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Cell walls are not only a protective barrier surrounding protoplasts but serve as signaling
platform between the extracellular environment and the intracellular physiology. Ions
of heavy metals and trace elements, summarized to metal ions, bind to cell wall
components, trigger their modification and provoke growth responses. To examine if
metal ions trigger cell wall sensing receptor like kinases (RLKs) of the Catharanthus
roseus RLK1-like (CrRLK1L) family we employed a molecular genetic approach.
Quantitative transcription analyses show that HERCULES1 (HERK1), THESEUS1
(THE1), and FERONIA (FER) were differently regulated by cadmium (Cd), nickel (Ni), and
lead (Pb). Growth responses were quantified for roots and etiolated hypocotyls of related
mutants and overexpressors on Cd, copper (Cu), Ni, Pb, and zinc (Zn) and revealed a
complex pattern of gene specific, overlapping and antagonistic responses. Root growth
was often inversely affected to hypocotyl elongation. For example, both HERK genes
seem to negatively regulate hypocotyl elongation upon Cd, Ni, Zn, and Pb while they
support root growth on Cd, Cu, and Ni. The different THE1 alleles exhibited a similar
effect between roots and hypocotyls on Ni, where the loss-of-function mutant was more
tolerant while the gain of function mutants were hypersensitive indicating that THE1 is
mediating Ni specific inhibition of hypocotyl elongation in the dark. In contrast hypocotyl
elongation of the knock-out mutant, fer-4, was hypersensitive to Ni but exhibited a
higher tolerance to Cd, Cu, Pb, and Zn. These data indicate an antagonistic action
between THE1 and FER in relation to hypocotyl elongation upon excess of Ni. FERs
function as receptor for rapid alkalinization factors (RALFs) was tested with the indicator
bromocresol purple. While fer-4 roots strongly acidified control and metal ion containing
media, the etiolated hypocotyls alkalized the media which is consistent with the already
shorter hypocotyl of fer-4. No other CrRLK1L mutant exhibited this phenotype except
of the THE1:GFP overexpressor on Ni suggesting that THE1 might be involved in Ni
induced and hypocotyl specific RALF signaling and growth regulating pathway. Overall,
our findings establish a molecular link between metal ion stress, growth and the cell wall
integrity sensors of the CrRLK1L family.
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INTRODUCTION

Heavy metals and trace elements in excess as well as deficiency
in soils impose a major challenge to plant growth in general
and crop productivity. From studies of metal ion tolerant and
hyperaccumulating metallophytes as well as sensitive plants such
as Arabidopsis thaliana we learnt that excess of metal ions
induce a complex network of responses thoroughly reviewed in
DalCorso et al. (2013) and Singh et al. (2016). The regulation
of metal ion homeostasis involves increased biosynthesis of
chelators as well as efflux and influx transporters essential for
compartmentalization. Another strategy to prevent or reduce
uptake of metals is by restricting metal ions to the cell wall.
The cell wall, rich in functional carbohydrate originated carboxyl
and hydroxyl as well as protein derived sulfhydryl and histidyl
groups plays a key role in the immobilization of metal ions
(Krzesłowska, 2011). Metal ion immobilization in the cell wall is
mainly mediated by the pectic polysaccharide homogalacturonan
(Pelloux et al., 2007). The capacity of binding is enhanced by
the activity of cell wall-associated pectin-methylesterases (PMEs)
or pectin-acetylesterase (PAEs) exposing free negatively charged
carboxyl groups. They form salt bridges contributing to the
mechanical strength of cell walls. Mainly calcium (Ca) is used
in theses so called “egg boxes” but other metals ions with often
higher affinities such as aluminum (Al), copper (Cu), lead (Pb),
zinc (Zn), cadmium (Cd), cobalt (Co), nickel (Ni), barium (Ba),
strontium (Sr), manganese (Mn), magnesium (Mg), iron (Fe),
chromium (Cr), and mercury (Hg) have been shown to bind to
de-esterified pectins (Dronnet et al., 1996; Kartel et al., 1999;
Meychik et al., 2011). Expression studies in diverse plants show
that cell wall modifying enzymes were upregulated upon metal
ion stress (Hassinen et al., 2007; Konlechner et al., 2013). Also
PME activities and structural modifications of pectins change
upon metal ion treatments and are related to metal ion tolerance
and growth responses (Paynel et al., 2009; Douchiche et al., 2010;
Weber et al., 2013; Yang et al., 2013; El-Moneim et al., 2014;
Muschitz et al., 2015; Geng et al., 2017) and reviewed in Parrotta
et al. (2015).

