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Transcriptional profiling is a prevalent and powerful approach for capturing the
response of crop plants to environmental stresses, e.g., response of rice to drought.
However, functionally interpreting the resulting genome-wide gene expression changes
is severely hampered by the large gaps in our genomic knowledge about which
genes work together in cellular pathways/processes in rice. Here, we present a new
web resource – RECoN – that relies on a network-based approach to go beyond
currently limited annotations in delineating functional and regulatory perturbations in
new rice transcriptome datasets generated by a researcher. To build RECoN, we first
enumerated 1,744 abiotic stress-specific gene modules covering 28,421 rice genes
(>72% of the genes in the genome). Each module contains a group of genes tightly
coexpressed across a large number of environmental conditions and, thus, is likely to be
functionally coherent. When a user provides a new differential expression profile, RECoN
identifies modules substantially perturbed in their experiment and further suggests
deregulated functional and regulatory mechanisms based on the enrichment of current
annotations within the predefined modules. We demonstrate the utility of this resource
by analyzing new drought transcriptomes of rice in three developmental stages, which
revealed large-scale insights into the cellular processes and regulatory mechanisms
involved in common and stage-specific drought responses. RECoN enables biologists
to functionally explore new data from all abiotic stresses on a genome-scale and to
uncover gene candidates, including those that are currently functionally uncharacterized,
for engineering stress tolerance.

Keywords: rice, coexpression network, drought, abiotic stress, webserver, database

INTRODUCTION

The complex response of plants to abiotic stress spans several orders of magnitude in time and
space, causing system-wide adverse reactions and protective responses. Gene expression profiling
has been used successfully to capture the system-wide molecular programs that underlie the
cellular response to abiotic stresses (Deyholos, 2010). Analyses of the drought-stress inducible
transcriptome in Arabidopsis, for example, reveal a plethora of responses including the induction
of transcription factors, phospholipases C and D, protein kinases (MAPK, CDPK), proteinases,
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water channel proteins, antioxidant enzymes and molecules
(GSTs, thioredoxins, peroxiredoxins), factors such as chaperones
that afford protection for macromolecules (LEA proteins, HSPs)
and osmoprotectant synthases (for proline, betaine, sugar) (Seki
et al., 2002; Shinozaki et al., 2003; Harb et al., 2010). Making
such analytical inferences from the transcriptome hinges on the
availability of prior functional and regulatory knowledge about
a large number of genes in the genome, which can then be
used to meaningfully summarize genome-wide gene-expression
changes. Although far from complete in Arabidopsis, such
functional/regulatory information about genes – what they do,
how they work together, and how they are regulated – is severely
lacking in rice both in quality and genomic coverage. This
paucity has led to a significant lag in the number of characterized
drought-responsive genes and cellular processes in rice compared
to Arabidopsis. Therefore, we need alternative approaches that
can go beyond currently available gene annotations for fully
extracting knowledge from rice transcriptomes and help toward
gaining a comprehensive understanding of stress response in this
crop plant.

A promising starting point for such an alternative approach is
the large amount of currently publicly available gene expression
data in plants. A powerful analysis framework that has emerged
in recent years involves estimating the similarity of expression
patterns between all pairs of genes across diverse conditions
to build gene coexpression networks, representing the genome-
wide transcriptional organization of the cell (Usadel et al.,
2009; Pearce et al., 2015). Particularly, in the crop model rice,
recent studies have used gene coexpression to gain biological
insights into general (Wang et al., 2009; Shaik and Ramakrishna,
2013) and case-specific (Fu and Xue, 2010; Ambavaram et al.,
2014) gene regulation. Coexpression networks have also been
used extensively in plants to organize genes into transcriptional
modules and explore their functions (Mentzen and Wurtele,
2008; Mao et al., 2009). These modules represent groups
of genes/proteins are likely to work together to perform a
coherent biological function inside the cell (Hartwell et al., 1999),
essentially expanding upon the available functional annotations.
Hence, coexpressed modules can be used as sets of functionally
coherent genes to see their enrichment in new expression data,
especially in genomes where the functional annotations are sparse
and incomplete. However, we still lack such a resource that
allows enrichment analysis of coexpressed clusters/modules in
new expression data of rice.

Therefore, it would be valuable to reconstruct a rice
coexpression network that integrates information across a large
number of datasets specifically in the context of abiotic stress. In
addition, it would be highly beneficial if researchers could bring
this coexpression network to bear on their new gene-expression
profiles (in one or more conditions related to abiotic stress) for
functional resolution and comparison. Interpreting the long lists
of responsive genes, a typical result of a gene-expression study,
will become amply tractable by identifying subsets of responsive
genes that are likely to be functionally coherent. Likewise,
comparison between gene responses in different growth stages
or conditions is likely to be more meaningful and robust at the
level of cellular functions/pathways than at the level of individual

genes (capturing the perturbation of different subsets of the same
cellular apparatus and overcoming the various sources of noise in
high-throughput assays).

To meet all these critical needs, here we present a genomic
resource for comprehensive analysis of abiotic stress response
in rice based on a modular coexpression network specific to
response to environmental conditions, and apply this resource
to perform a detailed analysis of stage-specific drought response
in rice. First, we carried out a genome-scale analysis integrating
publicly available rice gene expression datasets generated in the
context of response to a range of environmental conditions.
Next, using this integrated data, we constructed, what is termed,
the Rice Environment Coexpression Network (RECoN), based
on gene expression correlation across environmental conditions.
Finally, we partitioned RECoN into densely connected modules
using a graph-clustering algorithm. As a pertinent test case for
our approach, we performed gene expression profiling of rice
plants subjected to drought at three developmental stages. We
used this data to perform both a traditional analysis – functional
analysis [using Gene Ontology (GO)] – and a new analysis
using RECoN, teasing out drought-related modules within
the drought-response genes identified from our experiments.
The new RECoN-based analysis of new experimental data
helped highlight pathways, processes, regulatory genes, and
potential transcriptional regulatory mechanisms critical for
drought response in rice. We have made RECoN available for
rice stress biologists through an interactive network browser at
https://plantstress-pereira.uark.edu/RECoN/. Biologists can use
this resource to explore coexpression clusters within their stress
transcriptome and systematically guide follow-up experimental
studies for constructing the underlying gene network.

