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Volume carving is a well established method for visual hull reconstruction and has been

successfully applied in plant phenotyping, especially for 3d reconstruction of small plants

and seeds. When imaging larger plants at still relatively high spatial resolution (≤1 mm),

well known implementations become slow or have prohibitively large memory needs.

Here we present and evaluate a computationally efficient algorithm for volume carving,

allowing e.g., 3D reconstruction of plant shoots. It combines a well-known multi-grid

representation called “Octree” with an efficient image region integration scheme called

“Integral image.” Speedup with respect to less efficient octree implementations is about

2 orders of magnitude, due to the introduced refinement strategy “Mark and refine.”

Speedup is about a factor 1.6 compared to a highly optimized GPU implementation

using equidistant voxel grids, even without using any parallelization. We demonstrate the

application of this method for trait derivation of banana and maize plants.

Keywords: image processing, 3D from silhouettes, visual hull, octree, integral image, refinement strategy,

performance analysis

1. INTRODUCTION

Complementary to genomics, the quantitative description of plant phenotypes is at the core of
basic research for the analysis of plant development and physiological responses to abiotic and
biotic challenges as well as for applications in plant genetic improvement and precision agriculture.
An increasing amount of phenotypic data are generated using digital images and time series
experiments using a variety of methods and sensors both in controlled environment and in the
field (reviewed e.g., in Furbank and Tester, 2011; Fiorani and Schurr, 2013; Mulla, 2013; Araus and
Cairns, 2014). Most of these methodologies, ranging from RGB to spectral imaging, are based in
high-throughput phenotyping pipelines primarily on 2D spatial analyses for the estimation from
image analysis of plant traits such as total leaf area, crop coverage and leaf biomass (Homolova
et al., 2013; Chen et al., 2014), leaf color (Hu et al., 2013), plant height measurements using light
courtains (Fanourakis et al., 2014) or root morphological features (Das et al., 2015). The use of
optical imaging with RGB cameras for estimation of shoot area and above-ground biomass is an
established method deployed in indoor phenotyping platforms imaging stations for large-scale
studies (Al-Tamimi et al., 2016). These methodologies are based on estimation of leaf area and leaf
biomass by acquisition and image analysis of a series of RGB projections frommultiple view-angles
(Golzarian et al., 2011). Issues thatmay arise from this approach that generally use a limited number
of view-angles are related to the likely underestimation of total leaf area for relatively complex shoot
architecture and for large plants at advanced developmental stages. In many cases and for the same
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reasons, quantifying the growth rates and leaf angles of individual
leaves from global shoot images remains challenging. Optical
3D reconstruction of plant shoots using a variety of methods
assists in alleviating these issues. For example, studies were
conducted in Arabidopsis using light-field cameras for depth
reconstruction of rosettes (Apelt et al., 2015), in tobacco using
high-resolution 3D imaging and a mesh approach (Paproki
et al., 2012), and also in the field using stereo imaging with
consumer cameras (Müller-Linow et al., 2015). Progress in
this field is still limited by the required computational power
and time investment for image analysis (Minervini et al.,
2015). In this respect, improvements are required both for
methods using 3D reconstruction from silhouettes and 3D
imaging.

1.1. Related Work
Measuring plant geometry from single view-point 2D images
often suffers from insufficient information, especially when plant
organs occlude each other (self-occlusion). In order to achieve
more detailed information and recover the plants 3D geometric
structure volume carving is a well established method to generate
3D point clouds of plant shoots (Koenderink et al., 2009; Golbach
et al., 2015; Klodt and Cremers, 2015), seeds (Roussel et al.,
2015, 2016; Jahnke et al., 2016), and roots (Clark et al., 2011;
Zheng et al., 2011; Topp et al., 2013). Volume carving can be
applied in high-throughput scenarios (Golbach et al., 2015):
For the reconstruction of relatively simple plant structures like
tomato seedlings image reconstruction takes ∼25–60 ms, based
on a well though out camera geometry using 10 cameras and
a suitably low voxel resolution 240 × 240 × 300 voxels at 0.25
mm voxel width. Short reconstruction times are achieved by
precomputing voxel to pixel projections for each of the fully
calibrated cameras. However, precomputing lookup-tables is not
feasible for high voxel resolutions due to storage restrictions
(Ladikos et al., 2008). Current implementations popular in plant
sciences suffer from high computational complexity, when voxel
resolutions are high. We therefore implemented and tested a
fast and reliable volume carving algorithm based on octrees
(cmp. Klodt and Cremers, 2015) and integral images (cmp.
Veksler, 2003), and investigate different refinement strategies.
This work summarizes and extends our findings presented in
Embgenbroich (2015).

