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Many biological processes, such as cell wall hydrolysis and the mobilisation of nutrient

reserves from the starchy endosperm, require stringent regulation to successfully malt

barley (Hordeum vulgare) grain in an industrial context. Much of the accumulated

knowledge defining these events has been collected from individual, unrelated

experiments, and data have often been extrapolated from Petri dish germination,

rather than malting, experiments. Here, we present comprehensive morphological,

biochemical, and transcript data from a simulated malt batch of the three elite malting

cultivars Admiral, Navigator, and Flagship, and the feed cultivar Keel. Activities of lytic

enzymes implicated in cell wall and starch depolymerisation in germinated grain have

been measured, and transcript data for published cell wall hydrolytic genes have been

provided. It was notable that Flagship and Keel exhibited generally similar patterns

of enzyme and transcript expression, but exhibited a few key differences that may

partially explain Flagship’s superior malting qualities. Admiral and Navigator also showed

matching expression patterns for these genes and enzymes, but the patterns differed

from those of Flagship and Keel, despite Admiral and Navigator having Keel as a

common ancestor. Overall (1,3;1,4)-β-glucanase activity differed between cultivars, with

lower enzyme levels and concomitantly higher amounts of (1,3;1,4)-β-glucan in the feed

variety, Keel, at the end of malting. Transcript levels of the gene encoding (1,3;1,4)-β-

glucanase isoenzyme EI were almost three times higher than those encoding isoenzyme

EII, suggesting a previously unrecognised importance for isoenzyme EI during malting.

Careful morphological examination showed that scutellum epithelial cells in mature

dry grain are elongated but expand no further as malting progresses, in contrast to

equivalent cells in other cereals, perhaps demonstrating a morphological change in this

critical organ over generations of breeding selection. Fluorescent immuno-histochemical

labelling revealed the presence of pectin in the nucellus and, for the first time, significant

amounts of callose throughout the starchy endosperm of mature grain.
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INTRODUCTION

The barley grain consists of embryonic, endosperm and
outer protective tissues that play different roles throughout
development and germination. The outermaternal tissues consist
of the hull (husk), pericarp, testa, and nucellus, which protect
the grain from mechanical damage and pathogen attack during
harvest and germination (Freeman and Palmer, 1984). The husk
consists of the lemma on the dorsal side and the palea on
the ventral, or furrowed, side of the grain, and accounts for
about 10% of grain weight (Fox, 2009). In hulled varieties,
the palea and lemma become fixed to the pericarp of mature
grain (Duffus and Cochrane, 1993), in contrast with hull-less
varieties and some other cereals including wheat and rice, in
which the palea and lemma are loose and are dislodged and
removed during threshing. The pericarp is the residual fruit
wall that develops from the ovary wall (Duffus and Cochrane,
1992), and lies just below the husk. During grain development,
photosynthesis occurs in cells of the pericarp but these cells die
during grain maturation. The seed coat, or testa, forms from the
inner integument and covers the whole grain except for a small
region at the embryo end, where it is penetrated by themicropyle,
through which water enters the grain (Duffus and Cochrane,
1992). The nucellus, which plays a crucial role in feeding the
embryo during early development, persists only as a crushed
epidermal layer under the testa (Brown and Morris, 1890; Bacic
and Stone, 1981b).

The embryonic tissues consist of the axis and the scutellum.
The axis contains the root and shoot initials, which are
surrounded by the coleorhiza and coleoptile, respectively. The
scutellum is a modified cotyledon that lies adjacent to the
starchy endosperm, and mediates the secretion of hormones
and lytic enzymes to the aleurone and starchy endosperm,
and the subsequent transport of nutrients back to the growing
embryo (Walker-Smith and Payne, 1984). The single layer of cells
adjacent to the endosperm is called the scutellar epithelium and
contains cells that are elongated perpendicular to the interface
with the endosperm (Brown and Morris, 1890; O’Brien, 1942,
1951; Smart and O’Brien, 1979).

The endosperm consists of the starchy endosperm and the
aleurone, which differentiates into a discrete tissue around the
starchy endosperm during grain development (Wilson et al.,
2006). The starchy endosperm is high in starch and protein
reserves but also contains cell wall material and residual nucleic
acids (Fincher, 1989). Aleurone cells respond to gibberellic acid
during germination to produce hydrolytic enzymes that are
secreted into the starchy endosperm for the mobilisation of grain
reserves (Fincher, 1989).

Biologically, germination begins with water uptake
(imbibition) and is complete when the embryonic axis emerges
from the seed (Bewley and Black, 1994). Malting is a specialised,
regulated germination process that prepares barley grain for
efficient brewing, by activating enzymes and initiating the

Abbreviations: AXAH, arabinoxylan arabinofuranohydrolase; hai, hours after

imbibition; LD, limit dextrinase; qPCR, quantitative real-time polymerase chain

reaction.

mobilisation of starch and protein reserves. Grain is immersed
in water (steeped) for up to 24 h, allowed to germinate under
controlled conditions, and finally kiln-dried to halt seedling
growth. Here, we use industry terminology to refer to the stages
in the malting process as steeping, germination, and kilning
(Bewley and Black, 1994).

Enzymes active during malting may be categorised into
three major functional groups: starch hydrolases that collectively
contribute to the diastatic power of malt; cell wall hydrolases that
are responsible for the degradation of cell wall polysaccharides;
and proteolytic enzymes, which partially mobilise storage
proteins of the starchy endosperm. In the present study, we
have focused on previously described genes and enzymes that
mediate the hydrolysis of cell wall polysaccharides during
barley germination. While we have included activity data for
enzymes involved in starch hydrolysis, we have not included
transcript analyses for genes encoding enzymes involved in
starch or protein hydrolysis, because the barley genome sequence
(Mascher et al., 2017) has revealed that important families of
these genes are much larger and more complex than previously
thought (NS Betts, HM Collins and GB Fincher, unpublished
data).

Breakdown of starch, the major carbohydrate nutrient of
the endosperm, is achieved by the coordinated activity of
enzymes from four major families, namely α-amylase, β-amylase,
starch debranching enzymes (including limit dextrinase), and
α-glucosidase. Amylose and amylopectin are internally cleaved
by the endo-acting α-amylase, maltose is liberated from the
non-reducing end of starch molecules by the exo-hydrolase
β-amylase, limit dextrinase hydrolyses the (1,6)-α-linkages
that form the branch points of amylopectin, and glucose is
released from the resulting oligosaccharides by α-glucosidase.
α-Amylase and α-glucosidase are known to be transcribed and
translated de novo during germination (MacGregor and Lenoir,
1987), but β-amylase and limit dextrinase are transcribed and
translated during grain development, and held inactive in protein
complexes until germination commences (Hara-Nishimura et al.,
1986; Guerin et al., 1992; Grime and Briggs, 1996).

Cell walls of the starchy endosperm are composed of
approximately 70% (1,3;1,4)-β-glucan and 20% arabinoxylan
(Fincher, 1989), and may account for up to 20% of the
carbohydrate released from the starchy endosperm (Briggs,
1973). Aleurone cell walls of barley consist of approximately
20% (1,3;1,4)-β-glucan and 75% arabinoxylan (Bacic and Stone,
1981a; Fincher and Stone, 1993). Also present in starchy
endosperm and aleurone cell walls are small amounts of cellulose
and glucomannans, together with extracellular (1,3)-β-glucan
(callose) (Fincher, 1989). The presence of callose has been
reported to be transient during endosperm development and has
been found in the mature starchy endosperm in small deposits
adjacent to the aleurone layer (Fulcher et al., 1977; Wilson et al.,
2012).

The (1,3;1,4)-β-glucan of the barley endosperm is completely
hydrolysed to glucose by the concerted action of (1,3;1,4)-
β-glucan endohydrolases, exo-acting β-glucan glucohydrolases,
and β-glucosidases. The depolymerisation of arabinoxylan
molecules is more complex. Arabinosyl residues are removed by
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the action of the arabinoxylan arabinofuranohydrolase (AXAH)
enzymes (Lee et al., 2001; Simpson et al., 2003; Laidlaw
et al., 2012), while the xylan backbone is degraded by (1,4)-β-
endoxylanase isoenzymes (Banik et al., 1997; Sungurtas et al.,
2004). β-Xylosidases hydrolyse xylan oligosaccharides while the
α-L-arabinofuranosidase Ara1 is a bifunctional enzyme with both
α-L-arabinofuranosidase and β-D-xylosidase activity (Lee et al.,
2001; Laidlaw et al., 2012).

In this study, we have malted barley under conditions that
closely simulate commercial malting processes, rather than using
traditional Petri dish-like germination experimental systems.
Conditions in a commercial malting plant result in lower oxygen,
moisture, and often lack the free flow of carbon dioxide available
to grains germinating naturally. Also, variations in temperature
and anoxia result in little root development (Kleinwächter et al.,
2012), which can lead to changes at a molecular level and hence
incorrect conclusions when extrapolated to the harsh conditions
of a commercial malting plant.

