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Plants develop a high flexibility to alter growth, development, and metabolism to adapt
to the ever-changing environments. Multiple signaling pathways are involved in these
processes and the molecular pathways to transduce various developmental signals are
not linear but are interconnected by a complex network and even feedback mutually
to achieve the final outcome. This review will focus on two important plant hormones,
auxin and brassinosteroid (BR), based on the most recent progresses about these two
hormone regulated plant growth and development in Arabidopsis, and highlight the
cross-talks between these two phytohormones.
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INTRODUCTION

Unlike animals that can move to avoid the adverse surroundings, the sessile plants exhibit a highly
developed adaptation to the complicated environmental conditions. To achieve this profound
adaptability, communications among cells are necessary. Cell to cell communication in plants
involves robust intracellular signaling processing and intricate intercellular signaling networks.
Till now there are at least nine signaling substances, named plant hormones, including auxin,
brassinosteroid (BR), cytokinin, gibberellins (GA), ethylene, jasmonic acid (JA), strigolactone (SL),
abscisic acid (ABA), and salicylic acid (SA) discovered (Druege et al., 2016; Verma et al., 2016).
The genetic and physiological studies have revealed the critical roles and functional mechanisms
of these above hormones in plant growth and development (Gray, 2004). Based on the previous
studies, auxin, BR, GA, SL, and cytokinin mainly function during normal plant growth and
development, while ABA, ethylene, JA, and SA play important roles in plant growth response
to various biotic and abiotic stresses (Pieterse et al., 2009; Santner et al., 2009; Denance et al.,
2013). And also some of these hormones have dual roles, for example, ABA also plays important
roles in seed development and dormancy (Seo and Koshiba, 2002). Although each hormone
plays predominant roles in certain aspects, many hormones have overlapped activities and the
interactions of different hormones control many developmental aspects and growth in response
to endogenous developmental and exogenous cues.

Auxin and BR are two major classes of growth-promoting hormones. BR, a group of plant-
specific steroid hormones which could interact with other phytohormones such as auxin, cytokinin,
ethylene, GA, JA, and SA and regulate a wide range of plant growth and developmental processes
including seed germination, cell elongation, vascular differentiation, stomata formation and
movement, flowering and male fertility (Saini et al., 2015). Interestingly, each of these processes

Frontiers in Plant Science | www.frontiersin.org 1 January 2018 | Volume 8 | Article 2256

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2017.02256
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2017.02256
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2017.02256&domain=pdf&date_stamp=2018-01-18
https://www.frontiersin.org/articles/10.3389/fpls.2017.02256/full
http://loop.frontiersin.org/people/514549/overview
http://loop.frontiersin.org/people/514551/overview
http://loop.frontiersin.org/people/181917/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-08-02256 January 16, 2018 Time: 15:36 # 2

Tian et al. Auxin and BR Cross-Talk

is also controlled by auxin, suggesting these two hormones
interplay to control plant development. In this review, we will
outline the signal transduction of auxin and BR based on the
recent progress and review the crosstalk between auxin and BR
mediated plant growth and development.

AUXIN SIGNALING PATHWAY

Auxin was first recognized as plant hormone because of its
role in plant tropism to gravity or light stimuli. Later auxin
was chemically identified as indole-3-acetic acid and shown
to play essential roles in plethora of plant developmental
and physiological processes, including embryogenesis,
organogenesis, vascular differentiation, root and shoot
development, tropic growth, and fruit development (Estelle,
2011).

