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Because of the long and unpredictable flowering period in bamboo, the molecular
mechanism of bamboo flowering is unclear. Recent study showed that Arabidopsis
PIN1-type parvulin 1 (Pin1At) is an important floral activator and regulates floral
transition by facilitating the cis/trans isomerization of the phosphorylated Ser/Thr
residues preceding proline motifs in suppressor of overexpression of CO 1 (SOC1)
and agamous-like 24 (AGL24). Whether bamboo has a Pin1 homolog and whether
it works in bamboo flowering are still unknown. In this study, we cloned PvPin1,
a homolog of Pin1At, from Phyllostachys violascens (Bambusoideae). Bioinformatics
analysis showed that PvPin1 is closely related to Pin1-like proteins in monocots. PvPin1
was widely expressed in all tested bamboo tissues, with the highest expression in young
leaf and lowest in floral bud. Moreover, PvPin1 expression was high in leaves before
bamboo flowering then declined during flower development. Overexpression of PvPin1
significantly delayed flowering time by downregulating SOC1 and AGL24 expression in
Arabidopsis under greenhouse conditions and conferred a significantly late flowering
phenotype by upregulating OsMADS56 in rice under field conditions. PvPin1 showed
subcellular localization in both the nucleus and cytolemma. The 1500-bp sequence
of the PvPin1 promoter was cloned, and cis-acting element prediction showed that
ABRE and TGACG-motif elements, which responded to abscisic acid (ABA) and methyl
jasmonate (MeJA), respectively, were characteristic of P. violascens in comparison
with Arabidopsis. On promoter activity analysis, exogenous ABA and MeJA could
significantly inhibit PvPin1 expression. These findings suggested that PvPin1 may be
a repressor in flowering, and its delay of flowering time could be regulated by ABA and
MeJA in bamboo.

Keywords: Phyllostachys violascens, peptidylprolyl cis/trans isomerases, flowering, repressor, ecotopic
expression, abscisic acid, methyl jasmonate

INTRODUCTION

The transition from vegetative to reproductive growth must start at an appropriate time in
flowering plants for producing progeny and perpetuating the species. Proper timing of flowering
(or “heading date” in cereals) is controlled by environmental signals (Putterill et al., 2004; Brambilla
and Fornara, 2013) and internal signals (Jack, 2004; Jarillo and Piñeiro, 2011). Arabidopsis thaliana
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as the model plant for eudicots has four main pathways involved
in flowering control: photoperiod, vernalization, autonomous,
and gibberellic acid (Simpson and Dean, 2002). Rice, a short-
day and the model plant species for monocots, has photoperiod
and rice indeterminate 1 (RID1) pathways (Izawa, 2007; Wu et al.,
2008).

Bamboo is a kind of widespread, fast-growing, renewable, and
environmental-enhancing resource, whose industry contributes
to providing food, building materials, and increasing the income
for 2.2 billion people in the world (Chen, 2003). Bamboo
products such as bamboo shoots, furniture, flooring, charcoal,
beverages, and cosmetic are being used and traded by half
of the world’s population (Chen, 2003). Although the bamboo
industry is increasing in importance for poverty alleviation
and economic development (Chen, 2003), bamboo flowering
will make nothing left to these advantages because bamboo
usually dies after flowering. In addition, it is difficult to
analyze the phenomenon of bamboo flowering because of its
unpredictability and long juvenile phase (Franklin, 2004). To
surmount these problems, the genome of Phyllostachys edulis
(synonym Phyllostachys heterocycla) and the transcriptomes of
P. edulis, Bambusa oldhamii, B. edulis, and Dendrocalamus
latiflorus have been sequenced, and numerous genes related to
bamboo flowering were reported (Lin et al., 2010; Zhang et al.,
2012; Peng et al., 2013; Gao et al., 2014; Shih et al., 2014; Zhao
et al., 2014). As well, P. edulis and D. latiflorus contain novel
miRNAs playing important roles in regulating bamboo flowering
(Gao et al., 2015; Zhao et al., 2015). In addition, Louis et al. (2015)
used proteomics to find that elements of stress, mobile genetics,
and signal transduction cross-talk were associated with sporadic
flowering of bamboo. Undoubtedly, these results provide the
basis for understanding the roles of genes involved in bamboo
flowering but need further experimental evidence.