We have monitored morphological, biochemical, and
transcriptional changes in three elite Australian malting cultivars
and one feed cultivar and compared expression patterns of
selected genes and enzymes. While some of these enzyme
activity and gene transcript profile data have been reported
previously, this is the first time that such a large number of
enzymes and genes has been assessed in the same malted grains,
allowing direct comparisons between varieties. We have also
used both staining and immuno-histochemical techniques to
link morphological and compositional changes with the activities
of cell wall and starch hydrolytic enzymes during the small-scale
simulated malt.

MATERIALS AND METHODS

Germination Conditions
Hordeum vulgare cultivars Admiral, Flagship, Keel, and
Navigator were grown at Charlick SA, in 2013 by the Barley
Breeding Program of the University of Adelaide. The varieties
Admiral and Navigator were both released in 2011 and have
the feed variety Keel in their pedigree. Flagship and Keel were
released in 2006 and 1999, respectively. Details of their origin
and breeding can be found in the Australian PBR database
(https://www.ipaustralia.gov.au/). The protein contents of grain
samples were 8.7–9.4% w/w.

To simulate a malting process, the grain was germinated in the
dark at 16◦C using a regime of 6 h steep, 10 h air rest, 2 h steep,
and 96 h germination. Throughout germination, grain weight
was monitored to maintain moisture content at 40–44%. Grain
was collected at 0, 3, 6, 16, and 18 h of the steeping phase, and
every 24 h during the germination phase (Table 1). Grains were
either fixed for microscopy or frozen in liquid nitrogen and
stored at−80◦C prior to analysis.

Fixing and Embedding Grain Sections
For microscopy, grain was dissected either transversely or
longitudinally. The embryo-containing segments were fixed in
0.25% glutaraldehyde, 4% paraformaldehyde, 4% sucrose in PBS,
dehydrated in an ethanol series, and embedded in LR White

Resin (ProSciTech Pty. Ltd., Australia) according to Burton et al.
(2011). Sections (1µm) were prepared with an ultramicrotome
using a diamond knife, and dried onto glass microscope slides.
Sections for morphology analysis were stained with toluidine
blue O (Sigma-Aldrich) and photographed on a Nikon Ni-E
microscope or a Carl Zeiss M2 AxioImager microscope. Negative
controls are presented in Figure S1.

Immuno-Histochemical Microscopy
Fluorescent immuno-histochemistry microscopy was performed
as described by Burton et al. (2011), employing Calcofluor White
Stain (Sigma F3543) and primary monoclonal antibodies
(diluted 1/50). The antibodies used were BG1 murine
monoclonal antibody to (1,3;1,4)-β-glucan (Meikle et al.,
1994) (Biosupplies Australia, Parkville), LM11 antibody
to xylan/arabinoxylan (McCartney et al., 2005), (1,3)-β-
glucan murine monoclonal antibody (Meikle et al., 1991),
LM19 antibody to homogalacturonan (Verhertbruggen et al.,
2009), LM20 antibody to methyl-esterified homoglacturonan
(Verhertbruggen et al., 2009), and CBM3a cellulose binding
module (McCartney et al., 2004; Tan et al., 2015). Alexa Fluor R©

488 goat anti-mouse IgG (H+L) was used as the secondary
antibody to BG1 and (1,3)-β-glucan, Alexa Fluor R© 555 goat
anti-mouse IgG was used with LM11 and Alexa Fluor R© 550 goat
anti-rat IgM for LM19 and LM20 (all diluted 1:200, Invitrogen,
Australia). For CBM3a, a two stage secondary antibody phase
was employed using a mouse anti-histidine monoclonal antibody
(1:100 dilution, Sigma-Aldrich) followed by Alexa Fluor R© 488
goat anti-mouse IgG (1:100 dilution, Invitrogen) as described in
Tan et al. (2015). Fluorescence was observed using a Carl Zeiss
M2 AxioImager microscope with an AxioCamMrm camera, and
subsequent image processing was performed with Zen (2012)
software (Carl Zeiss, North Ryde, Australia). Some sections were
pre-incubated with a 1/20 dilution of α-L-arabinofuranosidase
(Megazyme, Ireland) to remove arabinose from the xylan
backbone for 60min and washed before LM11 treatment
(Wilson et al., 2012).

Biochemical Assays
Samples for biochemical analysis were frozen in liquid nitrogen
and lyophilised (FreeZone, Labconco,MO,USA). Chits (rootlets)
were manually removed before grinding (Retsch Mill MM400,
Retsch GmbH, Haan, Germany) at 30Hz for 75 s. Analyses were
performed in duplicate or triplicate.

The (1,3;1,4)-β-glucan content of grain was assessed using a
small scale version of the Megazyme Mixed-Linkage β-Glucan
Assay (McCleary and Codd, 1991) on 15mg flour samples
according to Burton et al. (2011). (1,3;1,4)-β-Glucanase activity
was assessed using a small-scale version of the Megazyme Malt
and Bacterial Beta-Glucanase & Cellulase assay procedure (Azo-
Barley Glucan Method) on 25–50mg flour samples (McCleary
and Shameer, 1987). Starch content was assessed on the
alcohol insoluble residue (two washes in 70% ethanol) using
a small scale version of the Megazyme Total Starch Assay
(amyloglucosidase/α-amylase method) on 40mg of material
(McCleary et al., 1994). Monosaccharide content was assessed on
alcohol insoluble residue digested in 1M H2SO4 for 3 h at 100◦C
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TABLE 1 | The malting regime used to prepare grain.

Sample Hours after imbibition (hai) Steeping Germination

6h wet 10h air rest 2 h wet 24 h 48 h 72 h 96 h

1 0

2 3 X(½)

3 6 X

4 16 X X

5 18 X X X

6 42 X X X

7 66 X X X X X

8 90 X X X X X X

9 114 X X X X X X X

by reversed-phase high performance liquid chromatography, as
described by Burton et al. (2011). Arabinoxylan content was
calculated by adding the amount of arabinose and xylose in the
hydrolysates and multiplying by 0.88 to allow for the loss of
water. Starch, (1,3;1,4)-β-glucan and arabinoxylans contents were
calculated as a percentage of the flour weight on a dry basis.

The activity of the alpha-amylase (McCleary et al., 2002) was
assayed using a small scale version of Megazyme α-Amylase
Assay Kit (Ceralpha Method) on 10mg flour (McCleary et al.,
2002). The activities of both free and total β-amylase were assayed
using a small scale version of Megazyme β-Amylase Assay Kit
(Betamyl-3) on 25mg flour (McCleary and Codd, 1989). To
measure total limit dextrinase, 25mg flour was extracted in
400 µL of 0.2M of sodium acetate (pH 5.0) supplemented
with 0.35% L-cysteine, incubated at 40◦C for 5 h with interval
mixing (Longstaff and Bryce, 1993). The free limit dextrinase
was extracted without the use of L-cysteine. Limit dextrinase
activity was assayed using the substrate 4,6-O-benzylidene-4-
nitrophenyl-63-α-D-maltotriosyl-maltotriose (BPNPG3G3) from
the Megazyme Pullulanase/Limit-Dextrinase Assay Kit (PullG6
Method) (McCleary et al., 2014).

RNA Extraction and qPCR
Total RNA was extracted from samples comprising two whole
grains using the Sigma-Aldrich SpectrumTM Plant Total RNA
Kit (Sigma-Aldrich, St Louis, MO) with the addition of a 6-min
incubation with thermostable α-amylase (Megazyme, Wicklow,
Ireland) in lysis buffer at room temperature prior to addition of
β-mercaptoethanol (Betts et al., 2017). Following treatment with
TURBODNase-free (Ambion, Life Technologies, WalthamMA),
cDNA synthesis was performed using SuperScript R©III Reverse
Transcriptase according to manufacturer’s instructions (Life
Technologies, Waltham, MA). Details of gene names, MLOCs
and primer details are presented in Table S1. QPCR primers
were designed using Primer 3 software (Koressaar and Remm,
2007) and selected based on specificity as determined by blastn
software (Table S1; Acland et al., 2013). qPCR was performed
as described by Burton et al. (2008) with data normalised using
the reference genes HvCyclophilin, HvGAPdH2, HvHSP70, and
HvTubulin (Vandesompele et al., 2002).

RESULTS

Grain Morphology
The morphology of mature (0 h) and germinated grain (114 h)
is shown in Figure 1. The outer layer of maternal tissues, the
embryonic tissues and endosperm are clearly distinguishable.
As germination progresses the elongation of the embryonic
axis becomes obvious (Figures 1E,F). At 114 h after imbibition
(hai), the coleoptile can be seen growing down the length of
the grain between the aleurone and husk (Figure 1E). Scutellar
epithelial cells are observed to be a single layer of elongated,
relatively narrow cells that run approximately perpendicular to
the scutellum/starchy endosperm interface (Figures 2A,C,E). At
114 hai, the scutellar epithelium cells have separated from each
other at the tips, but have not increased substantially in length in
any of the varieties examined (Figures 2B,D,F).