Using genetic analysis in Arabidopsis, the molecular
mechanism underlying the auxin signal transduction has
been well investigated. TRANSPORT INHIBITOR RESPONSE1
(TIR1) was the first identified nuclear receptor of auxin (Ruegger
et al., 1998; Dharmasiri et al., 2005). TIR1 encodes a nuclear
protein belonging to the F-box protein as a subunit of SCF
E3 ubiquitin ligase protein complex (Gray et al., 1999, 2002;
Hellmann et al., 2003; Quint et al., 2005), In addition to TIR1,
there are three additional F-box proteins namely AUXIN
SIGNALING F BOX PROTEINs (AFBs) which show auxin-
binding activity and mediate auxin signaling in Arabidopsis
(Badescu and Napier, 2006). TIR1 receptor can interact with
a group of AUX/IAA (auxin/indole-3-acetic acid) proteins
(Dharmasiri et al., 2003). AUX/IAA proteins are negative
regulators of auxin signaling and there are 29 members of
AUX/IAA encoded in Arabidopsis genome. AUX/IAA proteins
could interact with the class of transcriptional regulators, auxin
response factors (ARF), to mediate transcriptional responses
to auxin. Under high auxin level, AUX/IAA proteins interact
with TIR1 as coreceptor of auxin, and can be ubiquitinated
by the SCFtir1 complex and thus be degraded through the
ubiquitin–proteasome pathway (Gray et al., 2001; Lanza et al.,
2012). Upon the destruction of AUX/IAA repressors, the auxin
transcriptional regulators ARFs which include 23 memberships
can be released from AUX/IAA repression and thus mediate
the auxin responses by activation or repression of target genes
(Guilfoyle and Hagen, 2007). The different sets of F-box protein
and AUX/IAA or ARFs infer the complexity during auxin signal
transduction (Goh et al., 2012; Guilfoyle, 2015; Salehin et al.,
2015).

The coordinated action of Aux/IAA transcriptional repressors
and ARF transcription factors produces complex gene-regulatory
networks which were also reported in Physcomitrella (Lavy
et al., 2016). Recently, it was found that CULLIN1 (CUL1)
subunit of the SCF interacts with TIR1 and thus regulates
TIR1 substrates stability and auxin signaling (Wang et al.,
2016). The interaction between TIR1 and Aux/IAA is
also influenced by the spatial conformation of Aux/IAAs,
controlled by a cyclophilin isomerase LRT2 in rice (Jing
et al., 2015). HEAT SHOCK FACTOR 90 (HSP90) and the

co-chaperone SGT1, respectively, interacts with TIR1 and
thus regulates TIR1 stability, which affects the interactions
between TIR1 and Aux/IAA and auxin signaling (Wang et al.,
2016).

Besides the TIR1-dependent canonical auxin-signaling
pathway, auxin has recently been reported to elicit a
diverse range of developmental responses through a
non-canonical auxin-signaling mechanism. In this non-
canonical auxin sensing process, ARF3/ETTIN controls
gene expression through interactions with process-specific
transcription factors, which highly enriches auxin-mediated
plant developmental diversity (Simonini et al., 2016,
2017).