Visual hull reconstruction via volume carving is a well-known
shape-from-silhouette technique (Martin and Aggarwal, 1983;
Potmesil, 1987; Laurentini, 1994) and found many applications.
Also octree as multigrid approach and integral image for reliable
and fast foreground testing have been used successfully with
volume carving in medical applications (Ladikos et al., 2008)
and human pose reconstruction (Kanaujia et al., 2013). Realtime
applications at 5123 voxel resolution have been achieved where
suitable caching strategies on GPUs can be applied e.g., for video
conferencing (Waizenegger et al., 2009). Here we demonstrate
that even higher spatial resolutions are achievable on consumer
computer hardware without prohibitively large computational
cost. Subsequent octree-voxel-based processing allows extraction
of plant structural features suitable for plant phenotypic trait
extraction.

2. RECONSTRUCTING SHAPES FROM
SILHOUETTES

2.1. Voxelbased Volume Carving
Here, we revisit voxel-based volume carving, closely following
the description found in Roussel et al. (2016). In the subsequent
sections we will then extend this formulation using octrees as
multigrid extension.

Consider an imaging setup with a set of fully calibrated
cameras, and a turn-table allowing to rotate our plant of interest
around its vertical axis. Golbach et al. (2015) use 10 cameras and
no turn-table, Roussel et al. (2016) a single camera and a robot
instead of a turn-table; here we use different setups combining
up to three cameras and a turntable (see section 3.1).

For each camera c we obtain the 3× 3 intrinsic camera matrix
Kc, 3×3 rotation matrix Rc and translation vector Etc with respect
to the reference camera (cmp. Hartley and Zisserman, 2004), and
the distance between the origin of our working volume and the
reference camera center from calibration (cmp. section 3.2). The
origin of the working volume is selected to be the rotation center
of the turn-table (cmp. section 3.1).

We acquire N images, showing the plant of interest under
(equidistantly spaced) rotation angles αi where i ∈ {1, . . . ,N}.
We segment each image into a binary mask Mi being one at
the foreground, i.e., plant, and zero at background locations.
For segmentation, we either use HSV color thresholding (Walter
et al., 2007) or a support vector machine (SVM) based learning
algorithm (cmp. e.g., Hearst et al., 1998; Wang et al., 2011;
Li et al., 2013). Both methods are parameterized offline, where
SVM parameters are learned using suitable training data. HSV
parameters are hand-tuned by setting 6 threshold values on the 3
color channels. Computational effort as a preprocessing step for
carving is negligible, as it typically takes fractions of a second per
image for both methods. Subsequently, small objects like noise
are removed and small holes filled. Suitable filling sizes depend
on the imaging setup and need to be determined empirically.

For each image and thus segmentation mask we calculate the
homogeneous camera projection matrix Pi, from the rotation
angle αi by

Pi = Kc(Rc|Etc +Et0)

(

Ri 0
0 1

)

(1)

where Ri is the rotation matrix corresponding to the given angle
αi, and translation vector Et0 is calculated using the distance of
the world origin to the reference camera center, also known from
calibration (see e.g., Hartley and Zisserman, 2004). By this, the
world coordinate frame rotates with the object, i.e., the plant.

We define an equidistantly spaced, cubic voxel grid around
the world origin, being large enough to contain the plant. Such a
working volume depends on the plant size in order to keep voxel
number and thus complexity low. We can relax this requirement
later, when using octrees.