Pectin, highly de-esterified pectates and their degradation
products are important components of the cell wall integrity
pathways (Wolf et al., 2012; Voxeur and Höfte, 2016). It has
been shown that pectins and oligogalacturonic acids bind to the
extracellular domain of and activate WAK1 and WAK2, members
of the WALL ASSOCIATED KINASES gene family (Decreux
and Messiaen, 2005; Decreux et al., 2006; Kohorn et al., 2006).
Furthermore, WAKs and WAK-LIKE receptors (WAKLs) are
involved in the regulation of cell expansion and responses to
metal ions (Lally et al., 2001; Wagner and Kohorn, 2001; Hou
et al., 2005). Apart from WAK(L)s another pectin-associated
kinase, proline-rich extensin-like receptor kinase 4 (PERK4),
is involved in drought stress mediated growth responses
(Bai et al., 2009). Also, several leucine-rich repeat (LRR)
receptor like kinases (RLKs) are involved in cell wall integrity
pathways related to pathogen signaling and are necessary for
the synthesis of cell wall components upon high sucrose and
NaCl conditions (Xu et al., 2008; Engelsdorf and Hamann,
2014).

In this study we focused on the Catharanthus roseus RLK1-like
(CrRLK1L) protein family. The CrRLK1L family consists of 17
members which all share an extracellular domain homologous to
the animal malectin protein with putative carbohydrate binding
capacity. Therefore the CrRLK1L malectin-like domains might
bind to oligo- or polysaccharides from cell wall polymers, by-
products of cell wall degradation, or membrane-associated or
secreted glycosylated proteins (Schallus et al., 2008; Boisson-
Dernier et al., 2011). Recently it has been demonstrated that
the CrRLK1L member, FERONIA (FER), is the receptor for
peptides of the RAPID ALKALINIZATION FACTOR family
(Haruta et al., 2014) while the ligands for the other members
are still disclosed. CrRLK1L proteins play diverse roles during
fertilization (Escobar-Restrepo et al., 2007; Boisson-Dernier et al.,
2009; Miyazaki et al., 2009) but are also important during
vegetative development and in plant pathogen interactions (Bai
et al., 2014; Gachomo et al., 2014; Nissen et al., 2016; Stegmann
et al., 2017).

Here, we focus on the four CrRLK1L members which
regulate cell expansion and growth of seedlings: FER, THESEUS1
(THE1), HERCULES1 (HERK1), and HERK2 (Hématy et al.,
2007; Guo et al., 2009a,b; Merz et al., 2017) and their role
in growth responses on elevated concentrations of Cd, Cu,
Ni, Pb, and Zn. With the help of loss- and gain-of-function
alleles, a complex pattern of gene specific, overlapping and
antagonistic reactions was revealed. Root growth was often
inversely affected to hypocotyl elongation. Antagonistic roles of
the two HERK genes and FER versus THE1 were discovered
in relation to root growth on Cu, in relation to hypocotyl
elongation on Pb and Zn, and between THE1 and FER on
Ni. The effect of metal ions on the acidification ability was
evaluated with bromocresol purple indicator medium. While
fer-4 roots strongly acidified control and metal ion containing
media, etiolated hypocotyls alkalized the media which is
consistent with the fer-4 elongation defect. No other CrRLK1L
mutant exhibited this phenotype except for the THE1:GFP
overexpressor on Ni suggesting that THE1 might be involved
in an Ni induced and hypocotyl specific rapid alkalinization
factor (RALF) signaling and growth regulating pathway. Overall,
our findings establish a molecular link between metal ion stress,
growth and the cell wall integrity sensors of the CrRLK1L
family.