BR SIGNALING PATHWAY

BRASSINOSTEROID was first discovered in pollen for its
ability to promote cell elongation. Later it was found that
BR plays roles in a wide range of plant growth aspects
and can respond to biotic and abiotic stresses. Nowadays
BR signal transduction pathway was largely clarified by
combinations of different methods, including molecular
genetics, biochemistry, proteomics, and genomics, etc. The
cell-surface kinase BRASSINOSTEROID INSENSITIVE1 (BRI1)
was identified as the receptor of BR which can bind to the
extracellular domain of BRI1 and activate its kinase activity and
thus switch on a signal cascade to regulate transcription (Li
and Chory, 1997; Wang et al., 2001; Kinoshita et al., 2005; Kim
and Wang, 2010; Clouse, 2011; Hothorn et al., 2011; She et al.,
2011; Oh et al., 2012). Upon perception of BR, BRI1 interacts
with co-receptor BRI1-ASSOCIATED KINASE 1 (BAK1)
and its homolog SOMATIC EMBRYOGENESISRECEPTOR
KINASEs (SERKs) to form a more active BR receptor complex
(Li et al., 2002; Nam and Li, 2002; Wang et al., 2005; Tang
et al., 2008; Gou et al., 2012). Activated BRI1 phosphorylates
two substrates of plasma membrane-anchored receptor-like
cytoplasmic kinases: BRASSINOSTEROID-SIGNALING
KINASES1 (BSK1) and CONSTITUTIVE DIFFERENTIAL
GROWTH1 (CDG1) (Tang et al., 2008; Kim et al., 2011),
which in turn phosphorylates a PP1-type phosphatase named
BRI1-SUPPRESSOR1 (BSU1) to activate BSU1, leading to
BSU1 dephosphorylation and inactivation the GSK3-like
kinase BRASSINOSTEROID INSENSITIVE2 (BIN2). The
kinase activity of BIN2 is also inhibited by HISTONE
DEACETYLASE HDA6, which interacts and deacetylates at
the K189 of BIN2. When BR levels are low, BRI1 is quiescent
due to its negative regulator, BRI1 KINASE INHIBITOR
1 (BKI1) and protein phosphatase 2A (PP2A), while BIN2
phosphorylate two BR homologous transcription factors,
BRASSINAZOLE RESISTANT1 (BZR1) and BZR2 (also
named BES1 for BRI1-EMS-SUPPRESSOR 1) (He et al., 2002;
Wang et al., 2002; Yin et al., 2002; Mora-Garcia et al., 2004;
Kim et al., 2009, 2011; Kim and Wang, 2010). When BR
levels are high, BIN2 is inactivated, and BZR1 and BZR2 are
dephosphorylated by PP2A, and move into nucleus to alter the
expression of thousands of BR response genes (He et al., 2005;
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Yin et al., 2005; Sun et al., 2010; Tang et al., 2011; Yu et al.,
2011).

THE SYNERGY BETWEEN BR AND
AUXIN SIGNALING

Auxin and BR signal pathways play diverse roles, however, they
also showed synergistic and interdependent interactions in a
wide range of developmental processes. For example, both auxin
and BR signals can promote cell expansion and can interact
synergistically to promote hypocotyls elongation (Nemhauser
et al., 2004). The response of one of the two pathways in
promoting hypocotyl elongation requires the function of the
other and the interdependence between BR and auxin pathways
(Nemhauser et al., 2004). Auxin increased hypocotyl length in
wild-type plants but not in the BR-insensitive mutant bri1-116,
and this auxin-insensitive phenotype of bri1-116 was suppressed
by the dominant gain-of-function mutant bzr1-1D, indicating BR
or active BZR1 is required for auxin promotion of hypocotyl
elongation. It has been found that BR signaling converges with
SUPPRESSOR OF PHYTOCHROME B4-3 (SOB3) to control
cell elongation and hypocotyl growth through the regulation of
auxin induced SMALL AUXIN UP RNA19 (SAUR19) expression
(Favero et al., 2017). On the other hand, the auxin regulated
transcription factor SMALL ORGAN SIZE 1 (SMOS1) has
recently been found to control cell expansion through the direct
interaction with SMOS2/DLT, a member of the GRAS family of
transcriptional co-regulators which plays a positive role in BR
signaling in rice (Kim et al., 2009; Tong et al., 2012; Hirano
et al., 2017). Auxin related mutants such as iaa3 and arf6/arf8
were less sensitive to BR than was wild-type for hypocotyl
elongation, and abolished the hypersensitivity of bzr1-1D to
auxin, suggesting the BR and BZR1 promotion of hypocotyl
elongation requires ARF6/8. The genome-wide ChIP-Seq analysis
revealed that ARF6 shares a vast number of genomic targets
(around 50%) with BZR1 and the light/temperature-regulated
transcription factor PIF4 by CHIP-Seq analyses (Oh et al., 2014).
BZR1 and PIF4 interact with ARF6 and activate shared target
genes by binding to shared target genes cooperatively during
hypocotyls elongation (Oh et al., 2014) and many of these
overlapping target genes encode cell wall proteins involved in cell
expansion.

