + +

DAYCENT Point + − + + + + +

DNDC Point and regional + − + + + + +

DSSAT Point + + + − + + +

EPIC Watershed + − + − + + −

Maize-N Point + − − − + − −

NCSOIL Point − − − − − − −

QUEFTS Point + + − − + − −

RZWQM Point + + + − + + +

SoilN Point − − − − + + −

FIGURE 1 | Geospatial framework vision for incorporating environmental effects into N management decision support tools. In the first step, publicly available crop
models are integrated with grower-entered management information and gridded soil and climate data to estimate crop growth and soil nutrient transformation
processes and quantify sustainability and crop production tradeoffs. To identify site-specific nitrogen management practices for achieving regional sustainability
goals, additional attributes to consider in geospatial model development are (1) the need to identify the most effective nitrogen management practices for reducing N
losses, for example using watershed-scale frameworks developed by Tomer et al. (2013), and (2) the need for model outputs to be transformed into user-friendly
recommendations related to current environmental quality goals such as N leaching and soil N2O emissions per unit area and yield.

N leaching loss, less information is available to relate N2O
emission estimates to regional environmental quality targets.
As a starting point, crop-specific emissions factors would likely
need to act as a reference for farmers, with model-estimated
N2O emissions being compared to crop-specific emission factors
available from public databases such as IPCC or the United
States EPA (IPCC, 2006). Given the importance of agricultural
N2O emissions for climate change, in the longer-term it would
be desirable for the proposed N management tool to provide
options regarding the effectiveness of formulations, timings, rate,
and slow release fertilizers on N2O emissions and crop yields.
Similarly, various efforts are underway to establish better region-
and crop-specific N2O mitigation targets (Decock et al., 2015),
and these values could be incorporated as they become available.

A third consideration would be to aggregate simulations
for field-level crop production and environmental outcomes
to larger spatial domains that have been determined to be
important for policy-making and strategic investments in
agriculture (Grassini et al., 2017). Assuming sufficient farmer
participation and adequate spatial coverage, a novel outcome
of this framework would be a database containing real-
time, spatially explicit estimates of crop growth, nutrient
uptake, N leaching, and N2O emissions for a given region.
While watershed- or ecosystem-scale models have been used
in this regard, they often rely on assumptions of uniform
crop management within a watershed, thus a strength of
the proposed framework would be high-resolution N loss
simulations based on accurate crop management information.
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This type of geospatial information would help advance
sustainable intensification planning, which is in part limited
due to poor data availability, preventing assessments of
how N management simultaneously impacts yield and
environmental outcomes. Real-time simulations would also
allow the database to be used for identifying N loss hotspots
and developing targeted mitigation strategies within a season.
Spatial patterns of N loss vary annually, largely according
to precipitation. Morever, understanding these patterns will
become increasingly important under climate change in the
future, as more variable and severe precipitation events are
expected.

CHALLENGES

We recognize there are a number of major limitations that
need to be addressed before N recommendation tools can
be developed and employed with an acceptable level of
confidence (Asseng et al., 2013; Wallach and Thorburn, 2014).
Current models may lack accurate mechanistic processes and
model parameters for predicting environmental N losses and
crop yields (Brilli et al., 2017). For example, an important
process regulating soil N availability is SOM mineralization
which is highly uncertain in existing models (Benbi and
Richter, 2002). Thus, a major challenge is to improve SOM
mineralization, with one option being robust model validations
of soil respiration in response to environmental factors using
field data (Todd-Brown et al., 2013; Tian et al., 2015) A
second challenge would be to improve crop growth and
development processes (Asseng et al., 2013), particularly the
incorporation of cultivars (Archontoulis et al., 2014). In a
multi-model intercomparison study, Asseng et al. (2013)
described that future climate change impacts on crop yield
are highly uncertain due to differences in model structure
and parameter values. These specific examples illustrate
there is substantial uncertainty in modeling crop and soil
processes, particularly under changing environmental conditions
and continuously evolving crop management practices.
Likewise, when model predictions are scaled up to address
regional sustainability concerns, the associated uncertainty
needs to be considered (Huffman et al., 2015). A thorough
review of modeling challenges is outside the scope of this
article, but the reader is referred to several recent reviews
highlighting these uncertainties (Benbi and Richter, 2002;
Asseng et al., 2013; Vereecken et al., 2016; Brilli et al.,
2017).

Ensuring the continuous availability of field data to support
model improvements is itself a major challenge. To overcome this
limitation, a synchronized research network would be necessary
to coordinate different research programs and obtain adequate
field data for continuous calibration. We propose that the
core of this research network would be field experiments at
agricultural universities, which are often designed to investigate

the impacts of agronomic management on crop productivity but
do not typically feed into modeling efforts. For the development
of high resolution historical and current weather datasets,
public sector partners such as the United States Department
of Agriculture (USDA) Climate Hubs and the Soil Climate
Analysis Network (SCAN) would be valuable partners1. In
the Corn Belt of the United States, an extensive on-farm
field research network such as N-Watch would be critical for
development of decision support tools. The N-Watch program
was started by Illinois Council on Best Management Practices
analyze soil samples from farmers’ fields for soil nitrate and
ammonium in the corn growing season2. The dataset generated
by such programs would be an important asset for calibrating
model parameters against a wide variety of field data under
a range of soil and climate conditions. We argue that the
long-term vision proposed in this paper can only be realized
by leveraging a variety of existing research efforts, particularly
public-private partnerships which have made significant strides
in this area.

Accompanying the challenge on the technology side, another
major question is how to promote the delivery and adoption
of N management tools among farmers. Farmer’s decisions
are constrained by the need to maintain farm profits, and
what may be considered improved N management practices
such as adjusting the formulation, time, rate, and placement
of N fertilizers are voluntarily adopted in the Corn Belt of
the United States (Reimer et al., 2017). Previous research has
suggested that a focus on farmer education and social learning
for participatory development is needed for ensuring effective
delivery and adoption of decision support tools (Matthews
et al., 2008; Jakku and Thorburn, 2010; Hochman and Carberry,
2011). Therefore, major emphasis would need to be placed on
addressing the social difficulties associated with the adoption of
new N management tools, for example by identifying several
management options available to farmers in order to increase
awareness while also providing flexibility in adopting the
most effective practices to reduce environmental loss. Similarly,
regardless of the target region for tool development, a critical
role of N management tools will be their ability to maintain
or enhance farm profitability while meeting N loss reduction
goals.
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