The function of flowering genes has been heavily investigated
in both Arabidopsis and rice; the results can provide some
enlightenment on bamboo flowering. Recent study of Arabidopsis
PIN1-type parvulin 1 (Pin1At) showed phosphorylation-
dependent prolyl cis/trans isomerization of key transcription
factors as an important flowering regulatory mechanism (Wang
et al., 2010). In the 1980s, peptidylprolyl cis/trans isomerases
(PPIases) were discovered (Fischer et al., 1983). Peptidylprolyl
cis/trans isomerases act as enzymes catalyzing incongruous
cis/trans isomerization of the peptide bonds preceding a proline
residue to assist the client protein folding and restructuring
(Kiefhaber et al., 1990; Hunter, 1998). There are four subfamilies
of PPIases: FK506 binding proteins, cyclophilins, parvulins,
and PP2A phosphatase activator (Lu and Zhou, 2007).
Pin1, a member of the parvulin family of PPIases, is unique
among the parvulin family because it functions by specifically
recognizing phosphorylated Ser/Thr residues preceding proline
(pSer/Thr-Pro) and catalyzing the conformational change of the
phosphorylated substrates (Ranganathan et al., 1997; Hsu et al.,
2001; Pastorino et al., 2006). Protein structure analysis showed
that Pin1 in humans comprises an N-terminal WW regulatory
domain and a C-terminal PPIase domain (Schiene-Fischer,
2015), and both domains can bind specifically to phospho-
Ser/Thr-Pro-containing sequences (Yaffe et al., 1997; Lu et al.,

1999). Pin1’s regulation of phosphorylation-dependent prolyl
cis/trans isomerization has been found essential for cell growth
and division, DNA repair, apoptosis, and transcription (Hanes
et al., 1989; Hani et al., 1995; Lu et al., 1996).

Pin1At was the first identified PIN1-type PPIase from
Arabidopsis (Landrieu et al., 2000; He et al., 2004); since then,
several Pin1 plant homologs from Glycine max, Lycopersicon
esculentum, and Malus domestica have been cloned (Landrieu
et al., 2000; Metzner et al., 2001; Yao et al., 2001; Wang et al.,
2010). Unlike Pin1 in human and its homolog in yeast (Hanes
et al., 1989; Hani et al., 1995; Lu et al., 1996), PIN1-type PPIases in
plants have only one PPIase domain with four additional amino
acids but without a WW domain (Yao et al., 2001), and except
Pin1At, their function is still unknown.

Bamboo has unique characteristics in flowering. To determine
whether bamboo has a Pin1 homolog and whether it works
in bamboo flowering, we isolated a Pin1 homolog from
Phyllostachys violascens (Lei bamboo) and named it PvPin1. Lei
bamboo is widely distributed in southern China and has high
economic value because of its delicious shoots. The income for
intensively managed Lei bamboo forest is about 20 times that
for rice (Song et al., 2011). However, shoot production of Lei
bamboo forest decreases sharply during flowering. PvPin1 from
Lei bamboo was studied by analyzing its sequence structure,
expression pattern, and phenotypes of transgenic Arabidopsis
and rice. Unlike Pin1At, which can promote flowering, PvPin1
delayed flowering. In addition, PvPin1 could be regulated by
abscisic acid (ABA) and methyl jasmonate (MeJA). PvPin1 might
act as a flowering repressor in bamboo by responding to ABA and
MeJA. Our data lay a good foundation for bamboo flowering and
provide a basis for understanding bamboo flowering and provide
a basis for developing technologies to inhibit it.