MATERIALS AND METHODS

Coexpression Network Analysis
A total of 29 publicly available gene expression datasets
comprising of 414 samples of the Affymetrix rice GeneChip
from were collected from NCBI GEO (Barrett et al., 2009) and
ArrayExpress (Parkinson et al., 2009). From these, 129 samples
(45 groups) with a unifying biological theme, i.e., response
to some environmental condition, were used for coexpression
analysis (see Supplementary Table S1).

We previously reported the re-annotation of Rice GeneChip to
increase the reliability of expression quantification (Ambavaram
et al., 2011). Briefly, the chip definition file (CDF GPL11322)
was created by mapping probes to target genes that have perfect
sequence similarity, and regrouping probesets such that each
represents a single corresponding gene. We used this custom
CDF to background correct, normalize and summarize the
raw data using justRMA (Irizarry et al., 2003), with values
in replicate samples averaged. To estimate coexpression, the
Pearson correlations between every pair of genes were first
calculated (Huttenhower et al., 2008) and then normalized using
Fisher’s Z-transform (David, 1949). Then, the standardization
of these scores resulted in coexpression score (zcs) indicating
the number of standard deviations it lies from the mean, and
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follows a normal distribution to be interpretable by the level
of significance, as |zcs| values greater than 1.96 allowed a 95%
confidence interval to work with.

A coexpression network was then constructed connecting
pairs of genes that have a zcs > 1.96 (top 2.5% of all pairs of
genes ordered in decreasing order of correlation). This cutoff
corresponded to a Pearson correlation coefficient of 0.632. This
network that contains 34,792 genes connected by ∼18.5 million
edges was then clustered using SPICi (Jiang and Singh, 2010).
Since SPICi requires a density parameter Td as input, a range
of values of the parameter from 0.1 to 0.9 was tested. Clusters
obtained using each Td value were evaluated using several criteria
including the number of clusters formed, fraction of genes in
clusters of size three or more, average segregation (modularity),
and extent of overlap between clusters and GO BP gene sets
(termed ‘functions’). In order to calculate average segregation, as
desired property of dense interaction networks, the coexpression
network is modeled as an undirected graph G= (V, E), consisting
of a set V of nodes (i.e., genes) and a set E of edges (i.e.,
coexpressing gene pairs). Let wuv denote the weight of the edge (u,
v) ∈ E, denoting the Pearson correlation coefficient of gene pairs
(u, v). The graph Gc = (Vc, Ec) is defined as the graph induced
by the genes that are part of cluster c, and average segregation is
computed as: ∑

(u,v)∈Ec

wuv

/∣∣Ec
∣∣

∑
u∈Vc;y∈V;(u,y)∈E

wuy

/∣∣Ec′
∣∣

where Ec ′ is the set of edges in G that are incident on Vc. For
functional enrichment analysis the overlap between genes within
a cluster and genes annotated to a given GO BP term using the
cumulative hypergeometric test. Using only GO BP terms that
annotate < 500 genes (to ensure a certain level of specificity in
definition), for a pair of gene sets (cluster and GO BP term) i and
j, if N is the total number of genes, ni and nj are the number of
genes in gene set i and j, and m is the number of genes common to
the gene sets, the probability (p-value) of an overlap (enrichment)
of size equal to or greater than observed is given by the formula
below.

P(X = x ≥ m) =

min(ni,nj)∑
x=m

(
ni
x

)(
N − ni
nj − x

)
(

N
nj

)
p-Values from the test were converted to q-values to correct for
multiple hypothesis testing using Benjamini–Hochberg method
(Benjamini and Hochberg, 1995) and cluster-GO_BP pairs with
q-value < 0.1 were considered for analysis. The level of functional
enrichment in a cluster is quantified using−log10(q-value).

After clustering the network using SPICi with Td value of 0.65,
from all the clusters, those relevant to drought were determined
by testing which clusters contained a significantly high number
of drought-regulated genes up- or down-regulated in any one
of the stages (again using a cumulative hypergeometric test).
Then, four sets of genes were extracted from each ‘drought’

cluster – all the genes in the cluster, and seedling, vegetative and
reproductive drought-regulated genes – for discovery of putative
cis-regulatory elements (CREs) and enrichment analysis of GO
biological processes (BPs) in the rice genome.

Rice Plant Material and Drought-Stress Treatments
Rice (Oryza sativa L. ssp. Japonica cv. Nipponbare) seeds
were germinated in hydroponic half-strength Hoagland
solution and seedlings were grown about a week in an
environmentally controlled growth chambers maintained at
28 ± 1◦C temperature, 65% relative humidity with a daily
photoperiodic cycle of 14 h light and 10 h dark, and then plants
allowed to reach the reproductive stages were grown in soil under
greenhouse conditions. Samples of well-watered and drought
stressed were collected at various developmental stages which
include 7-day old seedlings, vegetative (V4) and reproductive
(R4) stages based on discrete morphological criteria as described
by Counce et al. (2000).

For drought treatment, plants were gradually subjected to
field drought stress in order to reach 50% field capacity (FC)
by regulating the water supply, whereas control plants were
maintained at 100% FC. During the stress period the pots were
weighed daily and the difference in weight on subsequent days
was corrected by adding water to maintain the required FC.
The physiological condition of plants at 50% FC was monitored
by chlorophyll fluorescence, quantum yield (Fv/Fm) and the
relative water content (RWC) (Supplementary Table S1). For dry
down drought treatment, rice plants after transplanting were
separated, with five pots maintained at well-watered condition
serving as control while another set of five pots were used
for drought experiments. For drought stress treatment water
was withheld until the moisture level progressively dropped
down to 6%. Drought stress symptoms were monitored for leaf
rolling and measurement of soil moisture content everyday using
soil a moisture meter (Rapitest). For all the stages (seedlings,
vegetative, and reproductive), three biological replicates were
harvested from independent populations of plants, when leaves
were completely rolled and RWC was around 65–70%. RWC
was measured in the leaves used from where photosynthesis
was measured. Leaf fragments of same size were cut and fresh
weight was measured and hydrated immediately to full turgidity
in deionized water for 6 h. After 6 h the leaf fragments were
blotted on paper towels and the fully turgid weight was taken.
Turgid leaf samples were then oven dried at 80◦C for 72 h and
weighed to determine dry weight. RWC percentage was measured
as: RWC (%) = (fresh weight - dry weight)/(turgid weight - dry
weight) × 100. The drought stress symptoms such as leaf rolling
and basal leaf senescence were apparent in stress-induced plants,
while control plants growing at 100% FC were observed to grow
well-showing 95% RWC.