Brassinosteroid and auxin also play important roles in the
maintenance of root apical meristem (RAM) (Durbak et al.,
2012). The RAM consists of a small group of rarely dividing cells
known as the quiescent center (QC), surrounded by stem cells
that give rise to the various toot tissue types. The maintenance
of the root stem cell population is regulated by WUSCHEL-
RELATED HOMEOBOX 5 (WOX5) (Sarkar et al., 2007). WOX5
is restricted to the QC by auxin signaling and facilitates proper
expression of the PLT genes (Aida et al., 2004; Ding and Friml,
2010). Mutations in the BR receptor gene BRASSINOSTEROID
INSENSITIVE 1 (BRI1) result in aberrant cell cycle progression
in the RAM and cause a smaller RAMs (Gonzalez-Garcia et al.,
2011; Hacham et al., 2011). Auxin is known to stimulate the
biosynthesis of BR (Chung et al., 2011), but the activity of

BR does not affect the expression of PIN genes (Hacham
et al., 2011). The root tip phenotypes of BR mutants do not
show the same as the auxin mutants (Gonzalez-Garcia et al.,
2011), indicating that BR act on the RAM independently of
auxin.

Brassinosteroid and auxin signals are also synergistically
required in the radial pattern formation of vascular bundles
(Ibanes et al., 2009). By the combinations of mathematical
modeling and biological experiments, auxin maxima, established
by asymmetric auxin polar transport, but not changes on auxin
levels is important for positioning the vascular bundles. BR
signal was shown to serve as a promoting signal for the number
of cells in the provascular ring which are consistent with
auxin maxima. Thus the establishment of periodic arrangement
of vascular bundles in the shoot is under the coordinated
action of these two plant hormones (Ibanes et al., 2009). Both
signals are also involved in plant root development and the
interaction of BR and auxin is mediated by BREVIS RADIX
(BRX) during this process. BRX is important for the rate-limiting
biosynthesis of BR and BR exogenous application can rescue brx
mutant defects. Furthermore, auxin-responsive gene expression
is globally impaired in brx mutant, and the expression of BRX
is strongly induced by auxin and suppressed by BR, implying
BR biosynthesis and auxin signaling are connected through a
feedback loop involving BRX during root development (Mouchel
et al., 2006).

Brassinosteroids and auxin also play synergistic roles during
lateral root development. BRs mainly function at the lateral root
primordia initiation while auxin is required for both initiation
and emergence stages of lateral root formation (Casimiro et al.,
2001; Bhalerao et al., 2002; Benkova et al., 2003; Bao et al.,
2004). During these processes, BRs increase LRP initiation
by promoting acropetal auxin transport in the root but not
by affecting endogenous IAA level (Bao et al., 2004). All
these reports suggest that the crosstalk between BR and auxin
plays an important role in the regulation plant growth and
development.

BR REGULATES AUXIN SIGNALING

Besides the interdependency and cooperation of auxin and
BR signals during plant development, BR could mediate auxin
signal pathway on multiple levels. BZR1 interacts with ARF
proteins to directly target multiple auxin signaling components
and genes involved in auxin metabolism such as transport and
signaling, including AUX/IAA, PINs, TIR1, and ARFs, etc. (Sun
et al., 2010). It was found that Aux/IAA proteins are involved
in BR responses and iaa7/axr2-1 and iaa17/axr3-3 mutants
showed aberrant BR sensitivity and aberrant BR-induced gene
expression in an organ-dependent manner (Nakamura et al.,
2006). Exogenous brassinolide (BL) treatment could induce the
expression of auxin-responsive genes such as IAA5, IAA19,
IAA17, etc., and the expression of the above genes is down-
regulated in the BR biosynthetic mutant de-etiolated2 (det2),
which indicates that functional BR biosynthesis is partly required
for auxin-dependent gene expression (Nakamura et al., 2003;
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FIGURE 1 | Model of auxin-brassinosteroid (BR) crosstalk. In Arabidopsis, the perceptions of BR and auxin signal are recognized by BRI1 and TIR1 receptors,
respectively. BR binds to the extracellular domain of BRI1 and promote it interacts with co-receptor BAK1 to form a more active BR receptor complex, which in turn
lead to the dephosphorylation and inactivation of BIN2. The inactivation of BIN2 lead to the dephosphorylation of two BR homologous transcription factors BZR1
and BZR2, which move into nucleus to activate transcription of genes containing BRRE or E-box in their promoter region. BIN2 also can phosphorylate ARF7 and
ARF19 to suppress their interaction with AUX/IAAs and thereby enhance the transcriptional activity on their target genes. TIR1 receipt the auxin signaling and interact
with AUX/IAA proteins as co-receptor of auxin. The AUX/IAA then is degraded through ubiquitin–proteasome pathway, and the auxin transcriptional regulators auxin
response factors (ARFs) are released from AUX/IAA repression and activate transcription of genes with auxin responsive elements (AUXRE) in their regulatory region.
Some ARFs can also binds to the promoter of BRI1 and positively regulates its expression which then activates the BR signaling. Primary crosstalk occurs by
activation of genes that contain both BRRE/E-box and AUXRE in their promoter region, allowing both signaling pathways to directly regulate transcription.
Secondary crosstalk occurs through expression of genes that are either auxin or BR responsive, but the activities of which control expression of genes that regulate
the response and signaling of other hormones.