RESULTS

Isolation of PvPin1 Gene
To isolate a Pin1-like gene from P. violascens, the amino
acid sequences of Pin1 homologs from grass family plants
were compared and the primers from the conserved regions
were designed. Then a 300-bp fragment of the PvPin1 gene
was amplified from P. violascens. Using gene-specific primers,
a 744-bp cDNA sequence of Pin1-like was isolated from
P. violascens by using 3′ and 5′ rapid amplification of cDNA
ends (RACE) and designated as PvPin1. DNA sequencing analysis
showed that the 744-bp cDNA contained a complete open
reading frame (ORF) encoding a polypeptide of 122 amino acids.
Based on the cDNA sequence of PvPin1, a 3078-bp genomic DNA
sequence was cloned. Comparison of the genomic DNA sequence
and ORF sequences showed that PvPin1 had two exons (248 and
121 bp) and one intron (2709 bp) (Figure 1A), which was same
as Pin1At (Landrieu et al., 2000) and Pin1-like in rice (NCBI
Oryza sativa Japonica Group Annotation Release 101). Amino
acid sequence alignment revealed that the PvPin1 protein had
the theoretical values of 7.97/13148.7 pI/Mw. Secondary structure
analysis with SOPMA indicated that the putative PvPin1 protein
contained an alpha helix (38.52%), a beta turn structure (16.39%),
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FIGURE 1 | Genomic organization of the PvPin1, protein sequence similarities, and phylogenetic analysis of PvPin1 protein. (A) Genomic organization of PvPin1
showing untranslated (black boxes) and translated (gray boxes) regions. (B) Alignment of amino acid sequences for PvPin1 and its homologs from other plant
species. The PPIase and WW domains are overlined. Asterisks indicate four unique amino acids in plant homologs. (C) Phylogenetic analysis of PvPin1 protein. The
phylogenetic tree was generated by using MEGA 5.0 and shows branch lengths proportional to distances.
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and a random coil (38.52%). Sequence comparison of the PvPin1
protein with its homologs in other plants showed that the
catalytic core was well conserved and contained only a PPIase
domain with four additional amino acids (Figure 1B).

The sequences of Pin1-like from more than 16 plant species
were downloaded from NCBI. Phylogenetic comparison of the
PvPin1 protein with homologs in other plants species showed
that PvPin1 belongs to the monocots clade and is closely
related to Pin1-like proteins from O. sativa, O. brachyantha,
Dichanthelium oligosanthes, Zea mays, Aegilops tauschii, and
Brachypodium distachyon, especially Pin1-like in P. edulis, which
is the affinis species of P. violascens, having the highest identity
(94.26%) with PvPin1 (Figure 1C).

Expression Pattern of PvPin1
RT-qPCR was used to characterize the expression pattern of
PvPin1 in young and mature leaf, floral bud, culm, bamboo
shoot, and rhizome tissue in flowering bamboo plants. Although
PvPin1 transcripts were detectable in almost all tested organs, its
expression was highest in young leaves and lowest in floral bud
(Figure 2A).

Also, we used RT-qPCR to detect the temporal expression of
PvPin1 in young bamboo leaves at different flowering stages from
March 15 to April 12. PvPin1 expression peaked on March 22,
before flowering. Although the PvPin1 transcript level increased
significantly in young leaves of flowering bamboo plants at the
early stage, it declined in leaves during flower development
(Figure 2B).

ABRE and TGACG-Motif Elements Exist
in Promoters of PvPin1 and PePin1 But
Not Pin1At
To determine whether the expression patterns of PvPin1, Pin1At,
and PePin1 (Pin1-like in P. edulis) were associated with the
regulation of their promoters, we compared and analyzed their
promoter sequences. An upstream 1500-bp sequence of PvPin1’s
start codon was cloned, and the same length promoter sequences
of Pin1At and PePin1 were downloaded from the NCBI database.
On sequence alignment, the promoter sequence of PvPin1 shared
39.09% and 60.43% similarity with those of Pin1At and PePin1,
respectively. The potential cis-acting regulatory elements were
predicted by using PlantCARE. The typical CAAT-box and
TATA-box core elements and other elements involving in light-
responsive (LTR), MeJA-responsive (CGTCA-motif), endosperm
expression (Skn-1_motif), and anaerobic responsive (ARE) were
commonly found in these three promoters (Figure 3). However,
the ABRE and TGACG-motif cis-acting elements, which are
regulated by ABA and MeJA, respectively, were specific to the
promoter sequences of bamboo (PvPin1 and PePin1).