Measurement of Chlorophyll Fluorescence and
Quantum Yield
Chlorophyll fluorescence and the quantum yield was measured
by using the Modulated Chlorophyll Fluorometer OS1-FL (Opti-
Sciences, Inc., United States). During and after stress treatments,
flag leaf from stressed and unstressed wild-type was placed
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in close contact with the Photosynthetically Active Radiation
(PAR) clip, which provides basic data to the OS1-FL system
on ambient conditions. The PAR sensor is designed to measure
leaf temperature and the light intensity. The ratio of variable
fluorescence (Fv/Fm) and the yield of quantum efficiency (Y) are
indicative of photosystems I and II performance of the plants
under stress.

RNA Isolation, Probe Labeling, and Hybridization
Total RNA was isolated from the rice seedlings, vegetative
(V4) and reproductive (R4) tissues of both control and stress
treated plants using the RNeasy plant kit (Qiagen, United States)
according to manufactures protocol. For each stage/treatment,
three independent biological replicates were used for RNA
isolation.

RNA quantity, quality, and purity were assessed with the use
of the RNA 6000 Nano assay on the Agilent 2100 Bioanalyzer
(Agilent Technologies, United States). Total RNA (∼4 µg) from
each sample was used to generate first-strand cDNA with a T7-
Oligo(dT) primer. Following second-strand synthesis, in vitro
transcription was performed using the GeneChip R© IVT Labeling
Kit according to the manufacturer’s instructions. The preparation
and processing of labeled and fragmented cRNA targets, as
well as hybridization to arrays, washing, staining, and scanning
were carried out according to manufacturer’s instructions1. The
Affymetrix Rice GeneChips (which contain ∼43,000 probe sets
or genes), washing and scanning were carried out in Gene chip
fluidics Station 450 (Affymetrix) and the Gene chip Scanner 3000
by Affymetrix (Santa Clara, CA, United States), respectively.

Analysis of Differential Gene Expression
The custom CDF file was used to background correct, normalize
and summarize all the raw expression data using RMA in R
(Ihaka and Gentleman, 1996; Irizarry et al., 2003; Gentleman
et al., 2004). Genes that had the interquartile range (IQR) less
than the median were detected as lowly varying, and were
removed from further analysis of differential expression. To
estimate differential expression among the remaining genes, a
linear model was used (Smyth, 2004). The resulting p-values of
the t-tests were corrected for multiple hypothesis testing and
reported as q-values (Storey and Tibshirani, 2003). A threshold
of q-value < 0.01 was set to select significantly differentially
expressed genes in response to drought.

Functional and Regulatory Annotations
of Clusters
Functional annotations of rice genes in GO BP and KEGG
pathways categories were downloaded from the PlantGSEA
website (Yi et al., 2013). Gene sets that annotated more than 1500
genes and less than 10 genes were removed to gain resolution
in the BPs presented by enrichment analysis. The statistical
significance of overlap between a given gene set and a cluster
was tested using a cumulative hypergeometric test and expressed
in terms of false discovery rates (q-values). The enrichment
score (ES) was reported as −log10 q-value. The Clusters were

1http://www.affymetrix.com

then annotated with functional categories (GO BP and KEGG)
that had an overlap ES greater than 1.3 (q-value < 0.05). CREs
enriched in the clusters were identified de novo using FIRE
(Elemento et al., 2007). FIRE uses mutual information (MI) to
find an association between the given expression profile of a
gene (cluster participation) and their motif profile, and uses
randomization tests to score for statistical significance. Motifs
reported by FIRE were matched to known plant motifs (Higo
et al., 1999) using STAMP (Mahony and Benos, 2007). Motifs that
were present in more than 50% of all the genes in a given cluster
were considered for cluster annotations.

Perl scripts were used to parse all the data. Plots were
generated using R (Ihaka and Gentleman, 1996) and gene
expression matrices were visualized using MeV (Saeed et al.,
2006).

The gene expression data reported here are available from the
NCBI GEO database with the accession number GSE81253.

RESULTS

The Rice Environment Coexpression
Network
To determine biologically meaningful stress transcriptional
modules in rice, we have designed an extensive pipeline that
uses data from publicly available gene expression profiles in
parallel with our in-house generated datasets measuring drought
response in three developmental stages (Figure 1). We obtained
129 publicly available rice Affymetrix microarrays related to
response of the rice plant to some environmental condition and
worked with the raw data (Figure 1, step 1a). The data was
normalized and summarized into a gene expression matrix based
on a custom probe-gene reannotation of the rice GeneChip.
The reannotation increases the accuracy of the gene expression
quantification process by assigning only specific probes to genes,
and increases coverage of the array. The gene expression data
was then converted into a matrix of 34,792 genes and 45
distinct conditions/groups and used to construct a coexpression
network connecting pairs of genes that have a significantly
high correlation between their expression profiles across the
conditions (top 2.5% of all pairs of genes ordered in decreasing
order of correlation; see section “Materials and Methods”). This
network, termed Rice Environment Coexpression Network or
RECoN, contains 34,792 genes connected by∼18.5 million edges.