Each voxel center with homogeneous world coordinates EX is
projected to a point Exi in each maskMi by

Exi = Pi EX (2)
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If EX is projected to the background region of at least one of the
N masks Mi, then this voxel does not belong to the foreground
object and its value V(EX) is set to 0, i.e.,

V(EX) =

N
∏

i=1

Mi(Exi) (3)

Thus, if a voxel belongs to the foreground object, its value V(EX)
is set to 1.

When high voxel resolution is desired, and thus runtimes
increase, parallelization of the carving algorithm (Ladikos et al.,
2008; Brenscheidt, 2014) is feasible. However, as complexity
increases linearly with the voxel number and thus cubically
with voxel resolution, equidistant voxel discretization quickly
reaches its limits for any computer hardware. High resolutions
become available on current desktop computer hardware, when
hierarchically representing the voxel grid, e.g., as an octree as
described next (Szeliski, 1993; Ladikos et al., 2008; Klodt and
Cremers, 2015).

2.2. Octrees
An Octree (Meagher, 1980, 1995; Szeliski, 1993) is a hierarchical
tree data-structure. Each node corresponds to a cube in 3d space
(i.e., a large or small “voxel”) where each node not being an end-
node or “leaf” is subdivided in eight child nodes. The child nodes
have each half the size, i.e., edge length, of their parent node and
are non-overlapping such that they fill the same volume as their
parent. (cmp. Figure 1). Octrees are designed to efficiently store
voxel grids, where large, unstructured volumes can be stored
using only few nodes (i.e., large voxels), whereas small structures
or surfaces in space can be finely resolved using nodes further
up in the tree (i.e., small voxels), i.e., higher “level” nodes. To
this end, when building up a representation of an object, an
octree node is kept as an end-node, when the corresponding 3d
volume is either empty, or completely filled by the object. When
the corresponding volume is only partly filled by the object, the
node is split into its eight children. This is iterated until the finest
resolution is reached. Then leaf nodes at finest resolution can
be considered as partly filled and represent surface voxels of the
object.

Consequently, memory investment for storing a working
volume only marginally depends on its size, but rather on the size
and complexity of the object of interest. For example storing an
equidistantly sampled working volume of 1 m3 using voxels of
0.25 mm edge length requires 6.4 · 1010 voxels or ∼64 GB when
representing each voxel by a single byte without any compression.
Storing the same working volume takes only a few bytes, when it
is empty, and when occupied by an object, still much less than
storing an equidistantly sampled version of the occupied volume
only (see section 4.1 for an example). We can therefore select
our initial working volume such that it well contains the overall
visible volume of our setup, without compromising on runtime.

2.3. Integral Image
The occupancy test in Equation (3) assumes, that a each voxel EX
corresponds to a single pixel or point Exi in a mask imageMi. This
can be sufficiently well fulfilled when image resolution is low,

such that pixel size at working distance is well above voxel size.
For large voxels as in the lower levels of an octree, this assumption
is not sufficiently fulfilled. We need to adapt the occupancy test,
such that we can decide if a voxel is empty, completely or only
partly filled. Consider a large voxel being projected to a mask
image (see Figure 2, left). In general, the 2d central projection of
a cube is a hexagon and we needed to test every pixel within the
region of this hexagon. When foreground is 1 and background 0,
this corresponds to integrating the mask image over the region
of the hexagon and compare the result Rhex with the area of
the hexagon Ahex. Then only when Rhex/Ahex is exactly 1 or 0,
the octree node would not be split. However, integrating over
a hexagon for every voxel is time consuming. Instead of this,
we integrate over the bounding-box of the hexagon, yielding
Rbbx, as this can be done very efficiently using the integral image
approach. A bounding-box is a rectangle with sides parallel to the
coordinate axes, being spanned by Exmin as the upper left corner
and Exmax as the lower right corner1. Here Exmin = (xmin, ymin)
contains the minimum coordinate values2 of all corner points of
the voxel projected to themask image, and Exmax their maximum3,
accordingly. In case the bounding-box is completely filled by the
object, i.e., Rbbx = Abbx or completely empty, Rbbx = 0, it will be
the same for the hexagon.