The aleurone cells are characterised by relatively thick cell
walls and contain a dense matrix of intracellular protein bodies,
oil droplets and membrane fractions (Fincher, 1989). In contrast,
starchy endosperm cells have much thinner cell walls, and much
of their intracellular space is occupied with starch granules,
embedded in a protein matrix (Figures 1B,D). Generally, the
aleurone layer in barley is two to three cells thick but can vary
from one to four cells depending on the location in the grain
(Figure 1B). The layer becomes thinner at the embryo end of the
grain, such that the aleurone is only a single cell thick once it
reaches the scutellum (Figure 1D). The aleurone layer was also
observed to continue proximal to the endosperm between the
scutellum and the pericarp/testa (Figure 1D; Brown and Morris,
1890; Bacic and Stone, 1981b).

The cell walls in the starchy endosperm of ungerminated
barley consist mainly of (1,3;1,4)-β-glucan (Figure 3A) with
only small amounts of arabinoxylan detected by immuno-
histochemistry (Figure 3C). Direct comparisons of staining
intensities of cell wall polysaccharides with different antibodies,
however, is generally not possible because of the different
affinities of the antibodies for their antigens. Endosperm cell walls
are thin compared with other cell walls in the grain, particularly
the thick aleurone cell walls that consist predominantly of
arabinoxylan (Figure 3D). The cell walls of the scutellum
and embryo also contain (1,3;1,4)-β-glucans but no detectable
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FIGURE 1 | Morphology of the grain at the beginning (0 hai) and end (114 hai) of malting. (A,C,E,G) Navigator whole grain sectioned with a razor blade. Dotted lines

show indicative positions for other sections. (B,D,F,H) Thin sections stained with toluidine blue; (A,B,E,F) longitudinal sections; (C,D,G,H) transverse sections. (B,D)

are the variety Admiral and (F,H) are Navigator. Scale bars represent 100µm. a, aleurone; se, starchy endosperm; e, embryo; p/t, pericarp and testa; cc, crushed cell

layer; sc, scutellum; sc ep, scutellar epithelium; col, coleoptile; li, leaf initial; vb, vascular bundle; colh, coleorhiza.
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FIGURE 2 | Toluidine blue stained scutellar epithelial cells in mature and germinated grain. (A,B) Admiral; (C,D) Navigator; (E,F) Keel; (A,C,E) mature grain (0 hai);

(B,D,F) 114 hai, Scale bars represent 50µm. se, starchy endosperm; cc, crushed cell layer; sc, scutellum; sc ep, scutellar epithelium.

arabinoxylan (Figure 3F). An antibody against (1,3)-β-glucan
(callose) revealed the presence of deposits of callose in the
cell wall regions of the starchy endosperm (Figure 3H). Strong
labelling of cellulose by the carbohydrate bindingmodule CBM3a
was found in the pericarp, testa, palea, lemma, scutellum, and
scutellar epithelium (Figures 3J,K).

By the end of the simulated malting process, strong labelling
of (1,3;1,4)-β-glucans by BG1 remained in the aleurone and
embryo, but labelling in the starchy endosperm had almost
completely disappeared (Figures 3B,G). By 114 hai, strong
labelling of arabinoxylans remained in the maternal tissues
and aleurone layer but no labelling was detected in the
starchy endosperm (Figure 3E). Additionally, small pockets of
arabinoxylan labelling were observed in the coleoptile and
leaf tissue associated with developing vascular bundles when
the sections were pre-incubated with α-L-arabinofuranosidase
(Figure 3E): this unmasking was required to generate the correct
epitope for the LM11 antibody, which binds arabinoxylans with
low levels of substitution (McCartney et al., 2005), and does not
indicate endogenous AXAH activity. These tissues were heavily
labelled by BG1 (Figure 3G). Only small pockets of (1,3)-β-
glucans remained in the aleurone layer at 114 hai and no labelling
was observed in the starchy endosperm (Figure 3I). Labelling of

cellulose by CBM3a remained in the pericarp, testa, palea, lemma
but not in the scutellum or scutellar epithelium (Figure 3L).

Two antibodies were used to locate pectic polysaccharides
(Verhertbruggen et al., 2009). Labelling of un-esterified
homogalacturonan by LM19 was found in a single layer in
the nucellar epithelium and in small deposits in the palea
and lemma (Figure 4A). LM20 labelled methyl-esterified
homogalacturonans in the palea and lemma in a punctate
fashion, with a small amount of labelling observed in the
pericarp (Figure 4B). No labelling was observed in the starchy
endosperm or aleurone layer by either antibody.

Starch Hydrolysis
Starch is the major carbohydrate present in mature barley grain,
contained predominantly within the endosperm. As expected, the
starch content as a proportion of flour weight remained constant
or increased throughout malting. Not only are these elite lines
selected to maximise starch levels in malt and minimise starch
malting losses, but significant amounts of grain material, such
as the rootlets and soluble sugars and proteins, were removed
before analysis causing the overall starch content, measured as
a percentage of flour weight, to remain constant or to increase
during malting. Navigator had the highest starch content at
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FIGURE 3 | Fluorescent immuno-histochemical analysis of cell wall polysaccharides in transverse sections of ungerminated (0 hai, left) and germinated (114 hai, right)

grain. (A,B,F,G) Detection of β-glucan by the antibody BG1 (green), blue shows auto-fluorescence. (C–F) Detection of arabinoxylan with the antibody LM11 (red). (E)

was pretreated with α-L-arabinofuranosidase prior to LM11 binding, turquoise shows Calcofluor counter staining, arrows indicate pockets of arabinoxylan label. (F)

shows double labelling of the embryo with both BG1 (green) and LM11 (red). (H,I) Detection of callose with the (1,3)-β-glucan antibody (red). (J–L) Cellulose is labelled

in red using CBM3a; blue shows auto-fluorescence; turquoise shows Calcofluor counter staining. (A,C–E,G) Navigator; (B,F,H,I–L) Admiral. Scale bars represent

100µm. Negative controls are shown in Figure S1. a, aleurone; col, coleoptile; c, crease; cc, crushed cell layer; e, embryo; ls, leaf sheath; p/l, palea and lemma; p/t,

pericarp and testa; se, starchy endosperm; sc ep, scutellar epithelium; sc, scutellum.
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FIGURE 4 | Fluorescent immuno-histochemical analysis of pectic cell wall

polysaccharides in transverse sections of ungerminated (0 hai) Navigator grain.

(A) Un-esterified homogalacturonan pectin labelled with LM19 (red), turquoise

shows auto-fluorescence. (B) Methyl esterified homogalacturonan pectins

labelled with LM20 (red), turquoise shows auto-fluorescence. Red arrows

indicate pockets of label. Scale bars represent 100µm. a, aleurone; ne,

nucellar epithelium; p/l, palea and lemma; p/t, pericarp and testa, se, starchy

endosperm; vb, vascular bundle.

maturity and throughout the malting process (65.4–65.2% w/w)
(Figure 5A). Initial amounts in Admiral, Flagship and Keel were
lower (59.1, 55.6, and 57.7% w/w, respectively), which increased
to 65.8, 61.5, and 61.1% of the final weight, respectively, by 114
hai (Figure 5A).

Total α-amylase activity followed similar patterns in the four
barley cultivars, starting at negligible levels during steeping,
and increasing throughout germination to peak levels at 114
hai (Figure 5B). Enzyme activity was highest in Flagship, with
approximately 30% higher α-amylase activity than other varieties
by 114 hai.

The amount of total β-amylase enzyme activity did not
increase during the simulated malting process in any of the
varieties, however free β-amylase activity increased from the end
of the second steep (18 hai; Figures 5C,D).

Total limit dextrinase (LD) activity remained steady at low
but detectable levels throughout steeping, but increased sharply
from 42 hai and peaked at 114 hai (Figure 5E). Free LD activity
followed a similar trend, contributing to approximately 50% of
the total activity by 90 hai (Figure 5F).

Cell Wall Hydrolysis
(1,3;1,4)-β-Glucan and Other Glucans
Initial (1,3;1,4)-β-glucan content ranged from 3.2% in Admiral
and Navigator to 4.0% in Keel (Figure 6A). During the simulated
malting, the levels declined from 42 hai onwards in all cultivars,
dropping to final levels of 1.3–2.7%. Correspondingly, all
cultivars exhibited very low total (1,3;1,4)-β-glucanase activity
during steeping (Figure 6B), with activity increasing from the
first 24 h of germination to reach final levels of 10 times the
initial levels by the end point (114 hai). The feed variety Keel had
both the smallest reduction in (1,3;1,4)-β-glucan content and the
lowest (1,3;1,4)-β-glucanase activity.