There are several clustering algorithms that work with
weighted networks and find groups of densely connected nodes
(Enright et al., 2002; Bader and Hogue, 2003). SPICi, a clustering
tool was selected due to its ability to cluster large networks
extremely fast (Jiang and Singh, 2010), and used to cluster
our extremely large network. However, like every clustering
algorithm, amongst a few, there is a single user defined parameter
Td that determines the density of the resultant clusters and
heavily influences the clustering process. To avoid an ad hoc or
even a wrong choice of this parameter, we performed exhaustive
data-driven tests on the network clustered using a range of Td
values to identify the best parameter for the network at hand
(Figure 2).
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FIGURE 1 | Workflow for mining and characterization of drought transcriptional modules. (1a) Reconstruction and clustering of the rice environmental coexpression
network from publicly available gene expression datasets. (1b) Identification of drought-responsive genes in the three developmental stages. (2) Determination of
‘drought’ clusters based on the combination of results from the steps 1a and 1b, and extraction of whole cluster and specific drought gene sets (3) Functional
enrichment analysis and cis-regulatory motif discovery. (4) Presentation of these data to the user where (s)he explores the results to identify candidate genes for
functional validation. (5) Availability of mutants in genes of interest that can be used to study gene function.

First, for different values of Td, we tracked the number of
clusters obtained and the fraction of genes in the original network
that were in clusters of three or more genes (Figure 2A). At
small values of Td, there are very few clusters and only a few
broken links. As Td increases, the number of clusters increases,
but, however, very high Td will break the network so much that
the clusters with three or more genes will again become rare.
Similarly, as Td increases, the number of genes that are part of
clusters will steadily decrease until a critical value beyond which
a large portion of genes will get disconnected and fall out of
good-sized clusters. By testing for the value of Td after which
there is the first significant drop in the number of clusters and
fraction of genes in clusters, we found that this is at Td = 0.65.
Second, we calculated a measure of modularity called average
segregation that quantified how well genes within a cluster are
connected to each other compared to their connection to all the
genes in the network (Figure 2B) (Yook et al., 2004). Since we
are interested in finding coherent biological modules, finding a
Td that preserves segregation is sought after. It was surprising
that the network showed the highest values of segregation for the
smallest values of Td, indicating that even the original network
with ∼18.5 million edges is highly modular. Therefore, in the
context of this network, at least, it was only important to look
out for partitioning the network as much as possible without a
significant drop in the inherent modularity. The first significant

drop in average segregation (measured more qualitatively than
quantitatively using the notches in the box plots; see Figure 2
legend) occurs when the Td value is increased from 0.65 to
0.70, suggesting that setting Td = 0.65 ensures the maximum
modularity-preserving partitioning of the network.

Third, as we are interested in the functional consistency of
genes within a cluster in addition to topological cohesiveness,
we characterized the functional enrichment of all the clusters
for a given Td value using GO BP enrichment analysis
(Figure 2C). Since this approach will suffer from the very
sparse functional annotation of rice genes, we used this analysis
only as a rough guide. Following the number of clusters that
were significantly enriched with at least one specific GO BP
(‘function’), we observed that the maximum enrichment again
occurs at Td = 0.65 (slightly better than Td = 0.70). However,
contrary to what is expected, the number of distinct enriched
functions dropped steadily with increasing Td. Finally, using data
from the enrichment analysis, we plotted the distribution of ESs
of all the clusters for different Td values and found that Td values
in the range of 0.65 to 0.80 were giving overall more significant
overlap between clusters and functions (Figure 2D). Therefore,
based on all the four analyses, we decided on a Td = 0.65 to be
the best choice for clustering RECoN.

We subsequently clustered RECoN using SPICi with Td = 0.65
to uncover 1744 dense clusters with three or more genes. 28,421
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FIGURE 2 | Evaluation of coexpression network clustering. The rice ‘environment’ coexpression network was clustered using SPICi, for a range of values – 0.1-0.9 –
of the density parameter Td that determines how dense the final clusters are. The clusters obtained using each Td value were evaluated using several criteria: (A)
Number of clusters that were formed (left y-axis) and the fraction of 34,792 genes in the original network present in one of the clusters (right y-axis) are plotted.
These numbers were calculating by considering only clusters containing three or more genes. As Td increases, more and more genes are left out of clusters. (B)
Average segregation of a cluster is a measure of how well genes in that cluster interact with other genes belonging to the same cluster compared to interactions with
genes belonging to other clusters. Hence, average segregation measures cluster modularity. The overall modularity at a given Td value is plotted a box plot, leaving
out outlier values above the whiskers for clarity. The center of the box corresponds to the median (2nd quartile; Q2) of the distribution of average segregation values
of all the clusters, and the extremes of the box correspond to the 1st (Q1) and 3rd (Q3) quartiles. The whiskers denote Q2 ± 1.5∗ IQR, where IQR is the interquartile
range (Q3−Q1). The notches in each box extend to ±1.58 IQR/

√
n (n being the sample size) (McGill et al., 1978). They are based on asymptotic normality of the

median and roughly equal sample sizes for the medians being compared, and are said to be rather insensitive to the underlying distributions of the samples. The
notches give roughly a 95% confidence interval for the difference in two medians. (C) The extent of overlap between clusters (defined based on a particular Td value)
and GO BP gene sets (termed ‘functions’) is measured using the hypergeometric test. The number of clusters with significant overlap (FDR q-value < 0.1) (left y-axis)
and number of distinct functions significantly overlapping with the clusters (right y-axis) are plotted. (D) Functional enrichment of the clusters is quantified using
–log10(q-value) and plotted using a box plot representing the distribution of the enrichment scores (ESs) for all the clusters at a given Td value. Here again, outliers
beyond the whiskers have been left out for clarity.

genes (∼81.7% of all the genes in the original network) fell
within one of the clusters. Clustering the conditions based
on their expression profiles also yields an expected grouping,
especially with the drought-, salt-, and cold stress samples
clustering together (Supplementary Figure S1). We linked
these clusters to BP categories from the GO ontology and
to CREs identified using a de novo motif discovery pipeline
(Harb et al., 2010) (see section “Materials and Methods”). The
clusters thus identified can be used in a geneset enrichment
analysis framework of new stress transcriptomes of rice. To
demonstrate this analytical pipeline, we generated rice drought
transcriptomes at three developmental stages, and used RECoN
to identify clusters that are significantly perturbed in at least one
stage.