MATERIALS AND METHODS

Plant Material
Col-0 was used as wild type. T-DNA mutants were all in Col-0
background and provided either by the SALK collection (Alonso
et al., 2003), herk1 (SALK_008043), herk2.1 (SALK_105055),
herk2.2 (SALK_107146), the SAIL collection (Sessions et al.,
2002), the1-4 (SAIL_683_H03), and the GABI-Kat collection
(Kleinboelting et al., 2012), fer-4 (GABI_GK106A06). The
loss-of-function allele, the1-6, was isolated in a suppressor
screen of ctl1-1/pom and described in Merz et al. (2017). The
THE1:GFP overexpression line was described in Hématy et al.
(2007).
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Growth Conditions
Seeds were surface-sterilized in 5% sodium hypochlorite and
rinsed three times with sterile deionized water and then
transferred to nutrient agar medium plates containing 1/10
strength Hoagland salts, 1% (w/v) sucrose and 1% (w/v) agar
(Duchefa). For metal ion treatments metal salts were added
after autoclaving to final concentrations of 10 µM CdCl2,
5 µM CuSO4, 15 µM NiSO4, 100 µM Pb(NO3)2, and 100 µM
ZnSO4. After 2 days of imbibition at 4◦C in the dark,
plates were vertically incubated in a growth chamber at 22◦C
with constant light (80 µmol m2 s−1). For measurements of
etiolated hypocotyls, plates were wrapped in aluminum foil
after exposure to light for 5 h. Isoxaben treatment for gene
expression analyses was essentially done as described in Merz
et al. (2017). Ni treatment for gene expression analyses was
done for 6 h on 4 days after germination (dag) etiolated
seedlings.

Bromocresol Purple (BCP) Plates
For pH assays sterilized seeds were placed on nutrient agar plates
as described above supplemented with 150 µM BCP and metal
ions in indicated concentrations. Plates were scanned on day 5
after germination.

Growth Analysis
The plates were scanned on days 3, 4, and 5 after germination
for root growth and on day 5 after germination for hypocotyl
measurements. The lengths were evaluated with the ImageJ
software by freehand tracking.

RNA Isolation and cDNA Synthesis
Total RNA of 10–12 day old seedlings germinated and grown on
control and metal ion supplemented medium were snap frozen
and isolated using a LiCl/CTAB method. After grinding roughly
100 mg frozen seedlings 1 mL of pre-heated RNA extraction
buffer (2% [w/v] hexadecyltrimethylammonium bromide, CTAB;
2% [w/v] polyvinylpyrrolidone, PVP; 100 mM Tris/HCl pH 8.0;
25 mM EDTA; 2 M NaCl; 0.5 g/L spermidine and 2.7% [v/v]
2-mercaptoethanol) was added, mixed and incubated at 65◦C
for 5 min. CTAB was removed through two times separation
with 1 mL of ice-cold chloroform: isoamylalcohol (24:1) and
centrifugation at 4◦C. RNA in the supernatant was precipitated
with 250 µL 10 M LiCl at 4◦C for more than 1.5 h. After
centrifugation and EtOH washes the pellet was dissolved in 20 µL
RNase free water and stored at −80◦C. RNA was quantified
with the Qubit (Invitrogen) and the NanoDrop systems. RNA
integrity was controlled on Agilent 2100 Bioanalyzer using RNA
Nanochip. RNA samples were treated with DNaseI using the
TURBO DNA-freeTM kit (Ambion). cDNAs were synthesized
from 4 µg total RNA using the Transcriptor reverse transcriptase
(Roche) with 500 pmol of oligo(dT)18 primer. The reaction
was stopped at 85◦C for 5 min without further treatment
according to the manufacturer’s instructions. cDNA was diluted
20 times with distilled water and tested by PCR using specific
primers flanking an intron sequence to confirm the absence
of genomic DNA contamination. cDNA synthesis for the

FIGURE 1 | Expression analyses of CrRLK1L members in seedlings exposed
to different metal ions to different metal ions. (A) Expression normalized to the
reference gene AP2M, (B) expression relative to the control conditions. Data
are mean and SE of three biological experiments with each three technical
repeats.