Transcript levels of the two (1,3;1,4)-β-endoglucanase Glb1
and Glb2 genes (isoenzymes EI and EII) remained relatively
low throughout steeping but increased quickly from 18 hai, the
onset of the germination phase (Figures 6C,D). Glb1 transcript
levels were consistently higher than Glb2 levels. Transcript levels
of both genes reached their maxima earlier in Admiral and
Navigator than in Flagship or Keel, however levels of Glb1 were
higher in Flagship and Keel by 90 hai.

Also involved in (1,3;1,4)-β-glucan hydrolysis are β-glucan
glucohydrolases and β-glucosidase. Two members of the
β-glucan glucohydrolase family, namely genes encoding
isoenzymes ExoI and ExoII (Hrmova et al., 1996; Harvey
et al., 2001), were investigated, along with a gene encoding
β-glucosidase (MLOC_37740). Both β-glucan glucohydrolase
genes were transcribed at high levels throughout the simulated
malting process (Figures 6E,F), with ExoI transcripts being
approximately 10 times higher than those for ExoII. Expression
in Keel and Flagship peaked during steeping for both genes and
were still high later in germination. In contrast, the transcript
levels in varieties Admiral and Navigator started at relatively low
levels and peaked at 42 hai (24 h into germination). Transcript
levels for β-glucosidase were highest for Keel, peaking at 66 hai,
and lowest for Flagship (Figure 6G). The increases in transcript
levels of Glb1, Glb2, and β-glucosidase coincided with the
increase in (1,3;1,4)-β-glucanase activity and the decrease in
(1,3;1,4)-β-glucan content.

After finding callose in mature grain (Figure 3H), transcript
levels of β-glucan glucohydrolase gene isoenzyme G-II were
also investigated (Xu et al., 1992). Transcript levels increased
significantly after 42 hai in all varieties (Figure 6H). However, the
feed variety Keel produced four times the level of transcript by 90
hai compared with the three malting varieties.

Arabinoxylan
Arabinoxylan content remained relatively stable throughout the
malting time-course in all cultivars (Figure 7A). Keel maintained
the highest arabinoxylan content, followed by Flagship, Admiral,
and Navigator. The arabinose to xylose ratio of 0.45–0.55 did not
vary over time (Figure 7B).

Of the endoxylanase genes examined, X-I transcript levels
were highest (Figure 7C), remaining low during steeping
but rising sharply from 42 hai. Navigator had the highest
transcript levels, double those detected in Admiral and Flagship,
while levels in Keel remained low throughout the time-
course. Transcript levels of X-II and X-III genes were low
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FIGURE 5 | The starch content and starch degrading enzyme activities in barley grain during a simulated malting process. (A) Starch content of alcohol insoluble grain

material. (B) α-amylase activity. (C) Activity of total β-amylase in the grain. (D) Activity of free β-amylase in the grain. (E) Activity of total limit dextrinase (LD) in the grain.

(F) Activity of free LD in the grain.

throughout the simulated malting process, although X-II
exhibited a peak in transcription at 42 hai in all four varieties
(Table S2).

Transcript levels of AXAH1 were relatively low during
steeping and increased during the early stages of the germination
phase (Figure 7D), with peak amounts varying by cultivar
after 66 hai. Admiral and Navigator AXAH1 transcripts
peaked earlier than, but at a level approximately half that
of, Flagship and Keel. Transcript levels of AXAH2 followed a
similar trend to AXAH1 but at much lower levels (Figure 7E).
Levels of AXAH3 and AXAH4 remained low throughout the
simulated malting (Table S2). Transcript levels of AXAH5
were lower than for AXAH2, and showed a single peak at
66 hai in Admiral and Navigator but not in Keel or Flagship
(Figure 7F).

Xyl1 transcripts remained low throughout steeping and
increased during the first 24 h of the germination phase
(Figure 7G). Transcript levels of Ara1 were relatively low,
fluctuating during the simulated malting process, peaking at 3
hai for Flagship, 16 hai for Keel and Admiral, and 42 hai for
Navigator, and generally declining toward the end of the time
course (Figure 7H).

DISCUSSION

Cell Wall Changes
The largest difference between varieties was in their levels of
grain (1,3;1,4)-β-glucan, which dropped during the simulated
malting process but much less in Keel than in the malting
varieties. High levels of residual (1,3;1,4)-β-glucan in malt can
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FIGURE 6 | (A) (1,3;1,4)-β-glucan content and (B) (1,3;1,4)-β-glucanase enzyme activity in barley grain during a simulated malting process. Gene expression levels of

(C,D) (1,3;1,4)-β-glucanase genes Glb1 and Glb2; (E,F) (1,3)-β-glucan exohydrolase ExoI and ExoII; (G) β-glucosidase; and (H) β-glucan glucohydrolase G-II. QPCR

units are normalised transcript levels (arbitrary units), error indicates standard deviation of three experiments.

lead to filtration difficulties during brewing, and haze formation
in the final product (Bamforth, 1985). The low (1,3;1,4)-β-
glucan contents of Flagship, Navigator, and particularly Admiral,
by the end of the malting time-course (Figure 6A) positively
reflect the efforts of breeding programs to reduce levels of
(1,3;1,4)-β-glucan in mature barley grain, or to maximise
levels of (1,3;1,4)-β-glucanases during malting. (1,3;1,4)-β-
Glucan in mature barley grain is located predominantly in the
cell walls of the starchy endosperm, scutellum, and embryo
(Figures 3A,F, Fincher, 1975; Bacic and Stone, 1981b). By 114
hai, these scutellum and endosperm cell walls had degraded
almost completely and contained no polysaccharides detectable
by immuno-histochemical analysis, suggesting that endosperm
cell wall modification was complete at the end of the
simulated malt.

The two (1,3;1,4)-β-endoglucanases EI and EII, encoded by
genes Glb1 and Glb2, respectively, are primarily responsible for
(1,3;1,4)-β-glucan hydrolysis in germinating grain (Slakeski and
Fincher, 1992). Substantial increases in Glb1 and Glb2 transcript
levels within the first 24 h after steeping correlated with increased
total (1,3;1,4)-β-glucanase activity and a decline in (1,3;1,4)-
β-glucan content (Figures 6A–D), as confirmed by fluorescent
immuno-histochemical microscopy (Figure 3B). Earlier and
higher levels of Glb1 transcript (Figures 6C,D) may be due to
the restriction of Glb2 transcription to the aleurone, while Glb1 is
also expressed in the scutellum (Slakeski and Fincher, 1992). The
high β-glucanase levels at 114 hai were found in Flagship and are
likely due to a combination of EI and EII enzyme activity: higher
levels of EI than Navigator and Admiral, and higher levels of EII
than Keel.While past research has indicated that EII may bemore
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FIGURE 7 | (A) Total arabinoxylan content of alcohol insoluble grain material and (B) arabinose: xylose ratio in barley grain during a simulated malting process. Gene

expression levels of (C) (1,4)-endoxylanase I; (D–F) arabinose arabinofuranosidase 1, 2, and 5; (G) xylosidase; and (H) arabinofuranosidase. QPCR units are

normalised transcript levels (arbitrary units), error indicates standard deviation of three experiments.

important for brewing due to its higher thermostability and faster
hydrolysis rate (Woodward and Fincher, 1982), the three-fold
higher transcript levels of GlbI suggest an important role for EI
in malting. Although transcript levels do not necessarily correlate
directly with enzyme activity levels, GlbI may be a profitable
target for improvement in future breeding programs.

We have also confirmed that significant, persistent callosic
deposits are present in the starchy endosperm of mature grain
(Figure 3H). Callose has previously been detected in developing

endosperm cell walls in barley, wheat, and rice (Fulcher et al.,
1977; Wood and Fulcher, 1984; Brown et al., 1996; Wilson
et al., 2006, 2012; Palmer et al., 2015), mainly associated
with plasmodesmata late in grain development (Wilson et al.,
2012), while Palmer et al. (2015) suggested that callose may
be important in the differentiation of aleurone cells into sub-
aleurone cells in wheat. It has also been suggested that the
callose present in the endosperm is due to a wound response
as the grain fills and matures, which might cause the plasma
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membrane to become detached from the cell wall with the
concomitant deposition of callose (Wilson et al., 2012). The
highly variable amounts of callose found in cereal grains may be
due to callose deposition as a result of transient moisture stress
during grain development (Fincher, 1989). The callose is likely
degraded by β-glucan glucohydrolase enzymes; transcript levels
of β-glucan glucohydrolase isoenzyme G-II increased during
germination in all cultivars, especially Keel, although other β-
glucan glucohydrolases may also play a role in germination given
the large size of the gene family (Xu et al., 1992; Li et al.,
1996). As the callose had been fully hydrolysed during malting
in these varieties (Figure 3I), it may be worth considering
callose as a potential contributor to glucose content in malt and
wort. Transcript levels of β-glucan glucohydrolases ExoI and
ExoII, which degrade oligosaccharides from hydrolysed (1,3;1,4)-
β-glucan and (1,3)-β-glucan (Hrmova et al., 2002; Fincher,
2009), were very high in all varieties throughout the malting
process (Figures 6E,F). The reason for their high transcript levels
very early in germination—before expression of most of the
endohydrolases—is unknown, and suggests a role for these exo-
acting enzymes in the later stages of grain development. It has
been suggested that the (1,3)-β-glucan endohydrolases might
provide protection to the germinated grain against pathogen
invasion, given that these enzymes can hydrolase the (1,3)-
β-glucan and (1,3;1,6)-β-glucans of fungal cell walls (Fincher,
1989).