ABA and MeJA Treatment Decreased
PvPin1 Expression in Leaf of
P. violascens Seedlings
P. violascens plants were treated with ABA and MeJA because the
ABRE and TGACG-motif elements were specific to the promoter
sequences of bamboo (PvPin1 and PePin1). The mRNA level of

FIGURE 2 | Spatial and temporal expression of PvPin1 in P. violascens by
RT-qPCR. (A) Relative expression of PvPin1 in different tissues. (B) Relative
expression of PvPin1 in young leaves during flower development. In the first
stage (before March 29), the meristem morphology of flower buds was similar
with vegetative buds; in the second stage (March 29), the inflorescence had
presented, and the floral organs started to take shape; in the third stage (April
5), the floral organs continued to develop and gradually become mature; and
in the fourth stage (April 12), the bloom stage, the anther was outcropped
from palea (Lin et al., 2012). Data are mean ±SD from three replicates.

PvPin1 in leaf was significantly lower with ABA and MeJA than
mock treatment (Figure 4), which suggested that PvPin1 can
respond to ABA and MeJA.

Ectopic Expression of PvPin1 Delays
Flowering Time in Arabidopsis
Establishing a regeneration and genetic transformation system
in bamboo is difficult (Zang et al., 2016, 2017). To examine the
function of PvPin1 in regulating flowering, we overexpressed
PvPin1 under control of the CaMV 35S promoter in the
pCAMBIA1301 vector in Arabidopsis. Six independent lines
in the homozygous T3 generation grown under greenhouse
conditions were chosen for further analysis. 35S::PvPin1
transgenic Arabidopsis showed a significantly late flowering
phenotype (Figures 5A,B).

To understand whether the phenotypic alteration of flowering
time in transgenic Arabidopsis was related to the expression of
PvPin1, we detected the expression of PvPin1 in six homozygous
lines of 35S::PvPin1 Arabidopsis. RT-qPCR revealed a positive
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FIGURE 3 | The sequence analysis of the PvPin1 promoter. Some specific elements are underlined.

association between flowering time and the expression of PvPin1
in transgenic Arabidopsis (Figures 5B,C).

In Arabidopsis, SOC1 and AGL24 are important regulatory
genes locating at the convergence of the multiple floral induction
pathways. We determined the transcript levels of SOC1 and
AGL24 in transgenic Arabidopsis by RT-qPCR. The transcript
levels of SOC1 and AGL24 in 35S::PvPin1 transgenic plants
were greatly decreased (Figure 5D). Hence, PvPin1 delayed the
flowering time in Arabidopsis by downregulating the expression
of SOC1 and AGL24.

PvPin1 Overexpression Delays Flowering
in Rice
To further examine its function, PvPin1 was transformed into
O. sativa (Dongjing), a member of the same grass family as

bamboo. We analyzed the flowering time in six independent
lines in the homozygous T3 generation that were grown under
field conditions. 35S::PvPin1 transgenic rice plants showed a
significantly late-flowering phenotype (Figures 6A,B). Moreover,
days to heading were positively associated with the expression of
PvPin1 in transgenic rice (Figures 6B,C).

OsMADS50 and OsMADS56 are two SOC1 homolog genes
in rice. Because SOC1 expression was markedly decreased in
35S::PvPin1 transgenic Arabidopsis plants, we determined the
expression of OsMADS50 and OsMADS56 in transgenic rice lines
4, 5, and 6. OsMADS56 expression was greatly increased in these
lines, with no significant difference in expression of OsMADS50
in comparison with wild-type rice (Figure 6D), so overexpression
of PvPin1 inhibited flowering in transgenic rice by upregulating
the expression of OsMADS56.
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FIGURE 4 | Effect of abscisic acid (ABA) and methyl jasmonate (MeJA)
treatments on the expression of PvPin1 in leaves of P. violascens seedlings.
Data are mean ± SD. ∗p < 0.05; ∗∗p < 0.01 compared to mock, by Student’s
t-test.