THE1 downstream gene expression was done as described in
Merz et al. (2017).

Reverse Transcription (RT)-qPCR Data
Analysis
AP2M (ADAPTOR PROTEIN-2 MU-ADAPTIN) has been
validated to be the most stably expressed gene among eight tested
and was used to normalize the RT-qPCR data (Gutierrez et al.,
2012). CT and PCR efficiency (E) values were used to calculate
expression using the formula ET(CT

ctr
−CT

m)/ER(CT
ctr
−CT

m),
where T is the target gene and R is the reference gene, CT
is the crossing threshold value, m refers to cDNA from the
metal ion treated seedlings, and ctr refers to cDNA from the
control medium. All RT-qPCR results presented are means
from three independent biological replicates and for each
independent biological replicate, the relative transcript amount
was calculated as the mean of three technical replicates, using
the method for calculation of SE values in relative quantification
recommended by Rieu and Powers (2009). RT-qPCR for the
THE1 downstream gene expression was done as described
in Merz et al. (2017). Primers used for the RT-qPCRs are
summarized in Supplementary Table 2.
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FIGURE 2 | Root growth and etiolated hypocotyl elongation of Col-0 seedlings upon elevated metal ion concentrations. (A) Root length 5 days after germination, (B)
hypocotyl length after 5 days of germination in the dark, (C) growth inhibition relative to control medium, (D) root growth between days 3 and 5 after germination, (E)
seedlings on control and Pb 11 days after germination. Shown are mean and SE of at least three biological replicates with 20 seedlings each.
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RESULTS AND DISCUSSION

Members of the CrRLK1L Family Are
Induced upon Metal Ion Exposure
In an expression survey for genes responsive to the
metal ions Cd, Ni, and Pb in seedlings, the CrRLK1L
members THE1, FER, and HERK1 exhibited a remarkable
expression pattern. All three were induced by Ni, only
slightly for FER but strongly for HERK1 and THE1
(Figure 1). Pb did not induce any transcriptional
regulation whereas Cd triggered upregulation of THE1 and
HERK1.

Root and Etiolated Hypocotyl Growth
Differ in Response to Metal Ion Medium
Growth and cell expansion responses of germinating Arabidopsis
seedlings to elevated metal ion concentrations depend strongly
on the composition of the growth medium and on the cation
exchange capacity of the agar. The high cation concentration
such as provided by the frequently used 1x Murashige and
Skoog medium (Murashige and Skoog, 1962) interferes with the
uptake of additional metal ions. On 1x MS medium 400 µM
Zn and 40 µM Cd were needed to observe a slight root length
reduction for Zn and a 30% reduction for Cd (Kobae et al.,
2004). A comparable experiment with germinating seedlings on
1/10 Hoagland medium supplemented with metal ions needed
only 50 µM Zn for a 43.2% and 2 µM Cd for a 57.6% root
growth inhibition (Tennstedt et al., 2009). Since the MS medium
is also Fe- satiated and Cu-deficient all metal ion experiments
were performed on 1/10 Hoagland medium (Supplementary
Table 1).

Root growth depends on two parameters, the rate of cell
division and cell expansion, while dark stimulated hypocotyl
growth depends solely on cell expansion. To separate the cell
division from cell expansion effects, root growth was determined
on seedlings germinating and grown for 5 days in the light
and hypocotyl elongation was assessed on 5 dag dark-grown
seedlings. In both sets of experiments identical 1/10 Hoagland
media supplemented with either 10 µM Cd, 5 µM Cu, 15 µM
Ni, 100 µM Pb, or 100 µM Zn were used.