Abbx = (xmax − xmin) · (ymax − ymin) (4)

is the area covered by the bounding box. For a partly filled
bounding-box we will split the corresponding octree node, in
order to be on the safe side, even though there may be cases when
the bounding box is partly filled, but the hexagon actually is not.

The integral over the bounding box can be evaluated very
efficiently using the summed area table (Crow, 1984) or Integral
Image Ii of the mask Mi (see Figure 2, right, and Veksler, 2003;
Viola and Jones, 2004). Every pixel of Ii contains the integral of
Mi in the rectangle being spanned by Exmin = E0 and Exmax being
the current pixel.

Ii(x, y) =
∑

x′≤x,y′≤y

Mi(x
′, y′) (5)

Ii can be derived efficiently by a recursive convolution scheme
starting at the upper left corner and proceeding row- or column-
wise, where we calculate the current pixel value from the value of
its upper and left neighbors, i.e.,

Ii(x, y) = Mi(x, y)+Ii(x−1, y)+Ii(x, y−1)−Ii(x−1, y−1) (6)

with considering I = 0 outside themask image. From the integral
image the sum over any rectangular region can be calculated
using four values

Rbbx,i = Ii(xmin, ymin)− Ii(xmin, ymax)− Ii(xmax, ymin)

+ Ii(xmax, ymax) (7)

1The image coordinate origin is assumed to be in the upper left corner and x- and

y-axes pointing to the right and downwards, as usual for images.
2Rounded to lower values, using the C++ operation floor.
3Rounded to higher values, using the C++ operation ceil.
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FIGURE 1 | Octrees: A well-established multigrid data structure reducing complexity wrt. an equidistantly spaced voxel grid. (A–C) Selected refinement steps in an

Octree-based reconstruction. Foreground corner points are green. (D) Reconstructed plant with corresponding Octree.

FIGURE 2 | Integral images: fast and reliable checking if a (potentially large) voxel covers fore- and background and thus needs to be refined.

For border handling, bounding-box corners outside the current
field of view, are moved to the nearest pixel in Ii.

2.4. Volume Carving with Octrees
When using octrees instead of equidistantly spaced, cubic
voxel grids, the occupancy test from Equation (3) needs to be
exchanged. To do so, we first calculate for every mask image
Mi the corresponding integral image Ii using the scheme from
Equation (6).

We start with an octree containing only a single coarse voxel
covering the whole working space, i.e., the trunk node of the
octree. This node is initially marked as “object,” i.e., it is assumed
it contains an object. Then, for all images, all nodes are iteratively
updated, when a node N is marked as “object” and

Rbbx,i/Abbx,i =







1 then N is marked as “object”
0 then N is marked as “empty”
else N is marked as “refine.”

(8)

Voxels marked as “refine” are split, marked as “empty” and their
Children are marked as “object.” This update scheme is iterated

until the desired finest resolution is reached. In the following,
“one iteration” means projecting all current octree voxels on
one image once. We have several options, how to organize the
iterations:

1. Depth first: On the current image, we iterate until all nodes are
split to the finest resolution, where we visit each image only
once, or

2. Breadth first: We make a single pass over all nodes for the
current image, split the ones marked as “refine,” and go to
the next image for the next pass, where we visit each image
multiple times.

3. Refining resolution: Set the maximum resolution to a coarse
level and iterate breadth first to convergence. Then set the
resolution such that finest voxels are allowed to be split once
and run breadth first once. Repeat the last step until the
desired resolution is reached.

4. Mark and refine: Make a single pass over all nodes for all
images, only marking nodes, not actually splitting them. Then
split all nodes marked as “refine.” Iterate until the desired
resolution is reached.
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FIGURE 3 | Semi-automatic imaging setup. (Left) View from behind the plant with cameras indicated by red circles. (Right) Setup as seen from the lower camera.

We investigate memory usage and runtimes for these different
refinement strategies in our experiments (see section 4.1).