PvPin1 Was Localized in the Nucleus and
Cytolemma
Pin1At localizes in both the nucleus and cytoplasm (Wang et al.,
2010). We used the infection method (Escobar et al., 2003) to

determine the subcellular localization of PvPin1 protein. The
fusion protein PvPin1-GFP located in the nucleus and cytolemma
of epidermal cells of tobacco (Nicotiana benthamiana), whereas
as a control, the GFP protein distributed in the whole tobacco
cells (Figure 7). The different localization between Pin1At and
PvPin1 implies that they might have different function.

DISCUSSION

Bamboo usually experiences a long vegetative phase before
flowering, so some floral suppressors may be working during
this long phase to inhibit bamboo flowering. The inhibiting
effect of these flower suppressors could be relieved when bamboo
is under stress or undergoing a lengthy vegetative growth.
Flowering locus C (FLC) is an important flower repressor in
Arabidopsis; however, no FLC homologs were determined in
monocot plants until now (Doi et al., 2004; Helliwell et al.,
2006). Many flowering promoters in bamboo have been reported
(Tian et al., 2005; Lin et al., 2009, 2010; Guo et al., 2016;
Liu et al., 2016a). We previously showed that BoTFL1-like and
PvFRIL might be possible floral suppressors of bamboo (Zeng
et al., 2015; Liu et al., 2016c). In this study, we identified and
characterized another possible floral suppressor, a Pin1-like gene

FIGURE 5 | Phenotype analysis of 35S::PvPin1 Arabidopsis plants under long-day (LD) conditions. (A) Late flowering phenotype of transgenic Arabidopsis. The
scale bar represents 2 cm. (B) Days to flowering of T3 transgenic Arabidopsis (n = 30). (C) RT-qPCR expression analysis of PvPin1. (D) Expression analysis of
AGL24 and SOC1. Data are mean ± SD from three replicates. ∗p < 0.05; ∗∗p < 0.01 compared to WT, by Student’s t-test.
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FIGURE 6 | Phenotypic differences between 35S::PvPin1 and WT rice grown in the field. (A) Late-flowering phenotype of transgenic rice. The scale bar represents
5 cm. (B) Days to heading of T3 homozygous transgenic plants (n = 30). (C) RT-qPCR expression analysis of PvPin1. (D) Expression analysis of OsMADS50 and
OsMADS56. Data are mean ± SD from three replicates. ∗∗p < 0.01 compared to WT, by Student’s t-test.

from P. violascens named PvPin1. PvPin1 was expressed in all
tested tissues in bamboo, but its expression was highest in young
leaf and lowest in flower bud (Figure 2A). PvPin1 expression
peaked before flowering then gradually decreased (Figure 2B).
Overexpression of PvPin1 conferred a significantly late flowering
phenotype in both greenhouse-grown Arabidopsis and field-
grown rice. Hence, PvPin1 might be a flowering repressor in
bamboo.

Genome sequence analysis showed that PvPin1, Pin1At, and
Pin1 homologs in rice and corn have only one intron. Amino
acid sequence alignment showed that PvPin1 contains only a
C-terminal PPIase catalytic domain with four additional amino
acids (Figure 1B) like Pin1At (Wang et al., 2010) and other
Pin1-like proteins in plant. Therefore, the gene and protein

structure of Pin1-like in plants are conserved. However, PvPin1
delaying flowering time in transgenic Arabidopsis grown under
greenhouse conditions and transgenic rice grown under field
conditions, which differs from Pin1At, known as a flowering
promoter. Furthermore, PvPin1 also has different protein
localization and promoter cis-elements from Pin1At. These
differences might be caused by evolutionary diversity of the genes
and result in the unique flowering characteristics of bamboo.