Generally, hypocotyl elongation is less sensitive to metal ions
(Figures 2A–C). While on 10 µM Cd root growth was reduced
by 70% in relation to control medium the growth inhibition
of hypocotyls was only 43%. Similar results were obtained for
5 µM Cu with 46% root and 30% hypocotyl inhibition, 100 µM
Zn with 47% root and 41% hypocotyl inhibition, 15 µM Ni
with 74% root and 25% hypocotyl inhibition and 100 µM Pb
with 78% root and 49% hypocotyl inhibition (Figure 2C). The
most dramatic difference between root and hypocotyl growth
inhibition was seen for Ni followed by Pb and Cd (Figure 2C)
indicating that these metal ions might influence cell division
more severely than cell expansion. It might also be possible that
cell expansion in the root is differently affected by these metal
ions than in etiolated hypocotyls. The difference between root
and hypocotyl growth is particularly true for Ni where root
growth rate was continuously declining and nearly stopped 5 days

FIGURE 3 | Root growth and etiolated hypocotyl elongation of herk1 and
herk2 alleles upon elevated metal ion concentrations at 5 days after
germination. (A) Absolute root lengths, (B) relative root lengths of herk2
alleles, (C) absolute hypocotyl lengths, (D) relative hypocotyl lengths. Shown
are mean and SE of at least three biological replicates with 20 seedlings each.
Stars indicate significant differences according to Student’s t-tests with
∗p < 0.05 to wild type (A,C), wild type and control medium (B,D).

after germination (dag) (Figure 2D). Pb shows the opposite effect
and root growth recovered starting at 5 dag and roots reached
nearly the same length as wild type at 11 dag (Figure 2E).

Apart of the dissimilar effects of metal ions on cell division and
cell expansion another explanation for the differing sensitivities
between root and hypocotyl growth would be that metal
ion transport to hypocotyls is less effective. Data on metal
ion concentrations in separated roots and hypocotyls and
quantifications of the cell division rate and cell sizes would resolve
these possibilities. Although the results of these analyses would
contribute to the understanding of the root/hypocotyl response
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TABLE 1 | Summary of the significant growth and elongation responses in comparison to wild type.

Genotype ctrl Cd Cu Ni Pb Zn

Organ r h r h r h r h r h r h

herk1 = ↓ ↓ ↑ ↓ = ↓ ↑ = ↑ ↓ ↑

herk2.1 ↑ = ↓ ↑ ↓ = ↓ ↑ ↑ ↑ = ↑

herk2.2 ↑ = ↓ ↑ ↓ = ↓ ↑ ↑ ↑ = ↑

the1-6 ↓ = ↓ = = = ↑ ↑ = ↓ ↓ ↓

the1-4 = ↓ ↑ = ↓ = ↑ ↓ = ↑ = ↑

THE1:GFP ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↓ = = = ↑

fer-4 ↓ ↓ = ↑ ↓ ↑ = ↓ ↑ ↑ ↓ ↑

Data of roots and hypocotyls are indicated with r and h, respectively. In case growth on control medium was already significantly different between wild type and the
CrRLK1L mutants the significances of the normalized data are employed.

differences, the focus of this study was to determine if members of
the CrRLK1L family are involved in mediating growth responses
to metal ions.

HERCULES1 and 2 Negatively Regulate
Hypocotyl Elongation on Cd, Ni, Zn, and
Pb While They Support Root Growth on
Cd, Cu, and Ni
Previous growth assays with single mutants impaired in HERK1
and HERK2 expression did not show any obvious growth
phenotype. But the mutants developed strong cell elongation
defects in combination with the the1-4 allele (Guo et al.,
2009a,b). However the1-4 turned out to be a hypermorphic
allele. Thus the growth defects of the double and triple
mutants indicate that HERK1 and HERK2 act antagonistically
and not redundantly to THE1 (Merz et al., 2017). On 1/10
Hoagland control medium, roots of herk1 seedlings grow
similarly to wild type in contrast to both herk2 alleles, which
exhibited a significantly faster root growth (Figure 3A and
Table 1).

On metal ion supplemented medium root growth of herk1
seedlings is stronger inhibited upon Cd, Ni, Cu, and Zn than
wild type. Since the two herk2 alleles already grow faster on
control medium, analyzing the effect of metal ions on these
mutants by only looking at the absolute root length data might
be misleading. Therefore, their root growth on metal ions was
normalized to control conditions (Figure 3B and Table 1). These
analyses revealed that the apparent higher tolerance to Ni, and
Zn diminished and only the reduced lead response remained
while an enhanced Cd, Cu, and Ni sensitivity was revealed. In
summary, both HERK genes are likely to be important to support
root growth upon higher Cd, Cu, and Ni concentrations while
the Zn response is HERK1 specific and the Pb response is HERK2
specific.