Gene Expression Profiling of Drought in Rice
We profiled RNA samples from rice plants treated to drought
at the seedling, vegetative and reproductive stages using the
rice Affymetrix GeneChips (Figure 1, step 1b). In addition, we
measured phenotypic and physiological responses of the plants
to drought stress (see Supplementary Note and Supplementary
Table S2). Statistical analysis of differential expression showed

that a large number of genes are perturbed, given a stringent
q-value cut-off of < 0.01 (Supplementary Table S3). The largest
shift in expression compared to well-watered controls happened
at the seedling stage with ∼12,300 genes showing differential
expression, compared to only ∼2,500 genes in the reproductive
stage and ∼9000 genes at the vegetative stage. A comparison
of the differentially expressed genes at the three developmental
stages showed that∼33% of the genes were shared with the genes
in the other stages in the case of both up- and down-regulated
genes (Figures 3A,B).

To see the level of functional enrichment using genesets from
the GO, we took a union of all the drought-regulated genes
and split them into sets of genes that show identical pattern of
regulation across the stages. We then determined the processes
defined by GO BP annotations that were enriched in each of
these gene sets (Figures 3C,D). As expected, the most significant
GO term among the set of genes up-regulated in all stages
was ‘response to water.’ Similarly, different combinations of
genes involved in protein dephosphorylation and small GTPase-
mediated signaling are up-regulated in all stages. Among the
genes down-regulated in all stages, photosynthesis and related
processes are clearly enriched. Genes involved in translation
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FIGURE 3 | Gene expression profiles under drought. Venn diagrams comparing up-regulated (A) and down-regulated (B) genes in response to drought in three
growth stages: seedling, vegetative, and reproductive. Total numbers of genes for all gene sets are indicated in brackets. Functions, processes and pathways
common and specific to various drought stress treatments and time-points. These are defined broadly based on Gene Ontology (GO) biological process (BP)
annotations of rice genes. First, the total of all drought-regulated genes from all stages were pooled together and were then partitioned based on the combination of
their regulation in the three stages (e.g., up-up-up, or down-up-down). Then, GO BP terms of interest (rows) were identified by analysis of enrichment of the set of
genes annotated with a given GO BP term in each regulation-combination defined by the yellow-blue color-coding along the rows where blue means up-regulation
and yellow means down-regulation. Statistical significance of enrichment was calculated using the hypergeometric test and terms with q-value < 0.1 in at least one
of the treatments were retained. (C) GO BP terms enriched in gene sets up-regulated in at least one stage. (D) GO BP terms enriched in gene sets only
down-regulated in one or more stage.

are induced and repressed in the seedling and reproductive
stages, respectively. Cell wall modification genes that are usually
repressed by drought (Moore et al., 2008) are also repressed at the
seedling stage but specifically up-regulated in the reproductive
stage. Comparisons of the GO BP category revealed the most
obvious differences between up- and down-regulated genes
(Supplementary Table S4). In this category, response to water
(GO:0009415), lipid transport (GO:0006869), cellular response
to stress (GO:0033554), transcription (GO:0006350), response
to oxidative stress and carbohydrate biosynthetic process
(GO:0016051) were found at higher proportions in up- than in
down-regulated genes. In contrast, the processes photosynthesis
(GO: 0015979), chlorophyll biosynthesis (GO:0015995), and
glycolysis (GO:0006096) were specifically represented in the
down-regulated set of genes.

Although this analysis gave us a few insights into drought-
regulated gene expression, apart from the bona fide stress

response themes, it is hard to pinpoint biological functions
that are specifically affected in the different stages. The most
important reason for this shortfall is the fact that rice genes are
extremely poorly characterized and very few genes have been
annotated well. This scenario becomes evident when we look at
the small number of genes common between any GO term and
the set of drought genes. Therefore, we need to pursue other
approaches that will give us a better picture of the underlying
changes during drought.

Identification of Drought-Related Clusters from
RECoN
The next operation was to interface the information gained from
drought expression profiling to identify drought-related modules
from the coexpression data (Figure 1, step 2). Each of the 1744
clusters from RECoN were tested for enrichment of drought-
responsive (up- or down-regulated) genes from any one of the
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FIGURE 4 | Heat map showing the different clusters enriched in
drought-responsive genes in three developmental stages of rice. The fold
change values obtained from the differential expression tests was used as a
parameter for the parametric analysis of geneset enrichment algorithm. The
heat map shows Z scores obtained from the enrichment analysis, color coded
with a red and blue gradient for positive and negative enrichment, respectively.
The green grids along the rows indicate the ‘drought tolerance clusters,’
identified by mapping known drought tolerance genes to clusters. A q-value
cut-off of 0.001 was set as a threshold to select the clusters.

stages (seedling, vegetative, or reproductive) (Figure 4). Drought
clusters provide a handle on putative functional interactions
between genes transcriptionally regulated by drought that were
otherwise unassociated parts lists. This makes gene-by-gene
interpretation a much easier and constructive process. Moreover,

we reasoned that since a cluster is a coherent group of genes,
all the genes in a ‘drought’ cluster might have a role in
mediating drought-response, not necessarily by responding to
drought through gene expression changes. This is possible by
either being ubiquitously present as support machinery (between
well-watered and drought conditions) or being conditionally
active under drought due to non-transcriptional modes of
regulation including post-translational modification. These
clusters, hence, provide a means for functionally associating
post-transcriptionally modified regulatory/signaling genes to
transcriptionally regulated genes.

Examples of Drought Transcriptional Modules
We present here some drought transcriptional modules as
examples to showcase the usefulness of this approach in
understanding developmental stage-specific drought response.
All the genes in drought clusters, their relative expression across
the stages and their ‘drought’ cluster membership are provided in
Supplementary Table S5.