A protein’s location is mainly determined by its amino
acid sequence (Olson et al., 2002). The nuclear localization of
hPin1 from human is responsibly directed by the Pin1-WW
domain (Rippmann et al., 2000). Recent studies showed that
Pin1At from Arabidopsis and DlPar13 from Digitalis lanata
localized in the nucleus and cytoplasm (Metzner et al., 2001;
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FIGURE 7 | Subcellular localization of PvPin1 in leaf cells of N. benthamiana. (A) Fluorescence of the control green fluorescent protein (GFP) distributed throughout
the cell. (B) PvPin1::GFP localized in both the cytolemma and nucleus. Bar = 23 µm.

FIGURE 8 | Alignment of amino acid sequences for hPin1 in human, Pin1At, DlPar13 in Digitalis lanata, and PvPin1. Asterisks indicate four unique amino acids in
plant Pin1 homologs, triangle indicates special amino acid of PvPin1 in comparison with Pin1At and DlPar13.

Wang et al., 2010), and we found that PvPin1 localized
in nuclear and cytomembrane. These three plant proteins
have no WW domain but have four additional amino acids
(Figure 8). Whether the four additional amino acids are
associated with nuclear localization is unknown. In addition,
comparison of protein sequences showed that Pin1At and
DlPar13 have the same 10 amino acids, which differs from
PvPin1 (Figure 8) and may result in their different protein
localization and further lead to different functions in flowering
regulation.

Multiple genetic pathways coordinately control floral
transition in Arabidopsis (Koornneef et al., 1998; Levy and Dean,
1998; Mouradov et al., 2002). SOC1 and AGL24 are essential
regulatory genes involved in multiple floral induction pathways
(Lee et al., 2000; Samach et al., 2000; Yu et al., 2002; Michaels

et al., 2003; Liu et al., 2007). OsMADS50 and OsMADS56 are
SOC1 homologous genes in rice (Nam et al., 2005). OsMADS50
acts as a flowering activator whose overexpression could
promote flowering in transgenic Arabidopsis (Tadege et al.,
2003). OsMADS50 and OsMADS56 may form a complex to
delay rice heading time (Ryu et al., 2009). In this study, we
found that overexpression of PvPin1 could downregulate the
expression of AGL24 and SOC1 in Arabidopsis and upregulate
OsMADS56 in rice to delay the flowering time. However,
whether the regulation of SOC1 and AGL24 in Arabidopsis
and OsMADS56 in rice is indirect or direct requires further
experiments.

Plant hormones are related to flower development. Lu et al.
(2012) showed that flower bud differentiation could be promoted
with a high ABA level in P. violascens. Abscisic acid could
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TABLE 1 | Sequences of the primers used in this study.