As with wild type the hypocotyl elongation in the mutants
differs from root growth responses. Already on control medium
herk1 elongates significantly less than wild type and the two
herk2 alleles (Figure 3C and Table 1). Therefore, normalization
to control conditions was necessary to reveal that hypocotyl
elongation of herk1 was less disturbed by Cd, Ni, Zn,
and Pb than wild type (Figure 3D and Table 1). Identical

responses were found in the two herk2 mutants (Figures 3C,D
and Table 1). In conclusion, both HERK genes appear to
mediate the inhibition of hypocotyl elongation upon Cd, Ni,
Zn, and Pb while they support root growth on Cd, Cu,
and Ni.

THESEUS1 Is Mediating Ni Specific
Inhibition of Hypocotyl Elongation in the
Dark without Cell Wall Damage
Responses
THE1 signaling negatively affects cell expansion upon
inhibition of cellulose synthesis (Hématy et al., 2007; Merz
et al., 2017). Therefore THE1 is the strongest candidate
to uncover metal ion induced cell wall damage responses.
Well-characterized loss-of-function and gain-of-function
alleles were available to compare their responses to metal
ions.

Already on control medium root growth of THE1-related
knock-out and overexpression lines behaved inversely (Figure 4A
and Table 1). While the loss-of-function mutant the1-6 developed
shorter roots, roots of the THE1:GFP overexpressor grew faster
than wild type. Similar contrasting root growth responses were
significant on Cd and Ni. On Cu only THE1:GFP and the
hypermorphic allele the1-4 developed shorter roots as did the1-6
on Zn (Figure 4B and Table 1).

We previously showed that the hypermorphic the1-4
expresses a transcript encoding a predicted membrane-
associated truncated protein lacking the kinase domain.
Differences between THE1:GFP and the hypermorphic the1-4
allele, as seen on control, Ni and Zn, possibly relate to the missing
cytoplasmic domain in the1-4 which might be important for
feedback regulation (Merz et al., 2017).

Hypocotyl elongation in the dark behaved different to roots for
the1-6 on control Cd, and Pb, for THE1:GFP on control, Cu and
Zn and for the1-4 on all conditions (Figures 4C,D and Table 1).
While in roots the strongest effect was shown by the1-6 on Cd, for
hypocotyls it was on Ni by the1-4 and THE1:GFP (Figure 5A).
The opposing effects of the loss- and gain-of function alleles on
hypocotyl elongation were even more distinct on 20 and 30 µM
Ni (Figures 5B,C). These results indicate that THE1 mediates
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FIGURE 4 | Root growth and etiolated hypocotyl elongation of different the1
alleles on medium supplemented with high metal ion concentrations at 5 days
after germination. (A) Absolute root lengths, (B) relative root lengths, (C)
absolute hypocotyl lengths, (D) relative hypocotyl lengths. Shown are mean
and SE of at least three biological replicates with 20 seedlings each. Stars
indicate significant differences according to Student’s t-tests with ∗p < 0.05 to
wild type (A,C), wild type and control medium (B,D).

Ni specific inhibition of hypocotyl elongation in the dark and
promotes Cd specific growth tolerance in roots.

As mentioned above THE1 is known to inhibit cell elongation
in hypocotyls upon cell wall damage. Therefore, we examined
if Ni induces cell wall damage specific responses such as the
expression of the downstream gene in the THE1 signaling
pathway, EDGP/At5g19110. The expression of At5g19110 was
strongly induced in the overexpressor and the hypermorphic
alleles and did not respond in the loss-of-function allele,
the1-6 in chemically induced cell wall damage by treatment
with the cellulose biosynthesis inhibitor isoxaben. Upon Ni
treatment a very low expression in the different THE1 alleles
was quantified with no significant alterations to wild type
(Figure 5D). These data suggest that Ni perception by THE1

FIGURE 5 | Responses of THE1 alleles to Cd and Ni. (A) Root growth on Cd,
(B) etiolated hypocotyl elongation on Ni, (C) dose responses of Ni on etiolated
hypocotyls, (D) expression of a downstream gene of the THE1 mediated cell
wall damaging signaling pathway upon treatment with the cellulose
biosynthesis inhibitor isoxaben (IXN), mock (MeOH) and different
concentrations of Ni.

is independent of cell wall damage specific gene expression
responses.