Arabinoxylan in mature barley grain is present predominantly
in the aleurone cell walls and maternal tissues, with lower
levels in the starchy endosperm (Figures 3C,D). Small pockets
of arabinoxylan labelling were found in the embryo at 114 hai
(Figure 3E; Wilson et al., 2012), primarily located in developing
vascular tissue of the developing leaf sheath and coleoptile.
Throughout the simulated malting process, there were no
significant changes detected in arabinoxylan content or structure
either biochemically or microscopically (Figures 3E, 7A,B),
probably due to preponderance of arabinoxylans from maternal
tissues, which remain unchanged during germination. However,
changes were observed in transcript levels of genes involved
in arabinoxylan modification and hydrolysis (Figures 7C–H);
increases in transcript levels are likely due solely to changes
within the living aleurone and embryonic cells. Only AXAH2 has
previously been detected in developing coleoptiles (Laidlaw et al.,
2012), suggesting that AXAH1 and 5 may be expressed in other
tissues such as the aleurone. Given the clear presence of AXAH1,
2, and 5 transcripts and reports of AXAH activity in grain tissues
(Sungurtas et al., 2004), examination of isolated aleurone cells
may reveal information about changes in arabinoxylan content
and/or structure that cannot be detected in whole grain extracts.

Modification of arabinoxylan structure by xylanase or
xylosidase enzymes was not detected, either microscopically or
biochemically, suggesting that within the time constraints of
this experiment, these enzymes were not sufficiently active to
produce short, soluble oligosaccharides that would be removed
during preparation of alcohol insoluble residue. The temporal
and spatial details of endoxylanase synthesis and secretion are
not well-understood; it has been suggested that endoxylanase
enzymes, active or bound, are not released from the aleurone cells
until after cell death (Fincher, 1989; Slade et al., 1989; Caspers

et al., 2001; Simpson et al., 2003; Van Campenhout andVolckaert,
2005). Our observations are consistent with the late release of
active endoxylanase and xylosidase enzymes from the aleurone
into the starchy endosperm, after the 114 h of this time course.

None of the outer, maternal tissues appeared to undergo
compositional changes through the simulated malting process.
Immuno-histochemical analysis confirmed the presence of
cellulose, arabinoxylan, and (1,3;1,4)-β-glucans in these tissues
(Figure 3; MacLeod and Napier, 1959), and revealed small
amounts of mainly methyl esterified homogalacturonan
pectin, in a punctate distribution (Figure 4B), and un-
esterified homogalacturonan pectin in the nucellar epithelium
(Figure 4A). Similar observations were made in developing
wheat and rice grains (Chateigner-Boutin et al., 2014; Palmer
et al., 2015). Recently, the presence of methyl-esterified
homogalacturonan was also detected in wheat endosperm after
the enzymatic removal of (1,3;1,4)-β-glucan and arabinoxylan
(Chateigner-Boutin et al., 2014); while not detected in this work
(Figure 4), it is possible that pectin is present in the endosperm
and aleurone but masked by other cell wall components (Fincher,
1975; Bacic and Stone, 1981a; Xue et al., 2013).

Starch Hydrolysis
Enzymes involved in starch depolymerisation were detected
in abundance in the barley grain during simulated malting.
Total α-amylase activity followed similar patterns in the four
barley cultivars, starting at negligible levels during steeping,
and increasing throughout germination (Figure 5B). Enzyme
activity was approximately 30% higher in Flagship, compared
with the other varieties. At this stage, we have not undertaken
a comprehensive analysis of transcripts of starch hydrolysis
genes as the recently revised barley genome contains a much
larger number of α-amylase genes than had been previously
identified (Mascher et al., 2017). The identification of the spatial
and temporal expression patterns of specific genes involved in
the starch degradation process during germination remains an
important and complex research target.

Following grain imbibition, bound β-amylase is released by
proteolytic activity so that both active and inactive β-amylase
are present in germinating grain. Total β-amylase activity was
found to remain constant during the simulated malting process
while the amount of free β-amylase activity increased from
approximately 50–95% of the total by the end of malting
(Figures 5C,D). These findings suggest that the increase in β-
amylase activity observed after germination is solely due to
activation of β-amylase already present in the grain rather than
due to additional de novo synthesis during germination.

Like β-amylase, LD is produced during grain development and
held inactive but the gene is also transcribed during germination.
However, by the end of malting, free LD activity only represented
about half of the total LD activity in the grain (Figures 5E,F), and
previous reports suggest that approximately 70% of the enzyme
present in the grain is bound to the limit dextrinase inhibitor
throughout malting (Longstaff and Bryce, 1993; Sissons et al.,
1993; Burton et al., 1999; Ross et al., 2003). Given the importance
of amylopectin hydrolysis during germination (Naka et al., 1985),
understanding the spatial expression and interactions of limit
dextrinase and limit dextrinase inhibitor remains central to our
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ability to improve the efficiency of starch hydrolysis in malting
cultivars.

Morphology of the Aleurone and Scutellum
Scutellar cells are generally spherical , but scutellar epithelial cells
are elongated perpendicular to the crushed cell layer. These cells
are about 30–50µm in length at grain maturity (Figures 2A,C,E;
Gram, 1982), and separate to increase the surface area closest to
the endosperm by 114 hai (Figures 2B,D,F). No evidence was
found that these cells had elongated significantly by the end of
the simulated malting process (Figure 2), in contrast to previous
studies showing that scutellar epithelium cells in germinated
wheat and barley grains elongated to twice their original length
by 72 h after imbibition (Brown and Morris, 1890; MacLeod
and Palmer, 1966; Gram, 1982). Additionally a large variation
in length of the scutellar epithelial cells was observed in the
feed variety Keel at 114 hai (Figure 2F), which may be due
to the commencement of the elongation process. Whether this
difference is due to the controlled environment of the malting
process or varietal differences is unknown. It would be interesting
to examine whether the morphology of this critical secretory and
absorptive organ has changed due to selection for elite malting
qualities.

While both scutellum and aleurone cells play a secretory
role during germination, their fates as germination progresses
are quite different (Fincher, 2010). The differences in cell
wall composition in these tissues, and the way they change
during germination, may reflect their dissimilar final roles
in germination, rather than their common role at the
beginning. Arabinoxylan and (1,3;1,4)-β-glucan, the major cell
wall polysaccharides in aleurone cells, are still detected at the
end of the simulated malting, long before cell death occurs
(Figures 3B,E; Bacic and Stone, 1981a). In contrast, (1,3;1,4)-
β-glucans and cellulose of the scutellum cell walls, are almost
completely degraded by the end of malting (Figures 3B,L).
McFadden et al. (1988) showed that (1,3;1,4)-β-glucanase genes
were transcribed initially in the scutellar epithelium and that
transcription moved along the aleurone layer from the proximal
to the distal end of the grain, so (1,3;1,4)-β-glucan in the
scutellum would be hydrolysed before that in the aleurone.

CONCLUSION

We have analysed a comprehensive suite of genes and enzymes
known to be important for malting in four barley cultivars and
described some novel findings regarding the morphology and
composition of cell walls during germination. Overall, Navigator
and Admiral exhibited very similar expression patterns for
most genes and enzymes, including (1,3;1,4)-β-endoglucanases,
β-glucan glucohydrolases, endoxylanases, and AXAHs, while
Flagship and Keel also had related expression patterns. However,

Flagship differed from Keel in a few crucial genes and
enzymes, such as (1,3;1,4)-β-endoglucanase isoenzyme EI and
endoxylanase isoenzyme X-1, which may partially contribute to
its vastly superior malting qualities. These important enzymes
along with other cell wall degrading enzymes, such as (1,3)-
β-glucanases may potentially be breeding targets for improved

malting quality. Additionally, examination of the new barley
genome is revealing many new members of gene families
involved in starch hydrolysis (Mascher et al., 2017), suggesting
that the numbers of, and interactions between, the enzymes
encoded by these genes is likely to be more complicated than
previously thought. Improvements in analytical techniques will
continue to provide new information about the morphology,
composition, and function of different tissues within the grain
during malting and germination.