Primer Sequences (5′→3′) Description

Pin1-1 TGCCCACGGAAATAAGCAGAGAG Primers for conserved sequence

Pin1-2 GAGAGGATCTGGTCGCGGAGTTC

3′-1 AAAGCCCAACATCGGTATCCAC Nested gene-specific primers for 3′-RACE

3′-2 GACAATCCAGTGAAGGTGCTCC

5′-1 ATGTCTAGGTCTGTGGAGCCTC Nested gene-specific primers for 5′-RACE

5′-2 TCAGCGTCTCCTGGCAGCAGTC

ORF-F ATGGCGGCGGCCGGAGAGGC Primer pairs for ORF

ORF-R TTAGGCAGTCCGCAGGATGATGTGA

S1-F TCCGACTACATTGAGGGGTT Nested gene-specific primers for promoter sequence

S1-R GAAGGTGGCTGCCGGAGAGGATCTG

S2-F GGAGAGCTTTTCTAGCAGAA

S2-R GAGATGACGCGGCCCTCGGGGTCCTTC

PeUBC18-F CGGGCCTCGCACATCCTTAT Primer pairs used for quantitative real-time PCR

PeUBC18-R CGCCAACCTTGAGTGCATATGTG

qPCR-F CGGGCCTCGCACATCCTTAT

qPCR-R CGCCAACCTTGAGTGCATATGTG

AGL24-F GAGGCTTTGGAGACAGAGTCGGTGA

AGL24-R AGATGGAAGCCCAAGCTTCAGGGAA

SOC1-F AGCTGCAGAAAACGAGAAGCTCTCTG

SOC1-R GGGCTACTCTCTTCATCACCTCTTCC

TUB2-F ATCCGTGAAGAGTACCCAGAT

TUB2-R AAGAACCATGCACTCATCAGC

OsMADS50-F AAAGCTGACGCTGATGGTTTG

OsMADS50-R GTTTCGACATCCATGTTGTC

OsMADS56-F GACCGCTATAAAGCATACACA

OsMADS56-R TCATGTGGTTAGCCACCAGC

Ubiquitin-F CACGGTTCAACAACATCCAG

Ubiquitin-R TGAAGACCCTGACTGGGAAG

promote flowering by activating the key floral gene flowering
locus T (FT) in Arabidopsis (Conti et al., 2014). Methyl jasmonate
could also affect flowering time in some other species (Diallo
et al., 2014). In this study, ABRE (responding to ABA) and
TGACG-motif (responding to MeJA) were found as specific
cis-acting elements in the promoter of PvPin1 and PePin1
(bamboo) in comparison with Pin1At (Arabidopsis). ABA and
MeJA treatments could reduce the expression of PvPin1 (possible
flowering repressor) in P. violascens. In addition, ABA and
MeJA might promote flowering by upregulating the expression
of PvMADS56 (flower promoter) in P. violascens (Liu et al.,
2016b). Thus, ABA and MeJA might promote flowering by
affecting multiple genes such as PvMADS56 and PvPin1 via a
complicated regulatory network in bamboo, and their inhibitor
may be used for inhibiting bamboo flowering for bamboo forest
management.

We found that PvPin1 is evolutionarily conserved in
gene and protein structure in comparison with Pin1-like
homologs from other plants, especially monocots; however,
unlike Pin1At, PvPin1 might be a flowering repressor that
can delay bamboo flowering. In addition, our results indicate
that ABA and MeJA can significantly reduce the expression
of PvPin1 to promote bamboo flowering. Our results are
helpful to disclose the bamboo flowering mechanism and could

be used for developing new technologies to inhibit bamboo
flowering.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
P. violascens samples were collected from the campus of
Zhejiang Agriculture and Forestry University. Wild-type (ecotype
Columbia) and transgenic plants of A. thaliana were cultivated in
a controlled temperature room under 22◦C with 16-h light/8-h
dark. N. benthamiana was grown in a controlled temperature
room under 28◦C with 10-h light/14-h dark. Rice (O. sativa cv.
Dongjing) plants are cultivated in the field of Lin’an (Zhejiang,
China, north latitude 30◦14′ and east longitude 119◦42′).

Isolation of PvPin1 cDNA and Its Intron
Sequence from P. violascens
Total RNA from P. violascens was isolated by using RNAiso
Plus (Takara, Shiga, Japan), then Reverse Transcriptase M-MLV
(Takara, Japan) was used to synthesize first-strand cDNA.
A specific Pin1-like cDNA fragment (approximately 300 bp)
was amplified by using the pair of primers (Pin1-1 and Pin1-2,
Table 1), which were designed by comparing the amino acid
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sequences of Pin1 homologs from grass family plants including
P. edulis (FP099633.1), O. rufipogon (CU406178.1), O. sativa
(AK243434.1), Triticum aestivum (AK333419.1), and Zea mays
(NM001157033.1). The 3′ end and 5′ partial cDNA of Pin1-like
were isolated with the RACE kit (Invitrogen) by using gene-
specific primers (3′-1 and 3′-2; 5′-1 and 5′-2, Table 1). Finally,
the full-length ORF sequence was obtained by using the primers
(ORF-F and ORF-R, Table 1) based on the known 5′ and 3′
sequences.

Genomic DNA was isolated by the modified CTAB method
(Reichardt and Rogers, 1993) from leaves. Then a 2709-bp intron
sequence of PvPin1 was obtained by using the primers ORF-F and
ORF-R.