FERONIA Mediates Growth Inhibition of
Hypocotyl on Cd, Cu, Pb, and Zn While it
Promotes Growth on Ni
FER is the best studied member of the CrRLK1L gene family.
FER has been identified due to its crucial function during pollen-
tube ovule interaction (Escobar-Restrepo et al., 2007) but is
also important for bacterial pathogen interaction (Keinath et al.,
2010; Stegmann et al., 2017), mechanosensing (Shih et al., 2014)
and in the antagonistic cross-talk between ABA and auxin in
vegetative tissues (Yu et al., 2012). Mutants of FER exhibit diverse
pleotropic phenotypes. They are stunted, develop smaller leaves
(Guo et al., 2009b) and shorter etiolated hypocotyls which are
hypersensitive to ethylene and insensitive to brassinosteroids
(Deslauriers and Larsen, 2010). Moreover fer mutants develop
shorter root hairs (Duan et al., 2010; Du et al., 2016) and larger
seeds (Yu et al., 2014) and exhibit a reduced gravitropic response
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FIGURE 6 | Root growth and hypocotyl elongation of fer-4 on medium supplemented with elevated metal ion concentrations at 5 dag. (A) Absolute root length, (B)
corresponding relative root lengths, (C) absolute hypocotyl lengths, (D) corresponding relative hypocotyl lengths. Shown are mean and SE of at least three biological
replicates with 20 seedlings each. Stars indicate significant differences according to Student’s t-tests with ∗p < 0.05 to wild type (A,C), wild type and control
medium (B,D).

which correlates with less apoplastic alkalization at the lower side
of gravistimulated roots (Barbez et al., 2017).

In our growth analyses root lengths of 5 days old fer-4
seedlings were significantly shorter on control medium and in
most metal ion treatments except on Pb (Figure 6A and Table 1).
However when root growth was normalized to control conditions
fer-4 was hypersensitive to Zn and Cu while it was more tolerant
to Pb (Figure 6B and Table 1). In concordance with published
data etiolated fer-4 hypocotyl reached only 25% of the size of
wild type (Figure 6C and Table 1). Thus the different effects
of the metal ions were revealed after normalization to control
conditions (Figure 6D and Table 1) and showed that fer-4 is

hypersensitive to Ni and has a higher tolerance to all other tested
metal ions.

Medium Alkalinization of Etiolated
Seedlings Is Constitutive in fer-4
Hypocotyls and Ni Specific in the THE1
Overexpressor
FER binds and is activated by secreted peptides of the
RALF family (Haruta et al., 2014) triggering alkalinization
of the apoplast. This alkalinization is thought to counteract
the acidification crucial for cell expansion. Light grown fer-4
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seedlings acidified a bath medium faster than wild type which
is indicative for a higher plasma membrane H+-ATPase activity
(Haruta et al., 2014).

Since growth of etiolated hypocotyl depends on rapid
cell expansion we tested the acidification capacity of the
CrRLK1L mutants on control medium and upon metal ion
treatments (Figures 7A–C). All genotypes acidified the medium
supplemented with the pH indicator bromocresolpurple (BCP)
(Figure 7D). Only fer-4 exhibited a remarkable alkalinization
around the hypocotyl while the root was still acidifying the
medium (Figure 7B). This alkalinization might be one of the
reasons why etiolated hypocotyls of fer-4 are short and indicate
that the plasma membrane H+-ATPase activity is differently
regulated from roots. The phenotype further suggests that FER
is necessary for the acidification of etiolated hypocotyls. It is
conceivable that in the absence of FER RALF expression is
triggered and another receptor in the hypocotyl mediates the
alkalinization. The alkalinization surrounding the fer-4 etiolated
hypocotyl was still visible on medium supplemented with
metal ions. Hypoctoyl mediated alkalinization of the medium
is strongest on control medium, followed by Cu, Ni, and
only slightly on Cd and Zn. Since, the medium supplemented
with Pb has a lower pH itself the alkalinization takes longer.
The only other genotype with reduced acidification capacity
was the overexpressor THE1:GFP on Ni (Figure 7C and
Supplementary Figure 1). Similar to fer-4, THE1:GFP developed
shorter hypocotyls on Ni. It might be possible that overexpression
of THE1:GFP increases the sensitivity to Ni induced hypocotyl
specific RALFs and that THE1 might be involved in their
signaling pathway.