Kim et al., 2006). Additionally, BR also affects auxin flow
by regulating the expression of auxin exporters such as PIN4
and PIN7 (Nakamura et al., 2004). During plant gravitropism
responses, BRs could enhance the polar accumulation of the
auxin exporter PIN2 in the root meristem zone and thus
affect the redistribution of auxin from the root tip toward
the elongation zones and result in the difference of IAA
levels in both upper and lower sides of roots to induce plant
gravitropism. During this process, BR activated ROP2 plays an
important role in modulating the functional localization of PIN2
through the regulation of the assembly/reassembly of F-actins

(Li et al., 2005). Further studies showed that decreased BL
perception and/or concentration could induce CYP79B2, the
gene encoding an enzyme converting tryptophan to indole-
3-acetaldoxime and thus affect the distribution (Kim et al.,
2007).

In addition, it was found that BR signal could regulate auxin
signaling output by its negative regulator GSK3 kinase BIN2. The
auxin response factor ARF2 was identified as a BIN2 interacting
protein in a yeast two-hybrid screen and kinase assay showed
BIN2 could phosphorylate ARF2. The phosphorylation of ARF2
results in the loss of its DNA binding ability and repression
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activity of the target genes (Vert et al., 2008). ARF2 is a BZR1
target genes and its expression is reduced by BR treatment
(Sun et al., 2010). Additionally, BIN2 can phosphorylate ARF7
and ARF19 to suppress their interaction with AUX/IAAs and
thereby enhance the transcriptional activity on their target
genes LATERAL ORGAN BOUNDARIES-DOMAIN16 (LBD16)
and LBD29 to regulate lateral root organogenesis (Cho et al.,
2014). However, BR plays a minor role during this process
and BIN2 is under the control of the TRACHEARY ELEMENT
DIFFERENTIATION INHIBITORY FACTOR (TDIF)–TDIF
RECEPTOR (TDR) module (Cho et al., 2014). Together, BR
can regulate auxin reponses through influencing different auxin
signaling components.