AUTHOR CONTRIBUTIONS

NB and HC designed and supervised the study and wrote
the manuscript; HC and LW performed the microscopy; LW
and SK performed the malting and biochemical analyses; LW
and NB determined qPCR targets and designed primers; NS
performed the qPCR; BS, RB, and GF obtained the research
funding; FL, BS, RB, and GF and gave critical suggestions on
manuscript preparation. All authors have read and approved the
manuscript.

FUNDING

This work was supported by the Australian Research Council,
Cargill Malt, and Carlsberg Breweries through ARC Linkage
Project (LP130100600), and The Playford Memorial Trust and
Coopers Brewery through a Coopers Brewery Ltd./Playford Trust
Honours Scholarship to LW.

ACKNOWLEDGMENTS

The authors would like to thank Bianca Kyriacou for help with
the simulated malting experiments; Marilyn Henderson, Lisa
O’Donovan, and Adelaide Microscopy for help with microscopy;
Jelle Lahnstein for his assistance with chromatography; and
the Barley Breeding Program from The University of Adelaide
Program for providing all grain.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2017.
01872/full#supplementary-material

REFERENCES

Acland, A., Agarwala, R., Barrett, T., Beck, J., Benson, D. A., Bollin, C., et al. (2013).

Database resources of the national center for biotechnology information.

Nucleic Acids Res. 41, D8–D20. doi: 10.1093/nar/gks1189

Bacic, A., and Stone, B. (1981a). Chemistry and organization of aleurone cell

wall components from wheat and barley. Funct. Plant Biol. 8, 475–495.

doi: 10.1071/PP9810475

Bacic, A., and Stone, B. (1981b). Isolation and ultrastructure of aleurone cell walls

from wheat and barley. Funct. Plant Biol. 8, 453–474. doi: 10.1071/PP9810453

Frontiers in Plant Science | www.frontiersin.org 13 October 2017 | Volume 8 | Article 1872

https://www.frontiersin.org/articles/10.3389/fpls.2017.01872/full#supplementary-material
https://doi.org/10.1093/nar/gks1189
https://doi.org/10.1071/PP9810475
https://doi.org/10.1071/PP9810453
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Betts et al. Barley Malting Processes

Bamforth, C. W. (1985). Cambridge prize lecture: biochemical approaches to beer

quality. J. Inst. Brew. 91, 154–160. doi: 10.1002/j.2050-0416.1985.tb04322.x

Banik, M., Li, C. D., Langridge, P., and Fincher, G. B. (1997). Structure, hormonal

regulation, and chrvomosomal location of genes encoding barley (1å4)-β-xylan

endohydrolases.Mol. Gen. Genet. 253, 599–608. doi: 10.1007/s004380050362

Betts, N. S., Berkowitz, O., Liu, R., Collins, H. M., Skadhauge, B., Dockter, C., et al.

(2017). Isolation of tissues and preservation of RNA from intact, germinated

barley grain. Plant J. 91, 754–765. doi: 10.1111/tpj.13600

Bewley, J. D., and Black, M. (1994). Seeds. New York, NY; London: Plenum Press.

doi: 10.1007/978-1-4899-1002-8

Briggs, D. E. (1973). “Hormones and carbohydrate metabolism in germinating

cereal grains,” in Biosynthesis and Its Control in Plants: Proceedings of the

Phytochemical Society Symposium, ed B. V. Milborrow (London: Academis

Press), 219–277.

Brown, H. T., and Morris, G. H. (1890). XXX.-Researches on the germination

of some of the gramineæ. Part I. J. Chem. Soc. Trans. 57, 458–528.

doi: 10.1039/CT8905700458

Brown, R. C., Lemmon, B. E., and Olsen, O.-A. (1996). Development of the

endosperm in rice (Oryza sativa L.): cellularization. J. Plant Res. 109, 301–313.

doi: 10.1007/BF02344477

Burton, R. A., Collins, H. M., Kibble, N. A. J., Smith, J. A., Shirley, N. J., Jobling,

S. A., et al. (2011). Over-expression of specific HvCslF cellulose synthase-

like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-

D-glucans and alters their fine structure. Plant Biotechnol. J. 9, 117–135.

doi: 10.1111/j.1467-7652.2010.00532.x

Burton, R. A., Jobling, S. A., Harvey, A. J., Shirley, N. J., Mather, D. E., Bacic,

A., et al. (2008). The genetics and transcriptional profiles of the cellulose

synthase-like HvCslF gene family in barley. Plant Physiol. 146, 1821–1833.

doi: 10.1104/pp.107.114694

Burton, R. A., Zhang, X. Q., Hrmova, M., and Fincher, G. B. (1999).

A single limit dextrinase gene is expressed both in the developing

endosperm and in germinated grains of barley. Plant Physiol. 119, 859–871.

doi: 10.1104/pp.119.3.859

Caspers, M. P. M., Lok, F., Sinjorgo, K. M. C., Van Zeijl, M. J., Nielsen, K. A.,

and Cameron-Mills, V. (2001). Synthesis, processing and export of cytoplasmic

endo-β-1,4-xylanase from barley aleurone during germination. Plant J. 26,

191–204. doi: 10.1046/j.0960-7412.2001.01019.x

Chateigner-Boutin, A.-L., Bouchet, B., Alvarado, C., Bakan, B., and Guillon,

F. (2014). The wheat grain contains pectic domains exhibiting specific

spatial and development-associated distribution. PLoS ONE 9:e89620.

doi: 10.1371/journal.pone.0089620

Duffus, C. M., and Cochrane, M. P. (1992). “Grain structure and composition,”

in Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, ed P. R.

Shewry (Oxon: CAB International), 291–317.

Duffus, C. M., and Cochrane, M. P. (1993). “Formation of the barley

grain?morphology, physiology, and biochemistry,” in Barley: Chemistry and

Technology, eds A. W. Macgregor and R. S. Bhatty (Madison, WI: American

Association of Cereal Chemists), 31–72.

Fincher, G. (1975). Morphology and chemical composition of barley endosperm

cell walls. J. Inst. Brew. 81, 116–122. doi: 10.1002/j.2050-0416.1975.

tb03672.x

Fincher, G. B. (1989). Molecular and cellular biology associated with endosperm

mobilization in germinating cereal grains. Annu. Rev. Plant Biol. 40, 305–346.

doi: 10.1146/annurev.pp.40.060189.001513

Fincher, G. B. (2009). Exploring the evolution of (1,3;1,4)-β-D-glucans in plant

cell walls: comparative genomics can help! Curr. Opin. Plant Biol. 12, 140–147.

doi: 10.1016/j.pbi.2009.01.002

Fincher, G. B. (2010). “Biochemistry, physiology, and genetics of endosperm

mobilization in germinated barley grain,” in Barley: Production, Improvement,

and Uses, ed S. E. Ullrich (Hoboken, NJ: Wiley-Blackwell), 449–477.

doi: 10.1002/9780470958636.ch14

Fincher, G. B., and Stone, B. A. (1993). “Physiology and biochemistry of

germination in barley,” in Barley: Chemistry and Technology, eds A. W.

Macgregor and R. S. Bhatty (Madison, WI: American Association of Cereal

Chemists), 247–295.

Fox, G. P. (2009). “Chemical composition in barley grains and malt quality,” in

Genetics and Improvement of Barley Malt Quality, eds G. Zhang and C. D. Li

(Hangzhou: Zhejiang University Press; Springer-Verlag), 63–98.

Freeman, P. L., and Palmer, G. H. (1984). The structure of the pericarp and testa of

barley. J. Inst. Brew. 90, 88–94. doi: 10.1002/j.2050-0416.1984.tb04244.x

Fulcher, R., Setterfield, G., McCully, M., and Wood, P. (1977). Observations on

the aleurone layer. II. Fluorescence microscopy of the aleurone-sub-aleurone

junction with emphasis on possible β-1,3-glucan deposits in barley. Funct. Plant

Biol. 4, 917–928. doi: 10.1071/PP9770917

Gram, N. H. (1982). The ultrastructure of germinating barley seeds: 1. Changes

in the scutellum and the aleurone layer in barley (Hordeum vulgare, cultivar

Nordal). Carlsberg Res. Commun. 47, 143–162. doi: 10.1007/BF02914032

Grime, K. H., and Briggs, D. E. (1996). The release of bound

β-amylase by macromolecules. J. Inst. Brew. 102, 261–270.

doi: 10.1002/j.2050-0416.1996.tb00911.x

Guerin, J. R., Lance, R. C. M., and Wallace, W. (1992). Release and activation

of barley β-amylase by malt endopeptidases. J. Cereal Sci. 15, 5–14.

doi: 10.1016/S0733-5210(09)80052-0

Hara-Nishimura, I., Nishimura, M., and Daussant, J. (1986). Conversion of free

β-amylase to bound β-amylase on starch granules in the barley endosperm

during desiccation phase of seed development. Protoplasma 134, 149–153.

doi: 10.1007/BF01275713

Harvey, A. J., Hrmova, M., and Fincher, G. B. (2001). Regulation of genes encoding

β-D-glucan glucohydrolases in barley (Hordeum vulgare). Physiol. Plant. 113,

108–120. doi: 10.1034/j.1399-3054.2001.1130115.x

Hrmova, M., De Gori, R., Smith, B. J., Fairweather, J. K., Driguez, H., Varghese, J.