CONCLUSION

Our survey revealed a molecular link between metal ion stress,
growth and the cell wall integrity sensors of the CrRLK1L
family. By analyzing growth responses in roots and hypocotyls
a complex network of patterns of gene specific, overlapping and
antagonistic responses which are summarized in Table 1 and
Figure 8 was uncovered. Few general patterns were extractable
of the data: in all HERK1, HERK2 and FER mutants root growth
is affected inversely to hypocotyl elongation. This tendency is
also true for the different THE1 alleles but for example on Zn
in the opposite direction. The hypocotyl of the gain-of-function
and hypermophic alleles of THE1 behaved similar to HERK1,
HERK2, and FER while the loss-of-function allele exhibited
hypersensitivity toward Zn (Table 1). The difference of the metal
ion mediated growth responses might arise as a result of the
presence of different ligands in roots and fast expanding etiolated
hypocotyls. One of the candidate ligands might be members of
the large RALF gene family. RALF1 has been shown to bind
and activate FER leading to the phosphorylation and inhibition
of the plasma membrane H+-ATPase AHA2, reduction of
the apoplast/cell wall acidification and the inhibition of cell
expansion genes (Haruta et al., 2014). It is possible that other
RALFs with different expression and pro-peptide processing
patterns are triggering similar reactions in conjunction with

FIGURE 7 | Alkalinization of the medium around etiolated hypocotyls. (A) On
control medium, (B) of fer-4 on metal ions and (C) of loss- and
gain-of-function alleles of THE1 on elevated Ni concentrations. (D) BCP is
yellow below pH < 5.2 and purple above pH > 6.0. The contrast and
brightness of the pictures were increased by 50% and 20%, respectively,
except for fer-4 on Pb where only the contrast was raised to +50%.

FIGURE 8 | Graphical summary of CrRLK1L functions on elevated metal ion
concentrations. (A) Etiolated hypocotyl elongation, (B) root growth. Arrows
indicate that the particular CrRLK1L protein is required to maintain growth
while cross bars illustrate an inhibitory function upon specific metal ions.
∗ Indicate opposite effects of the1-6 loss-of-function versus gain-of-function
alleles (the1-4, THE1:GFP) on elevated concentrations of the marked metal
ion.

other CrRLK1Ls (Wolf and Höfte, 2014). Other possible
ligands related to the putative carbohydrate binding feature
of the extracellular malectin-like domain might be metal ions
loaded pectin/homogalacturonans or their degradation products,
oligogalacturonans. Boisson-Dernier et al. (2011) proposed for
the pollen specific CrRLK1L member, ANXUR1 and 2 (ANX1
and ANX2) a possible interaction between homogalacturonans.
This hypothesis was based of the premature bursting of pollen
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tubes in the double mutants of anx1/anx2 and the pollen specific
expression of pectin modifying enzymes which correlated with
a specific de-/methylesterification at the pollen tube tip and thus
mechanical property. A related hypothesis was presented by Wolf
and Höfte (2014) proposing a feedback loop between RALF
and pectin modifying enzymes. RALF induced alkalinization of
the cell wall would activate PMEs which upon removal of the
methyl groups lead to cell wall acidification and cell expansion.
Based on this hypothesis, metal ions might be complexed by
demethylesterified pectins and stiffens the cell wall prematurely
before cell expansion is completed. The puzzle why different
metal ions trigger specific CrRLK1Ls and why and how their
signaling outcome induces opposite effects on growth remains to
be solved in the future.
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