Cluster0013 contains 294 genes enriched with genes up-
regulated in the seedling stage and down-regulated in the
reproductive stage. Genes in this cluster are involved in ribosome
biogenesis pathway (q-value < 10−16), process related to protein
import (q-value < 10−4), mitochondrial protein localization (q-
value < 10−3) (which concerns transporting of mitochondrial
oxidative phosphorylation proteins to the mitochondrion), and
contain the GCC-core, Telo-box and the Site II motifs in
their upstream sequences. This combination of BPs and CREs
represents a well-known regulatory program: the site II motifs are
recognized by TFs of the TCP family and have been confirmed
to be important in the regulation of ribosome protein (RP)
genes in combination with the telo-box motif (Tremousaygue
et al., 2003). These motifs are co-located in the promoters
of about 70% of 216 ribosomal protein genes in Arabidopsis.
In addition, there is evidence that the site II motifs also
possibly coordinate the expression of nuclear genes encoding
components of the mitochondrial oxidative phosphorylation
machinery in both Arabidopsis and rice (Welchen and Gonzalez,
2006). Therefore, this program involving site II and telo-box
motifs could mediate the down-regulation of major processes
that affect protein production under drought stress in the
reproductive tissue. The GCC-core motif is known to be bound
by AP2-ERF TFs (Ohme-Takagi and Shinshi, 1995), which are
involved in gene regulation under a variety of abiotic stresses
conserved between Arabidopsis and rice (Nakashima et al.,
2009).

Cluster0010 contains 635 genes including genes involved in
glucose metabolism (q-value < 10−3), terms related to amino
acid transport and metabolism (q-value < 0.05), glycolysis (q-
value < 0.05), and two-component signal transduction system
(phosphorelay) (q-value < 0.05). Genes in this cluster are
down-regulated in the seedling and vegetative stages, but
up-regulated in reproductive stage. Of particular interest in
this cluster is the OsVIN1 gene (LOC_Os04g45290) coding
for a vacuolar invertase gene. OsVIN1 has high fructan
exohydrolase activity and is known to play an important role
in carbon allocation to developing organs like the reproductive
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tissue. The expression of OsVIN1 is not induced by our
drought treatment, and this is in agreement with previous
observation that OsVIN1 is expressed in flag leaves, panicles
(the reproductive tissue) and anthers in an essentially drought-
insensitive manner (Ji et al., 2005; Parent et al., 2009). It is
therefore a case where a gene involved in mediating a process
(resource allocation) relevant to drought is not transcriptionally
affected, but is associated with other drought-regulated genes
in clusters defined by us. Another important gene observed
in this cluster is SNAC3 (LOC_Os01g09550) that has been
previously shown to confer tolerance to multiple stresses like
salinity, drought, and oxidative stresses (Fang et al., 2015).
OsCPK9 (LOC_Os03g48270), a calcium dependent protein
kinase is another key member in this cluster that has previously
been shown to impart drought tolerance in transgenic rice
plants by enhancing stomatal closure and stomatal adjustment
(Wei et al., 2014). Taken together these results suggest that
the genes in this cluster contribute to drought tolerance by
regulating osmotic adjustment and ROS scavenging processes
and can also be putative candidates for increasing yield under
drought.

The 193 genes in Cluster0041 are enriched primarily in almost
all processes involved in cell cycle, a process integral to panicle
development and elongation, and these genes are specifically
down-regulated by drought at the reproductive stage (the most
drought sensitive stage of rice). Upstream regions of these genes
contain the SEF3 binding site/ACII element, MYB recognition
site found in rd22 and other genes, and E2F consensus, potential
binding sites of TFs that have been implicated to be important
in regulating cell cycle in the reproductive tissue of Arabidopsis
(Hennig et al., 2004).

The other aspect of using this approach is in discovery
of drought tolerance genes. A variety of gene families with
regulatory function have been shown to have a role in drought
tolerance by overexpression/knockout experiments, and that
regulate a battery of downstream genes (Umezawa et al., 2006).
Therefore, to evaluate this aspect, we first cataloged a number of
genes that confer drought tolerance in rice on overexpression or
knockout, and then mapped them to RECoN clusters (Figure 5).
The primary observation is that almost all the drought tolerance
genes were part of drought clusters. However, this observation
could be trivial if all those genes are indeed regulated by drought
in the first place. Out of the 54 genes presented here, 45 are
indeed regulated by drought in stage-specific or independent
manner while 9 of these are not drought-regulated, but are
associated with a drought module. Therefore, we reaffirm that
the approach lends itself to identification of genes that are
not necessarily transcriptionally perturbed by drought, if at all
regulated by it. Some examples for the drought-tolerance clusters
follow.

Cluster0079 contains 71 genes. The genes in this
cluster include a receptor-like cytoplasmic kinase
OsRLCK253 (LOC_Os08g28710) and a phosphatase OsPP108
(LOC_Os09g15670), both of which have been shown to improve
drought tolerance in transgenic Arabidopsis plants (Giri et al.,
2011; Singh et al., 2015). Along with the aforementioned
genes, this cluster also comprises of other known drought

tolerance genes comprising of dehydrins like OsLea3-1
(LOC_Os05g46480) (Brohee and van Helden, 2006), enzymes
like OsUGE-1 (LOC_Os05g51670) (Nardini et al., 2011) and
TFs like OsDREB2A (LOC_Os01g07120) (Skirycz and Inze,
2010), SNAC2/OsNAC6 (LOC_Os01g66120) (Bergmann et al.,
2004), CMYB1(LOC_Os02g46030) (Kitano, 2002) and ZFP182
(LOC_Os03g60560) (Figure 6A). Most genes in the cluster
are up-regulated by drought in all three developmental stages,
which appears to indicate the diverse roles that these proteins
play including detoxification, osmotic adjustment, and signaling
pathways. Since our data revealed many putative stress inducible
genes, a few of these genes are likely to have a dual role as
developmentally regulated and stress responsive. Nevertheless,
the functional role of these genes needs to be characterized to
further enhance our understanding of the mechanisms that
impart drought/abiotic stress tolerance to rice.