For our experiments with the banana plants we used a finest
resolution of 0.244 mm, being a bit smaller than the pixel size
at working distance of ∼0.3–0.4 mm depending on the camera
distance to the voxel of interest. The volume of the visual hull of
a plant is estimated by summing over the volumes of all nodes
marked as “object” where nodes at the finest resolution, i.e., with
unknown filling percentage, are accounted for half their volume
in order to get an unbiased estimate. Clearly, as the visual hull
includes convex volumes or other occluded volumes, its volume
only coarsely reflects the volume of a complex object such as a
plant.

For visualization (cmp. e.g., Figures 7, 8) we assigned to each
“object” voxel a single RGB color value for simplicity. To this end,
we calculated for each voxel its nearest camera4 and selected the
color of the center pixel of the voxel’s bounding box. No visibility
or plausibility tests have been performed. Please note, that this
approach is good for visualization purposes, only, and is not well
suitable for color-based trait evaluation.

3. MATERIALS AND METHODS

3.1. Imaging
Two setups for image acquisition were used for this study, a semi-
automatic setup combining a turntable and up to two cameras, as
well as a fully automated system including a turntable and three
industrial cameras.

The semi-automatic setup (see Figure 3) needs manual initial
positioning of a plant, which is then imaged fully automatic.
This setup includes an automated turntable (Steinmeyer
Mechatronic, Dresden Germany, DT180-SM, 0.1◦ accuracy) with
color markers for image-based rotation angle estimation, and
two industrial cameras (Allied Vision Technologies, Stadtroda

4We used as camera position the camera center, as usual.

Germany, AVT MANTA G-504, 5MP color camera). Images can
be taken either in a stop-and-go fashion, where the plant is
turned to the next pose, stopped, and then images are acquired,
or alternatively, the turntable can rotate and images are taken in
equidistant time intervals corresponding to equidistant rotation
angles.

The fully automated setup called Screenhouse at IBG-2
is used for screening of the shoot structure and function
of different mono- and dicotyledonous plant species in a
greenhouse environment (cmp. Nakhforoosh et al., 2016). Plants
are automatically fed to the system being equipped with an
imaging station for automated imaging (see Figure 4, top and
left). Imaging is routinely performed with three cameras (Point
Gray Grasshopper2, 5MP color camera, by FLIR Integrated
Imaging Solutions Inc., Richmond, British Columbia, Canada)
which are located at different positions to efficiently assess the
plant structural properties for diverse shoot architectures. A
turntable is used for stop-and-go imaging at 4 positions at 0,
90, 180, and 270◦. For the top camera only the image acquired
at 0◦ is used. This means that 9 images per plant are used for
reconstruction in our experiments.

3.2. Camera Calibration
One of the main drawbacks of visual hull computation with
fixed calibrated cameras is its sensitivity to imprecise external
camera calibration and lens aberrations. When a mask Mi is
misaligned and thus does not well overlap with the “true” object
volume, the non-overlapping parts are deleted from the volume
without further testing or corrections. Geometric precision of
the calibration needs to be in the same range as the desired
precision in object space, i.e., when reconstructing relatively large
objects sufficient precision is reachable using well established
methods. When dealing with small objects like plant seeds, an
online image-based camera pose calibration step may be needed
(see e.g., Roussel et al., 2016). In our case, plants are in the size
range of tens of centimeters and precision needed for calibration

Frontiers in Plant Science | www.frontiersin.org 5 September 2017 | Volume 8 | Article 1680

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Scharr et al. Volume Carving for Shoot Reconstruction

FIGURE 4 | Imaging. (Top) Screenhouse setup. (Bottom left) Camera setup in Screenhouse measurement chamber. Three 5 MP RGB cameras (red circles) with

different view angles and rotating table (green circle). (Bottom right, top) Original RGB images taken from 3 different view angles; (Middle) Binary masked images;

(Bottom) Intermediate carving step overlaid on images.
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FIGURE 5 | Images of the Maize experiment. The images show the same maize plant over the course of the experiment at roughly the same rotation angle. Imaging

was done with continuous rotation and equidistant time intervals for image acquisition using the semi-automatic setup (see section 3.1).

is in the range of ≈0.3 mm, which is approximately the lower
limit of pixel size at working distance. We use the calibration
approach introduced by Bouguet (1999), where multiple, here 20,
images of arbitrarily posed flat calibration targets are used. Laser-
printed calibration targets glued to flat material are sufficient
for our requirements. We use the OpenCV ver. 2.4.9 (Bradski,
2000) implementation calibrateCamera of the method presented
in Zhang (2000).