Isolation of PvPin1 Promoter from
P. violascens
The sequence of PvPin1 ORF was used for a BLAST search
in the transcript online database for P. edulis (affinis
species of P. violascens) (Peng et al., 2013)1. A sequence
(ID: FP099633.1) that exists between PH01001300G0520
and PH01001300G0540 with the highest identity to PvPin1
was identified. Then the correlative genomic sequence in
PH01001300 was extracted from the genome database of
P. edulis (Peng et al., 2013) and used to design the primers
(S1-F, S1-R; S2-F, S2-R, Table 1) for amplifying the promoter
of PvPin1. A promoter sequence of 1500 bp was obtained
from the DNA by using Nested PCR (Gundersen and Lee,
1996).

Expression Pattern of PvPin1
The RT-qPCR primers (qPCR-F and qPCR-R, Table 1) were
designed by using the full-length ORF sequence of PvPin1. Here,
PeUBC18 was used as the internal control gene (Qi et al., 2013;
Liu et al., 2016b; Table 1) because of the close relationship
between P. edulis and P. violascens. CFX96TM Real-Time PCR
Detection System (Bio-Rad) and the SYBR Premix ExTaq II mix
(Takara) were used for PCR amplification. The program was
95◦C for 3 min, followed by 40 cycles of amplification (95◦C for
15 s, 60◦C for 30 s). Reactions were performed in 20-µl mixtures
consisting of 10 µl 2× SYBR Premix Ex Taq II Mix, 0.5 µl each
of forward or reverse primer, 1 µl cDNA template (50 ng/µl),
and 8 µl double distilled H2O (Liu et al., 2016b). The data
were analyzed by the 2−11Ct method (Livak and Schmittgen,
2001).

Binary Plasmid Construction and
Analysis of Transgenic Plants
The full-length ORF for PvPin1 was cloned into the binary vector
pCAMBIA1301 under the control of the Cauliflower mosaic
virus (CaMV) 35S promoter. Recombinant vector was transferred
into A. tumefaciens strain GV3101, then into Arabidopsis by
the floral dip method (Clough and Bent, 1998). Transformants
were screened in media with 50 µg/ml kanamycin. The same
construct was also transformed into rice plants (Dongjing)

1http://www.bamboogdb.com

mediated by A. tumefaciens strain EHA105 as described (Xu
et al., 2017). Positive transgenic rice lines were confirmed by
genomic PCR. The expression of SOC1 and AGL24 genes in
transgenic Arabidopsis in six T3 lines and WT Arabidopsis, and
the expression of OsMADS50 and OsMADS56 in transgenic
rice in three T3 lines and WT rice were analyzed by real-time
qPCR with gene-specific primers (Table 1) following the protocol
in expression pattern of PvPin1 section “Expression Pattern of
PvPin1.”

Subcellular Localization of PvPin1
The full-length coding sequence without terminator codon
(TAA) of PvPin1 was cloned into the CaMV 35S-GFP vector that
allowed the system to generate a PvPin1-GFP fusion protein for
investigating subcellular location in epidermal cells from tobacco
(N. benthamiana) and the transient expression assay method
(Escobar et al., 2003) was adopted. The tobacco epidermal cells
were visualized on confocal laser scanning microscopy (LSM510,
Zeiss, Germany).

Bioinformatics Analysis
A BLAST search in the NCBI database was used to obtain
the protein sequences of Pin1-like. The phylogenetic tree
was constructed by the neighbor-joining method with the
parameter bootstrap (10,000 replicates) in MEGA 5.0. The
software ProtParam from ExPASy2 was used to obtain the
molecular weights (MW) and theoretical isoelectric point
(pI) of PvPin1 protein. PlantCARE (Lescot et al., 2002) was
used to analyze cis-acting regulatory elements in the PvPin1
promoter.

ABA and MeJA Treatment
Leaves of P. violascens seedlings were sprayed with ABA
(100 µM), MeJA (100 µM), and water as a blank control once
a day for 9 days. Every treatment was performed with three
biological replicates. The PvPin1 transcript level was detected
after treatment.
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