Cluster0424 contains 20 genes enriched specifically
with reproductive drought and these genes too contain
an ABRE-like motif – HACGYGTNS – in their upstream
sequence. The drought tolerance genes part of this cluster are
OsDREB1F (LOC_Os01g73770) (Barrero et al., 2007; Choi
et al., 2007), OsNPKL2 (LOC_Os01g50400) and OsNPKL3
(LOC_Os01g50410) (Figure 6B). The tandem duplicate genes
NPKL2 and NPKL3 are previously known to be strongly induced
by drought at the reproductive stage (Ning et al., 2008). Highly
induced expression of these genes under drought stress indicates
that these two genes can be candidates for drought tolerance
and increased yield under drought, for their potential role as
a kinase as they are found to be located in the genomic region
with three QTLs: RSN (relative number of spikelets per panicle
under drought stress) and LDS (leaf drying score), which are
mainly related to drought tolerance, and DIDRV (deep root rate
in volume induced by drought conditions) (data not shown).
Although expression of OsDERF1 is induced by drought and
phyothormone treatments, its overexpression in rice negatively
regulates drought tolerance by repressing ethylene biosynthesis
by binding to ERF repressors OsERF3 and OsAP2-39 (Wan et al.,
2011). OsDREB1F was induced by abiotic stresses including
osmotic stress (using PEG) as well as ABA treatment and
overexpression in rice and Arabidopsis gave drought tolerance
that can be mediated by ABA dependent pathway (Choi et al.,
2007). However, our progressive drought treatment does not
perturb this gene (at least not at the stringent level of significance
chosen). Developmental stage-specific drought-regulation of
OsDREB1F is not clear except that the gene by itself is expressed
differently in different stages and tissues. We therefore implicate
OsDREB1F as being important in progressive drought response
at the reproductive stage.

Cluster0177 contains 33 genes involved in the regulation
of innate immune/defense/stress response as well as response
to jasmonic acid and salicylic acid. Drought-regulated genes
in this cluster are up-regulated specifically in the seedling
and vegetative stages. This cluster again contains the drought-
tolerance genes OsMAPK5 (LOC_Os03g17700) and OsNPKL4
(LOC_Os01g50420). OsMAPK5 is known to be induced by
drought, other abiotic stresses and ABA, as well as pathogen
infection and that the overexpressiwon gives abiotic stress
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FIGURE 5 | Drought clusters containing known drought tolerance genes. Genes in black are regulated by drought at one or more of the growth stages while genes
in red are not drought-regulated. The values in the color-coded columns correspond to the level of significance (measured as score equal to the –log10[q-value]) of
drought-regulated genes. For convenience the scores themselves are signed and colored based on the direction of their regulation (+/blue – up-regulation;
–/yellow -down). Since only enrichments with q-value < 0.1 were considered, all the other values were set to 1 (because of which, their negative logarithms are 0 s).

tolerance but disease susceptibility (Xiong and Yang, 2003). It
is hence considered to be a key link in the cross talk between
disease resistance and abiotic stress tolerance. We propose that
other genes in this cluster are putative links of crosstalk between
the stresses. Previous research has shown that OsNPKL4 is very
strongly induced at the seedling stage, but has a moderate to
low level of induction at the anthesis stage (Ning et al., 2008),
consistent with the drought-pattern of this cluster.

Cluster 0108 contains 37 genes with three drought tolerance
genes. OsMYB4 (LOC_Os04g43680), characterized as a universal
stress response gene induced under a variety of biotic and
abiotic stresses gives abiotic stress tolerance when overexpressed
in apples (Yu et al., 2006; Narsai et al., 2013) by modulating
osmolytic balance, OsbHLH148 (LOC_Os03g53020) and its
interacting partner OsJAZ1 (LOC_Os03g08310) mediates
drought response via the jasmonic acid pathway (Seo et al.,
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FIGURE 6 | Graphical visualization of (A) 71 genes in Cluster0079 that contains six drought tolerance genes (with thick gray borders) and (B) 20 genes in
Cluster0424 that contains four drought tolerance genes. All the coexpression edges are colored green. Node shapes correspond to type of gene: triangles are TFs,
diamonds are protein kinases, rounded squares are protein phosphatases and circles are other genes. Node color corresponds to the level of differential expression
under drought in the vegetative stage for Cluster0079 and reproductive stage for Cluster0424 (where the clusters have maximum enrichment): blue for up-regulation
and yellow for down-regulation. Uncharacterized gene are labeled ‘exp. pro.’ (for ‘expressed protein’).

2011). Genes in this cluster also could potentially be involved in
jasmonic acid mediated hormonal signal transduction.

A Web Interface for Further Exploration
of Rice Abiotic Stress Response
We have made RECoN available at https://plantstress-pereira.
uark.edu/RECoN/. The platform provides an interface to perform
an exploratory analysis of abiotic stress response in rice in three
different modes (Figure 7). The cluster enrichment tool allows
users to upload a genome-wide differential expression profile
and test the enrichment of abiotic stress coexpression clusters
defined by us in this study. As results, all the clusters enriched
(Kim and Volsky, 2005) within a user-defined significance
threshold (Z-scores of clusters with mean change significantly
larger than the background), along with the cluster size and
a representative GO BP term within the cluster (the term
with the lowest q-value) are displayed. Users can click on
clusters of interest to view various attributes of the cluster. The
functional information of the cluster is displayed in separate
‘Process’ and ‘KEGG Pathways’ tabs, as well as all the regulatory
sequences that were found enriched in each cluster under the
‘Motifs’ tab. The ‘Genes’ tab shows all the genes within that
cluster that were also present in the user data, along with
other attributes linked to annotations from the MSU database
(Kawahara et al., 2013), their matched locus ids in the RAP-
DB (Sakai et al., 2013), Arabidopsis homologs and links to
Manually Curated Database of Rice Proteins (Gour et al., 2014)
to explore ontologies the gene is annotated to. The page also
displays the differential expression value of each gene in all the
three drought transcriptomes generated by us and reported in
this study, as well as in the data uploaded by the user. The
‘Graph’ tab displays the cluster in a Cytoscape-web enabled
page (Lopes et al., 2010). The interactive graphical display sets

node (gene) attributes to highlight changes in the user provided
transcriptome.