3.3. Software Implementation
The software framework was implemented in C++ on aWindows
7 operating system with Microsoft Visual Studio 2013.

3.4. Datasets Acquired
3.4.1. Maize Plants on the Semi-automatic Setup
We imaged 5 maize plants (Zea Maize, Genotype “Badischer
Gelber”) at 6 different time points over 17 days from seedling
stage with 2–8 leaves stage (see Figure 5 for an example). Using
both cameras of the semi-automatic setup this resulted in 30
datasets of 60 images each, where we had to remove 7 sets due
to imaging problems, e.g., plants being already too large for our
setup.

3.4.2. Banana Seedlings on the Automatic Setup
Seven groups of five banana seedlings, cultivar Khai Thong
Ruang, were imaged and harvested for fresh weight
determination immediately after imaging. Imaging and
harvesting took place 6, 10, 14, 17, 20, 28, and 34 days after
transplantation of the initial four leaf plantlets. This resulted in
35 datasets of 9 images each (see Figure 6). In addition some
larger banana seedlings have been imaged in the same way, but
not been harvested (see Figure 7).

4. EXPERIMENTS

4.1. Performance of Different Refinement
Strategies
We investigate the runtimes needed for the four different
refinement strategiesDepth first, Breadth first, Refining resolution,
and Mark and refine described in Section 2.4. We performed
these test on a computer with 48GB RAM and two Intel Xeon
E5540 @ 2.53 GHz as some refinement strategies use a lot of

memory. The Mark and refine strategy can also be run on a
current laptop (8GB RAM, Intel Core i5-5300U @ 2.30 Ghz)
at comparable speeds. All runtime tests were done without any
parallelization using a single CPU only, unless stated differently.

In Figure 7A an image from the dataset used for this
investigation is shown, one of the larger banana plants being 31
cm high and 29 cm wide. Figure 7B shows the corresponding
carving result. Its final 3d grid contains Noct = 5.4 · 106

foreground octree voxels from 0.244 to 15.6 mm. We observe
that finest structures, like the tip of the top leaf or the tip of
the large leaf on the left are lost. Missing of finest structures in
volume carving typically, and also here, has two main reasons:
segmentation errors and calibration inaccuracies. Themain effect
in the data set used here is lens imperfections being not fully
compensated by radial distortion correction. In addition, the
brownish part of the tip of the top leaf is missing in one
segmentation mask and therefore carved away. For the purpose
of this publication, i.e., performance evaluation in terms of
runtime and resolution, such inaccuracies are of no interest.
However for practical applications needing such detail, one may
want to invest in better calibration procedures and more precise
segmentation algorithms.

A uniform 0.244mm grid requires 6.9·1010 voxels to represent
the same 1 m3 working volume (corresponding to 64 GB, when
using 1 byte per voxel), where Nequi = 3.3 · 107 voxels are
foreground i.e., plant. We see that while using an equidistant
grid during carving requires a large amount of memory, this
is not necessarily the case for the final result. In our case the
difference is a factor of Nequi/Noct = 6.1, allowing to perform
subsequent processing using equidistantly sampled foreground
voxels, if needed.

Complexity for deriving this carving result heavily depends
on the refinement strategy used. Figure 7C shows the number of
octree voxels generated when iterating through the images of the
dataset. As before, “one iteration” means projecting all current
octree voxels on one image once.

For the classic equidistantly sampled voxel grid approach, we
would need 9 iterations as we have 9 images in the banana dataset.
We derived the foreground voxel number plotted in Figure 7C

from the Depth first results using octrees.
For the octree-based method, in order to reach the finest

resolution of 0.244 mm, the initial 1 m3 voxel needs to be refined
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FIGURE 6 | Images of the Banana experiment. The images show one banana seedling of each of the seven groups. Imaging was done using the fully automatic

Screenhouse facility (see section 3.1).