N., et al. (2002). Structural basis for broad substrate specificity in higher plant

β-D-glucan glucohydrolases. Plant Cell 14, 1033–1052. doi: 10.1105/tpc.010442

Hrmova, M., Harvey, A. J., Wang, J., Shirley, N. J., Jones, G. P., Stone, B. A.,

et al. (1996). Barley β-D-glucan exohydrolases with β-D-glucosidase activity:

purification, characterisation, and determination of primary structure from a

cDNA clone. J. Biol. Chem. 271, 5277–5286. doi: 10.1074/jbc.271.9.5277

Kleinwächter, M., Meyer, A.-K., and Selmar, D. (2012). Malting revisited:

germination of barley (Hordeum vulgare L.) is inhibited by both oxygen

deficiency and high carbon dioxide concentrations. Food Chem. 132, 476–481.

doi: 10.1016/j.foodchem.2011.11.027

Koressaar, T., and Remm, M. (2007). Enhancements and modifications

of primer design program Primer3. Bioinformatics 23, 1289–1291.

doi: 10.1093/bioinformatics/btm091

Laidlaw, H. K. C., Lahnstein, J., Burton, R. A., Fincher, G. B., and Jobling, S. A.

(2012). Analysis of the arabinoxylan arabinofuranohydrolase gene family in

barley does not support their involvement in the remodelling of endosperm cell

walls during development. J. Exp. Bot. 63, 3031–3045. doi: 10.1093/jxb/ers019

Lee, R. C., Burton, R. A., Hrmova, M., and Fincher, G. B. (2001). Barley

arabinoxylan arabinofuranohydrolases: purification, characterization and

determination of primary structures from cDNA clones. Biochem. J. 356,

181–189. doi: 10.1042/bj3560181

Li, C.-D., Langridge, P., Lance, R. C. M., Xu, P., and Fincher, G. B. (1996). Seven

members of the (1→ 3)-β-glucanase gene family in barley (Hordeum vulgare)

are clustered on the long arm of chromosome 3 (3HL). Theor. Appl. Genet. 92,

791–796. doi: 10.1007/BF00221889

Longstaff, M. A., and Bryce, J. H. (1993). Development of limit dextrinase in

germinated barley (Hordeum-vulgare L.) (Evidence of proteolytic activation).

Plant Physiol. 101, 881–889. doi: 10.1104/pp.101.3.881

MacGregor, A. W., and Lenoir, C. (1987). Studies on α-glucosidase in barley and

malt. J. Inst. Brew. 93, 334–337. doi: 10.1002/j.2050-0416.1987.tb04515.x

MacLeod, A. M., and Napier, J. P. (1959). Cellulose distribution in barley. J. Inst.

Brew. 65, 188–196. doi: 10.1002/j.2050-0416.1959.tb01444.x

MacLeod, A. M., and Palmer, G. H. (1966). The embryo of barley in

relation to modification of the endosperm. J. Inst. Brew. 72, 580–589.

doi: 10.1002/j.2050-0416.1966.tb03008.x

Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S., Wicker, T.,

et al. (2017). A chromosome conformation capture ordered sequence of the

barley genome. Nature 544, 427–733. doi: 10.1038/nature22043

McCartney, L., Gilbert, H. J., Bolam, D. N., Boraston, A. B., and Knox, J.

P. (2004). Glycoside hydrolase carbohydrate-binding modules as molecular

probes for the analysis of plant cell wall polymers. Anal. Biochem. 326, 49–54.

doi: 10.1016/j.ab.2003.11.011

McCartney, L., Marcus, S. E., and Knox, J. P. (2005). Monoclonal antibodies to

plant cell wall xylans and arabinoxylans. J. Histochem. Cytochem. 53, 543–546.

doi: 10.1369/jhc.4B6578.2005

Frontiers in Plant Science | www.frontiersin.org 14 October 2017 | Volume 8 | Article 1872

https://doi.org/10.1002/j.2050-0416.1985.tb04322.x
https://doi.org/10.1007/s004380050362
https://doi.org/10.1111/tpj.13600
https://doi.org/10.1007/978-1-4899-1002-8
https://doi.org/10.1039/CT8905700458
https://doi.org/10.1007/BF02344477
https://doi.org/10.1111/j.1467-7652.2010.00532.x
https://doi.org/10.1104/pp.107.114694
https://doi.org/10.1104/pp.119.3.859
https://doi.org/10.1046/j.0960-7412.2001.01019.x
https://doi.org/10.1371/journal.pone.0089620
https://doi.org/10.1002/j.2050-0416.1975.tb03672.x
https://doi.org/10.1146/annurev.pp.40.060189.001513
https://doi.org/10.1016/j.pbi.2009.01.002
https://doi.org/10.1002/9780470958636.ch14
https://doi.org/10.1002/j.2050-0416.1984.tb04244.x
https://doi.org/10.1071/PP9770917
https://doi.org/10.1007/BF02914032
https://doi.org/10.1002/j.2050-0416.1996.tb00911.x
https://doi.org/10.1016/S0733-5210(09)80052-0
https://doi.org/10.1007/BF01275713
https://doi.org/10.1034/j.1399-3054.2001.1130115.x
https://doi.org/10.1105/tpc.010442
https://doi.org/10.1074/jbc.271.9.5277
https://doi.org/10.1016/j.foodchem.2011.11.027
https://doi.org/10.1093/bioinformatics/btm091
https://doi.org/10.1093/jxb/ers019
https://doi.org/10.1042/bj3560181
https://doi.org/10.1007/BF00221889
https://doi.org/10.1104/pp.101.3.881
https://doi.org/10.1002/j.2050-0416.1987.tb04515.x
https://doi.org/10.1002/j.2050-0416.1959.tb01444.x
https://doi.org/10.1002/j.2050-0416.1966.tb03008.x
https://doi.org/10.1038/nature22043
https://doi.org/10.1016/j.ab.2003.11.011
https://doi.org/10.1369/jhc.4B6578.2005
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Betts et al. Barley Malting Processes

McCleary, B. V., and Codd, R. (1989). Measurement of β-amylase in cereal

flours and commercial enzyme preparations. J. Cereal Sci. 9, 17–33.

doi: 10.1016/S0733-5210(89)80018-9

McCleary, B. V., and Codd, R. (1991). Measurement of (1→ 3),(1→ 4)-β-D-

glucan in barley and oats: a streamlined enzymic procedure. J. Sci. Food Agric.

55, 303–312. doi: 10.1002/jsfa.2740550215

McCleary, B. V., Mangan, D., McKie, V., Cornaggia, C., Ivory, R., and

Rooney, E. (2014). Colourimetric and fluorometric substrates for

measurement of pullulanase activity. Carbohyd. Res. 393, 60–69.

doi: 10.1016/j.carres.2014.04.014

McCleary, B. V., McNally, M., Monaghan, D., and Mugford, D. C. (2002).

Measurement of α-amylase activity in white wheat flour, milled malt, and

microbial enzyme preparations, using the Ceralpha assay: collaborative study.

J. AOAC Int. 85, 1096–1102.

McCleary, B. V., and Shameer, I. (1987). Assay of malt β-glucanase using

azo-barley glucan: an improved precipitant. J. Inst. Brew. 93, 87–90.

doi: 10.1002/j.2050-0416.1987.tb04481.x

McCleary, B. V., Solah, V., and Gibson, T. S. (1994). Quantitative measurement

of total starch in cereal flours and products. J. Cereal Sci. 20, 51–58.

doi: 10.1006/jcrs.1994.1044

McFadden, G. I., Ahluwalia, B., Clarke, A. E., and Fincher, G. B. (1988). Expression

sites and developmental regulation of genes encoding (1→ 3,1→ 4)-β-

glucanases in germinated barley. Planta 173, 500–508. doi: 10.1007/BF00958963

Meikle, P. J., Bonig, I., Hoogenraad, N. J., Clarke, A. E., and Stone, B. A. (1991).

The location of (1→ 3)-β-glucans in the walls of pollen tubes of Nicotiana

alata using a (1→ 3)-β-glucan-specific monoclonal antibody. Planta 185, 1–8.

doi: 10.1007/BF00194507

Meikle, P. J., Hoogenraad, N. J., Bonig, I., Clarke, A. E., and Stone, B. A. (1994).

A (1→ 3,1→ 4)-β-glucan-specific monoclonal antibody and its use in the

quantitation and immunocytochemical location of (1→ 3,1→ 4)-β-glucans.