To test this utility, we queried RECoN with an independent
dataset listed as GSE14275 in GEO. This dataset quantified
mRNA from rice seedlings exposed to heat shock treatments (Hu
et al., 2009). We calculated and uploaded the text file with log2
transformed fold change values of all the genes using the cluster
enrichment tool. The results page shows 82 clusters enriched
with a threshold of q-value < 0.01. Of these, Cluster0223 has the
highest Z-score (22.01) (Supplementary Figure S2). From the 25
genes in this cluster, 8 (32%) are heat shock proteins, with a single
TF listed as Heat Stress Transcription Factor A2A (HSFA2A)
(Supplementary Figure S3). The homolog of HSFA2A is known
to modulate heat-stress response in Arabidopsis (Lämke et al.,
2016), making HSFA2A an interesting candidate for heat stress
study in rice. As expected of the queried dataset, the GO term
‘response to heat stress’ is most significantly enriched within this
cluster (−log10 q-value 4.186), along with ‘response to abiotic
stimulus’ (−log10 q-value 4.186), and ‘protein folding’ (−log10
q-value 1.845) (Supplementary Figure S4). This corresponds
well with the enriched KEGG pathway ‘protein processing in
endoplasmic reticulum’ (−log10 q-value 7.705). The Cytoscape
graph page shows the gene peptidyl-prolyl isomerase is most
highly upregulated gene in response to heat amongst all genes
in the cluster (Supplementary Figure S5), and its homolog in
Arabidopsis interacts with heat shock proteins to modulate
thermotolerance (Meiri and Breiman, 2009).

The platform also allows users to perform searches for a
BP of interest and retrieve clusters linked to the search term
(Figure 7). For example, RECoN can be directly searched with the
term ‘response to heat,’ which retrieves two clusters- Cluster0223
as described above and the large Cluster0005 with 972 genes
(Supplementary Figure S6). According to GO terms annotated to
Cluster0005, these genes appear to be involved in RNA processing
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FIGURE 7 | A screenshot of the RECoN webserver available at the link provided in the main text. The online platform allows two types of analyses. The user can
upload a genome-wide differential expression profile using the ‘choose file’ option, which will be used by the cluster enrichment tool to identify clusters that are
significantly perturbed in the uploaded transcriptome, within the selected q-value threshold. The uploaded file should contain two columns (with headers) with MSU
formatted rice gene locus IDs in the first column and their respective fold change values determined from the differential expression tests in the second column. The
results will be displayed in a new page with enriched clusters listed and links to display each cluster using Cytoscape-web, as well as BPs and cis-regulatory
elements (CREs) enriched in the clusters (see Supplementary Figures S2–S4). In cases where a single gene is of interest (rather than a genome-wide analysis), its
locus ID can be entered in the input box under the ‘Find First Neighbors’ section. This analysis will report the genes within one path length of the query gene and a
default coexpression score of 0.80 (which can be changed from the results page, see Supplementary Figure S5).

and alternative splicing during general abiotic stress responses
(Supplementary Figure S7), and this conclusion is reinforced by
enrichment of the KEGG pathway ‘Spliceosome’ (−log10 q-value
3.468) within this cluster.

Apart from this, RECoN also allows querying a single guide
gene and retrieve a coexpression neighborhood to explore its
functional context. By default, this service will display all the
coexpressed genes with edge scores above 0.80, which can
be altered from the results page to increase or decrease the
subnetwork size (Supplementary Figure S8). Together, all these
functionalities in RECoN will enable biologists gain a network-
based understanding of the abiotic-stress response in rice and
prioritize candidates for studying experimental phenotypes.

DISCUSSION

Plant responses to environmental stress span across several
layers of organization including signaling, transcription, and
metabolism, making it vital to understand stress response at
the systems-level. For less studied models like rice, the current
scope for systems analysis is mostly restricted to transcriptional
profiling under various conditions. Therefore, to make the best
use of currently available data in rice, we have created a resource
for exploration of transcriptional, developmental, functional, and
regulatory aspects of abiotic-stress response in rice.

We sought to organize genes into coherent groups and work
further from there. To this end, we designed and implemented
a pipeline for automatic mining of condition-specific gene
expression datasets intended for analysis of coexpression. At a
practical level, accurate quantification of gene expression using
technologies like Affymetrix GeneChips has been hard due to
the problem of cross-hybridization. This has been noted to
affect calculation of coexpression (Casneuf et al., 2007) and the
proposed solution is a remapping of microarray probes to genes
to ensure unique hybridization (Dai et al., 2005). We hence used
a custom probe-gene mapping and used this reannotation to
make reliable estimation of gene expression across 45 conditions.
Then, a coexpression network was built (RECoN) and clustered
to obtain tightly coexpressed groups of genes that revealed the
modular organization of genes.

We demonstrated the use of RECoN by analyzing new stage-
specific drought transcriptomes. In order to both understand
drought response and discover novel drought tolerance genes, we
combined drought-responsive genes from our experiments with
the transcriptional modules to uncover drought clusters, where
each cluster, by design, contains several genes in addition to genes
transcriptionally regulated by drought. Drought modules thus
present an opportunity to discover regulatory genes that do not
change in gene expression but can affect the response mediated
by that module. In this process, we are basically imputing
uncharacterized genes within a cluster with the function/role of
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characterized genes (even at the level of transcriptional response).
In species with very little annotation, such as rice, cluster-level
function prediction has been shown to be useful (Song and
Singh, 2009). We have validated this approach by inspecting
the cluster membership of known drought tolerance genes that
are not drought-responsive but are associated with a cluster
that is enriched in genes following a drought expression pattern
expected from what is known about the tolerance gene.

With the enormous amount of data generated in this work
that can be used for inference of gene function and pathway
analysis, all these results are summarized and presented in a
flexible visual interface for dynamic exploration. The RECoN
online platform, to the best of our knowledge, is the first of
a kind that allows users to upload their own transcriptomic
data (e.g., output of an RNA-seq assay) and find clusters that
are significantly enriched. The clusters are linked to GO BPs
and KEGG pathways in the current version, which will be
regularly updated with other newer ontologies as they become
available (e.g., Trait Ontology, Stress Ontology, etc.). RECoN
has the potential to enhance the functional interpretation of
high-throughput expression data, with diverse set of information
made available within a single platform that can be searched
quickly.

The approach presented here is widely applicable: as shown
with an independent test dataset from heat stress, genome-
wide transcriptional modules recovered here on the basis of
gene expression under different environmental conditions can be
similarly extended to study other abiotic stresses including salt
and cold to find common stress-specific modules. This approach
lends itself to identification of abiotic stress related genes that are
usually hidden in a typical transcriptome assay.
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