AUXIN REGULATES BR SIGNALING

On the other hand, auxin can also regulate BR signal pathway
in certain aspects. The expression of DWARF4, a crucial
hydroxylase for BR biosynthesis to control endogenous BR
level, is auxin dependent. Auxin treatment could noticeably
stimulate the expression of DWARF4 and auxin could inhibit the
binding of BZR1 to the promoter of DWARF4. The induction
of DWARF4 by auxin requires auxin signaling pathway but
not BR signaling pathway (Chung et al., 2011; Yoshimitsu
et al., 2011). CPD catalyzing C-3 oxidation of BR was activated
by BRX, a putative transcription factor acting downstream of
auxin signaling (Mouchel et al., 2006). Further study in rice
indicates that exogenous auxin can enhance the transcription
expression levels of BR receptor gene OsBRI1, suggesting that
auxin enhances BR signaling through the regulation of BR
receptors (Sakamoto et al., 2013). Furthermore, the promoter of
OsBRI1 possesses an upstream auxin-response element (AuxRE)
motif which is targeted by ARF transcription factors. Moreover,
mutant studies indicate that upon mutation of AuxRE, the
induction of expression of OsBRI1 by auxin is abolished and
also the expression of OsBRI1 is down regulated in arf mutant
(Sakamoto et al., 2013). It has been reported that OsARF19
binds to the promoter of OsBRI1 and positively regulates its
expression which then activates the BR signaling (Zhang et al.,
2015). BES1 can bind to the promoter of SMALL AUXIN-
UP RNA 15 (SAUR15) and mediate BR early response gene
in Arabidopsis, and this binding could be enhanced by auxin
treatment (Walcher and Nemhauser, 2012). Taken together,
auxin can also affect BR responses and BR regulated plant growth
and development.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVE

During the past nearly four decades, studies on auxin-
BR pathway interactions have attracted more and more
researchers’ interest. The appliance of physiological, molecular,
genetic, and biochemical tools have greatly deepened our
understanding of this issue. Based on the previous studies,
BR and auxin are involved synergistically in multiple plant

developmental processes including: hypocotyl elongation,
vascular bundles development, root development and tropisms,
etc. The interdependency and cooperation of auxin and BR are
complicated and involve numerous processes on the molecular
level, by sharing the same target genes, regulating each other
mutually on multiple levels (Figure 1).

Phosphorylation regulation plays a crucial role in BR signaling
pathway, especially during the perception process, BR is
perceived through BRI1 kinase receptor and BAK1 kinase co-
receptors, and eventually controls BR regulated gene expression
through influencing downstream transcription factors such as
BES1/BZR1 activities (He et al., 2005; Yin et al., 2005; Sun
et al., 2010; Tang et al., 2011; Yu et al., 2011). However,
ubiquitination regulation seems essential for auxin signaling.
Once auxin binds to TIR1 receptor, which acts as an ubiquitin
E3-ligase, the activated TIR1 E3-ligase ubiquitinates AUX/IAA
proteins, leads to the degradation of these repressors and de-
represses ARF transcription factors, and eventually causes auxin
regulated gene expression pattern changes and growth responses
(Gray et al., 1999, 2002; Hellmann et al., 2003; Quint et al.,
2005). Since it has been found that BIN2 kinase, which is well
known functioning in BR signaling, could phosphorylate and
enhance the activities of ARFs such as ARF2 and ARF7 (Vert
et al., 2008; Cho et al., 2014), it will be interesting to test
if kinases such as BIN2, which are involved in BR signaling,
could also interact with other auxin signaling components such
as TIR1 receptor or AUX/IAA repressors, and influence TIR1
E3-ligase activity or AUX/IAA protein stabilities. On the other
hand, the role of ubiquitination in BR signaling also needs
to be addressed, especially if TIR1 E3-ligase could directly
interact with BR signaling components and regulate their protein
stabilities.

In addition, using auxin response DR5 and other auxin
reporters, it has been observed that auxin regulates plant
growth and development in a tissue or cellular dependent
manner. The diverse transcriptional outputs depending on the
cellular and environmental context (Clark et al., 2014; Etchells
et al., 2016; Lavy et al., 2016). Though the spatiotemporal
BR signaling has been shown to control root growth through
the antagonistic action with auxin (Chaiwanon and Wang,
2015), it is still unknown if the tissue or cellular BR
signaling, which could be visualized by pBZR1:BZR1-YFP,
is also important to control other processes besides root
development. Furthermore, generation of a detailed tissue
or cellar map of auxin and BR distributions is currently
possible using fluorescence-activated cell sorting or laser
microdissection in combination with high-resolution gene
expression analysis. This will eventually leads to address
if the auxin crosstalks with BR in a tissue or cellular
manner.
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