Plant J. 5, 1–9. doi: 10.1046/j.1365-313X.1994.5010001.x

Naka, M., Sugimoto, Y., Sakamoto, S., and Fuwa, H. (1985). Some properties

of large and small granules of waxy barley (Hordeum-vulgare L.) endosperm

starch. J. Nutr. Sci. Vitaminol. 31, 423–429. doi: 10.3177/jnsv.31.423

O’Brien, J. A. (1942). Cytoplasmic Iinclusions in the glandular epithelium of the

scutellum of Triticum sativum and Secale cereale. Am. J. Bot. 29, 479–491.

doi: 10.2307/2437095

O’Brien, J. A. (1951). Plastid development in the scutellum of Triticum aestivum

and Secale cereale. Am. J. Bot. 38, 684–696. doi: 10.2307/2437915

Palmer, R., Cornuault, V., Marcus, S. E., Knox, J. P., Shewry, P. R., and Tosi,

P. (2015). Comparative in situ analyses of cell wall matrix polysaccharide

dynamics in developing rice and wheat grain. Planta 241, 669–685.

doi: 10.1007/s00425-014-2201-4

Ross, H. A., Sungurtas, J., Ducreux, L., Swanston, J. S., Davies, H. V., and

McDougall, G. J. (2003). Limit dextrinase in barley cultivars of differingmalting

quality: activity, inhibitors and limit dextrin profiles. J. Cereal Sci. 38, 325–334.

doi: 10.1016/S0733-5210(03)00048-1

Simpson, D. J., Fincher, G. B., Huang, A. H. C., and Cameron-Mills, V. (2003).

Structure and function of cereal and related higher plant (1→ 4)-β-xylan

endohydrolases. J. Cereal Sci. 37, 111–127. doi: 10.1006/jcrs.2002.0488

Sissons, M. J., Lance, R. C. M., and Sparrow, D. H. B. (1993). Studies on limit

dextrinase in barley. 3. Limit dextrinase in developing kernels. J. Cereal Sci. 17,

19–24. doi: 10.1006/jcrs.1993.1003

Slade, A. M., HØJ, P. B., Morrice, N. A., and Fincher, G. B. (1989). Purification and

characterization of three (1→ 4)-β-D-xylan endohydrolases from germinated

barley. Eur. J. Biochem. 185, 533–539. doi: 10.1111/j.1432-1033.1989.

tb15146.x

Slakeski, N., and Fincher, G. B. (1992). Developmental regulation of (1-3,1-4)-

β-glucanase gene-expression in barley?tissue-specific expression of individual

isoenzymes. Plant Physiol. 99, 1226–1231. doi: 10.1104/pp.99.3.1226

Smart, M., and O’Brien, T. (1979). Observations on the scutellum. I. Overall

development during germination in four grasses. Aust. J. Bot. 27, 391–401.

doi: 10.1071/BT9790391

Sungurtas, J., Swanston, J. S., Davies, H. V., and McDougall, G. J.

(2004). Xylan-degrading enzymes and arabinoxylan solubilisation in

barley cultivars of differing malting quality. J. Cereal Sci. 39, 273–281.

doi: 10.1016/j.jcs.2003.11.001

Tan, H.-T., Shirley, N. J., Singh, R. R., Henderson, M., Dhugga, K. S., Mayo, G.

M., et al. (2015). Powerful regulatory systems and post-transcriptional gene

silencing resist increases in cellulose content in cell walls of barley. BMC Plant

Biol. 15:62. doi: 10.1186/s12870-015-0448-y

Van Campenhout, S., and Volckaert, G. (2005). Differential expression of endo-

β-1,4-xylanase isoenzymes X-I and X-II at various stages throughout barley

development. Plant Sci. 169, 512–522. doi: 10.1016/j.plantsci.2005.05.003

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A.,

et al. (2002). Accurate normalization of real-time quantitative RT-PCR data

by geometric averaging of multiple internal control genes. Genome Biol. 3,

research0034.1–0034.11. doi: 10.1186/gb-2002-3-7-research0034

Verhertbruggen, Y., Marcus, S. E., Haeger, A., Ordaz-Ortiz, J. J., and Knox, J. P.

(2009). An extended set of monoclonal antibodies to pectic homogalacturonan.

Carbohyd. Res. 344, 1858–1862. doi: 10.1016/j.carres.2008.11.010

Walker-Smith, D. J., and Payne, J. W. (1984). Characteristics of the active transport

of peptides and amino acids by germinating barley embryos. Planta 162,

159–165. doi: 10.1007/BF00410213

Wilson, S. M., Burton, R. A., Collins, H. M., Doblin, M. S., Pettolino, F. A.,

Shirley, N., et al. (2012). Pattern of deposition of cell wall polysaccharides and

transcript abundance of related cell wall synthesis genes during differentiation

in barley endosperm. Plant Physiol. 159, 655–670. doi: 10.1104/pp.111.

192682

Wilson, S. M., Burton, R. A., Doblin, M. S., Stone, B. A., Newbigin, E. J., Fincher,

G. B., et al. (2006). Temporal and spatial appearance of wall polysaccharides

during cellularization of barley (Hordeum vulgare) endosperm. Planta 224,

655–667. doi: 10.1007/s00425-006-0244-x

Wood, P. J., and Fulcher, R. G. (1984). Specific interaction of aniline

blue with (1 → 3)-β-D-glucan. Carbohyd. Polym. 4, 49–72.

doi: 10.1016/0144-8617(84)90044-4

Woodward, J. R., and Fincher, G. B. (1982). Substrate specificities and

kinetic properties of two (1→ 3), (1→ 4)-β-d-glucan endo-hydrolases

from germinating barley (Hordeum vulgare). Carbohyd. Res. 106, 111–122.

doi: 10.1016/S0008-6215(00)80737-5

Xu, P., Wang, J., and Fincher, G. B. (1992). Evolution and differential expression of

the (1→ 3)-β-glucan endohydrolase encoding gene family in barley, Hordeum

vulgare. Gene 120, 157–165. doi: 10.1016/0378-1119(92)90089-8

Xue, J., Bosch, M., and Knox, J. P. (2013). Heterogeneity and glycan masking

of cell wall microstructures in the stems of Miscanthus x giganteus,

and is parents M. sinensis and M. sacchariflorus. PLOS ONE 8:e82114.

doi: 10.1371/journal.pone.0082114

Conflict of Interest Statement: FL and BS were employed by the Carlsberg

Research Laboratory. Other authors declare that the research was conducted in

the absence of any commercial or financial relationships that could be construed

as a potential conflict of interest.

Copyright © 2017 Betts, Wilkinson, Khor, Shirley, Lok, Skadhauge, Burton, Fincher

and Collins. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 15 October 2017 | Volume 8 | Article 1872

https://doi.org/10.1016/S0733-5210(89)80018-9
https://doi.org/10.1002/jsfa.2740550215
https://doi.org/10.1016/j.carres.2014.04.014
https://doi.org/10.1002/j.2050-0416.1987.tb04481.x
https://doi.org/10.1006/jcrs.1994.1044
https://doi.org/10.1007/BF00958963
https://doi.org/10.1007/BF00194507
https://doi.org/10.1046/j.1365-313X.1994.5010001.x
https://doi.org/10.3177/jnsv.31.423
https://doi.org/10.2307/2437095
https://doi.org/10.2307/2437915
https://doi.org/10.1007/s00425-014-2201-4
https://doi.org/10.1016/S0733-5210(03)00048-1
https://doi.org/10.1006/jcrs.2002.0488
https://doi.org/10.1006/jcrs.1993.1003
https://doi.org/10.1111/j.1432-1033.1989.tb15146.x
https://doi.org/10.1104/pp.99.3.1226
https://doi.org/10.1071/BT9790391
https://doi.org/10.1016/j.jcs.2003.11.001
https://doi.org/10.1186/s12870-015-0448-y
https://doi.org/10.1016/j.plantsci.2005.05.003
https://doi.org/10.1186/gb-2002-3-7-research0034
https://doi.org/10.1016/j.carres.2008.11.010
https://doi.org/10.1007/BF00410213
https://doi.org/10.1104/pp.111.192682
https://doi.org/10.1007/s00425-006-0244-x
https://doi.org/10.1016/0144-8617(84)90044-4
https://doi.org/10.1016/S0008-6215(00)80737-5
https://doi.org/10.1016/0378-1119(92)90089-8
https://doi.org/10.1371/journal.pone.0082114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Morphology, Carbohydrate Distribution, Gene Expression, and Enzymatic Activities Related to Cell Wall Hydrolysis in Four Barley Varieties during Simulated Malting
	Introduction
	Materials and Methods
	Germination Conditions
	Fixing and Embedding Grain Sections
	Immuno-Histochemical Microscopy
	Biochemical Assays
	RNA Extraction and qPCR

	Results
	Grain Morphology
	Starch Hydrolysis
	Cell Wall Hydrolysis
	(1,3;1,4)-β-Glucan and Other Glucans
	Arabinoxylan


	Discussion
	Cell Wall Changes
	Starch Hydrolysis
	Morphology of the Aleurone and Scutellum

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