FIGURE 7 | Refinement strategies: Storage complexity and runtimes. (A) One original image from the banana dataset used for this test. (B) 3d colored point cloud at

final resolution (0.244 mm). (C) Number of voxels used with our method and the different refinement strategies from Section 2.4 and the classic approach with

equidistant sampling. (D) Runtimes for different refinement strategies.

12 times. As some final surface voxels may only be seen from a
single image, we have to project the voxels to each image 12 times
to make sure to reach the final resolution; and one more time
to remove the unneeded (background) voxels at final resolution.
I.e., 117 iterations are needed overall.

The first recommendation for speed-up, or to be able to finish
at a usable result at all, is that the final octree resolution needs to
be restricted to the desired resolution. If this restriction is relaxed,
many octree voxels are refined unnecessarily. This can be seen in
Figure 7C, case “breadth first, max. depth 20,” where the number

of voxels keeps increasing exponentially after 18 iterations, in
contrast to the case “breadth first,” where we restricted resolution.
The unrestricted calculation leaded to memory overflow and
ended before reaching the final result.

The second recommendation for speed-up is to preallocate
memory wherever possible. The effect of allocation on the fly5 is
demonstrated in Figure 7D, cases “depth first” and “depth first,

5Such allocation is as offered e.g., in C++ using the vector-class from the

standard template library.
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no preallocation” where a factor of 1.3 longer final runtimes can
be observed.

Generally the Depth first strategy shows by far longest
runtimes. The reason is that in the first iterations the number
of voxels generated increases exponentially, in our case to 75 M
voxels after 12 iterations. This is when the finest resolution is
reached for the first image. Then, with every new image voxel
number drops with the first iteration, as many voxel s are carved
away, and then again increases with the next iterations. Due
to the large number of voxels to process, runtime is very high
(2,997 s).

The Breadth first strategy is about a factor 2.6 faster needing
1,155 s to finish. Restricting the reachable resolution with every
loop through all images, i.e., using the Refining resolution
strategy again yields a speed-up of a factor 4.0, i.e., a factor of
10.4 compared to Depth first.

Mark and refine is the fastest refinement strategy, as it
produces fewest voxels during processing. It reaches a resolution
of 0.98 mm after 7.7 s (=̂1, 0243 voxel grid), 0.49 mm after
32.7 s (=̂2, 0483 voxel grid), and the final 0.244 mm after
148 s (=̂4, 0963 voxel grid). Using Mark and refine on the
laptop described above the final result is reached after 85.7
s, i.e., a factor 1.7 faster. In Roussel et al. (2016) 218 s are
reported for the usual equidistant grid method using a 1, 0243

voxel grid and a CPU implementation, 12.56 s using a well
optimized GPU implementation. We even outperform this GPU
optimized version by a factor 1.6, using no parallelization
at all.

We also tested a simple parallelization method for Mark and
refine, by distributing the voxel-to-image projections over 8 CPU
threads, but not threading the splitting step. The final result at
0.244 mm resolution is then reached after 37.7 s. Compared to

the slowest (but still completing) method we observe an overall
speedup of a factor 102.

4.2. Runtime for Different Plant Sizes
The overall runtime of octree-based volume carving strongly
depends on the plant size and complexity, more precisely, the
surface area of its visual hull, as the finest voxels occur there.
Consequently, we observe that the number of pixels roughly
increases by a factor of 4 after each pass through all images
in Mark and refine (cmp. Figure 7C). This is consistent with
the assumption that on average 4 of 8 of the new voxels are
foreground, when the old voxel was a the surface and thus needed
splitting.

Overall runtimes for the reconstruction of the 35 plants of
the Banana datasets are shown in Figure 8B. We observe, that
runtimes are faster for smaller plants, approximately linearly
increasing with the estimated volume or, for banana plants, with
leaf area. This is the case as the structure of banana plants
is dominated by big leaves, i.e., flat objects with area being
well correlated with volume or, equivalently, fresh weight (see
Figure 8C).

4.3. Examples for Visual-Hull Based Plant
Traits
We evaluated the general usability of this visual hull
reconstruction approach with two scenarios using banana
and maize plants (see section 3.4).

In Figure 8A reconstructions of the banana plants are
visualized and in Figure 8D their fresh weight is plotted vs.
the estimated volume. We observe that the estimated volume
of the visual hull correlates with the fresh weight (R2 =
0.8511), however differences in estimated volume for plants with

FIGURE 8 | Volume estimation. (A) Reconstructed set of 35 banana plants. Correlation between (B) Runtime and estimated volume, (C) leaf area and fresh weight, as

well as (D) estimated volume and fresh weight.
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FIGURE 9 | Leaf and stem segmentation for maize. (A) An input image (foreground only). (B) Close up: leaf-stem segmentation in the point cloud. (C) Segmented

plant.

FIGURE 10 | Leaf area estimation. (A) Plane fit through local leaf point cloud. (B) Piece-wise plane fits with discontinuities. (C) Smooth surface via moving least

squares fit.

approximately the same weight are up to about a factor of 2. This
makes the estimated volume useful as non-invasive surrogate
measure for fresh weight in statistical analyses with replication,
but not very reliable when comparing individual plants. This is
not unexpected, as the visual hull may contain non-negligible
non-plant volumes due to occlusions. Such non-plant volumes
largely depend on the actual configuration of leaves, i.e., leaf
poses.

The visual hull can be used more reliably to derive structural
plant properties, like leaf numbers or leaf areas, when applying
further processing. In Figure 9 a leaf segmentation result is
depicted for a maize plant. Here a reliable leaf-wise segmentation
has been reached by a sequential cluster connecting algorithm
and subsequent refinement steps. A detailed description of the
algorithm is beyond the scope of this publication. In short, leaf
segmentation is done by searching clusters in horizontal one
final voxel thick slices, and connecting the found clusters over
slices scanning from top to bottom. By this, cluster labels are
transferred from top to bottom, forming plant parts. When two
clusters merge in one slice, the smaller label is transferred to
this slice cluster. By this strategy leaves are segmented, where the
stem region still belongs to the top-most leaf. They are separated
in a subsequent step using simple but heuristic geometry rules.
This leaf segmentation allowed e.g., to count leaves reliably. For
19 of the 23 maize plant datasets leaf numbers were correctly
estimated. For the other 4 plants the smallest top leaf was missed,
comparable to the small bright green leaf in Figure 9C. For
further details we refer to Embgenbroich (2015).

When individual leaves are segmented as point clouds, leaf
properties can be derived. The length of a leaf may be determined

as the shortest path through the point cloud connecting leaf
base and tip. To do so, usual skeletonization algorithms may
be used. In order to derive leaf area, the point cloud needs to
be flattened. This can be done by piece-wise fitting planes to
the leaves as depicted in Figure 10. In order to remove steps
between fitted plane pieces (Figure 10B), a moving least squares
method may be applied (Figure 10C). For further details we refer
to Embgenbroich (2015).

5. CONCLUSION AND OUTLOOK

The presented volume carving using octrees and integral
images allows fast and accurate visual hull computation on
standard PC hardware with relatively low memory and CPU
requirements. A key to efficient computations is the choice of a
suitable refinement strategy, as unrestricted refinement leads to
exponential “explosion” of voxel numbers and thus complexity.
Speedup between efficient and non-efficient implementations
can be more than 2 orders of magnitude and differences
in memory requirements comparably dramatic. Efficient CPU
implementations allow fast execution on usual laptop or desktop
compute hardware, outperforming even GPU-optimized “brute
force” implementations using equidistantly sampled voxel grids.
Even faster implementations may be possible, when porting the
presented multi-grid approach to GPUs. Usability of volume
carving results represented in octree voxel grids is equivalent
to using fine equidistant voxel grids, but at much higher
reachable resolutions. Some examples how to derive traits of
banana and maize plants have been presented to demonstrate
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possible applications in plant phenotyping for deriving leaf level
traits.
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